Browse Source

First Commit

Pranav 6 years ago
commit
e12d139cbb
50 changed files with 27834 additions and 0 deletions
  1. 9 0
      .gitattributes
  2. BIN
      Identifying Fraud from Enron Email Dataset/Enron_61702_Insiderpay.pdf
  3. 16428 0
      Identifying Fraud from Enron Email Dataset/Enron_Fraud.html
  4. 730 0
      Identifying Fraud from Enron Email Dataset/Enron_Fraud.ipynb
  5. 42 0
      Identifying Fraud from Enron Email Dataset/README.md
  6. 125 0
      Identifying Fraud from Enron Email Dataset/feature_format.py
  7. 6707 0
      Identifying Fraud from Enron Email Dataset/final_project_dataset.pkl
  8. BIN
      Identifying Fraud from Enron Email Dataset/my_classifier.pkl
  9. BIN
      Identifying Fraud from Enron Email Dataset/my_dataset.pkl
  10. BIN
      Identifying Fraud from Enron Email Dataset/my_feature_list.pkl
  11. 94 0
      Identifying Fraud from Enron Email Dataset/poi_email_addresses.py
  12. 136 0
      Identifying Fraud from Enron Email Dataset/poi_id.py
  13. 37 0
      Identifying Fraud from Enron Email Dataset/poi_names.txt
  14. 111 0
      Identifying Fraud from Enron Email Dataset/tester.py
  15. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/Multivariate_Plots2-1.png
  16. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/Univariate_Grid_Plot-1.png
  17. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/Univariate_Plots-1.png
  18. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/acid_quality-1.png
  19. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/acidity_plot-1.png
  20. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/acidity_quality_rating-1.png
  21. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/acidity_rating-1.png
  22. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/acidity_univariate-1.png
  23. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/alcohol_acid_quality-1.png
  24. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/alcohol_quality-1.png
  25. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/alcohol_quality_sugar-1.png
  26. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/alcohol_univariate-1.png
  27. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/citric_acid_univariate-1.png
  28. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/correlation_plots-1.png
  29. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/fixed_acidity_plot-1.png
  30. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/plot_1-1.png
  31. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/plot_1a-1.png
  32. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/plot_1b-1.png
  33. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/plot_2-1.png
  34. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/plot_3-1.png
  35. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/quality_rating-1.png
  36. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/quality_univariate-1.png
  37. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/sulfur_univariate-1.png
  38. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/sulphates_qplots-1.png
  39. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/sulphates_quality-1.png
  40. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/unnamed-chunk-2-1.png
  41. BIN
      Investigating Factors Affecting Red Wine Quality/Figs/unnamed-chunk-3-1.png
  42. 23 0
      Investigating Factors Affecting Red Wine Quality/README.md
  43. 863 0
      Investigating Factors Affecting Red Wine Quality/Red_Wine_Quality.R
  44. 15 0
      Investigating Factors Affecting Red Wine Quality/Red_Wine_Quality.html
  45. 862 0
      Investigating Factors Affecting Red Wine Quality/Red_Wine_Quality.rmd
  46. 10 0
      Investigating Factors Affecting Red Wine Quality/References.txt
  47. 1600 0
      Investigating Factors Affecting Red Wine Quality/wineQualityReds.csv
  48. 19 0
      License.txt
  49. BIN
      Presenting.jpg
  50. 23 0
      README.md

+ 9 - 0
.gitattributes

@@ -0,0 +1,9 @@
+# Repository consists primarily of
+# iPython Notebooks, Python Scripts & RMD/R files.
+
+* linguist-vendored
+*.py linguist-vendored=false
+*.ipynb linguist-vendored=false
+*.R linguist-vendored=false
+*.rmd linguist-vendored=false
+*.rmd linguist-language=R

BIN
Identifying Fraud from Enron Email Dataset/Enron_61702_Insiderpay.pdf


+ 16428 - 0
Identifying Fraud from Enron Email Dataset/Enron_Fraud.html

@@ -0,0 +1,16428 @@
+<!DOCTYPE html>
+<html>
+<head><meta charset="utf-8" />
+<title>report</title>
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
+
+<style type="text/css">
+    /*!
+*
+* Twitter Bootstrap
+*
+*/
+/*!
+ * Bootstrap v3.3.6 (http://getbootstrap.com)
+ * Copyright 2011-2015 Twitter, Inc.
+ * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE)
+ */
+/*! normalize.css v3.0.3 | MIT License | github.com/necolas/normalize.css */
+html {
+  font-family: sans-serif;
+  -ms-text-size-adjust: 100%;
+  -webkit-text-size-adjust: 100%;
+}
+body {
+  margin: 0;
+}
+article,
+aside,
+details,
+figcaption,
+figure,
+footer,
+header,
+hgroup,
+main,
+menu,
+nav,
+section,
+summary {
+  display: block;
+}
+audio,
+canvas,
+progress,
+video {
+  display: inline-block;
+  vertical-align: baseline;
+}
+audio:not([controls]) {
+  display: none;
+  height: 0;
+}
+[hidden],
+template {
+  display: none;
+}
+a {
+  background-color: transparent;
+}
+a:active,
+a:hover {
+  outline: 0;
+}
+abbr[title] {
+  border-bottom: 1px dotted;
+}
+b,
+strong {
+  font-weight: bold;
+}
+dfn {
+  font-style: italic;
+}
+h1 {
+  font-size: 2em;
+  margin: 0.67em 0;
+}
+mark {
+  background: #ff0;
+  color: #000;
+}
+small {
+  font-size: 80%;
+}
+sub,
+sup {
+  font-size: 75%;
+  line-height: 0;
+  position: relative;
+  vertical-align: baseline;
+}
+sup {
+  top: -0.5em;
+}
+sub {
+  bottom: -0.25em;
+}
+img {
+  border: 0;
+}
+svg:not(:root) {
+  overflow: hidden;
+}
+figure {
+  margin: 1em 40px;
+}
+hr {
+  box-sizing: content-box;
+  height: 0;
+}
+pre {
+  overflow: auto;
+}
+code,
+kbd,
+pre,
+samp {
+  font-family: monospace, monospace;
+  font-size: 1em;
+}
+button,
+input,
+optgroup,
+select,
+textarea {
+  color: inherit;
+  font: inherit;
+  margin: 0;
+}
+button {
+  overflow: visible;
+}
+button,
+select {
+  text-transform: none;
+}
+button,
+html input[type="button"],
+input[type="reset"],
+input[type="submit"] {
+  -webkit-appearance: button;
+  cursor: pointer;
+}
+button[disabled],
+html input[disabled] {
+  cursor: default;
+}
+button::-moz-focus-inner,
+input::-moz-focus-inner {
+  border: 0;
+  padding: 0;
+}
+input {
+  line-height: normal;
+}
+input[type="checkbox"],
+input[type="radio"] {
+  box-sizing: border-box;
+  padding: 0;
+}
+input[type="number"]::-webkit-inner-spin-button,
+input[type="number"]::-webkit-outer-spin-button {
+  height: auto;
+}
+input[type="search"] {
+  -webkit-appearance: textfield;
+  box-sizing: content-box;
+}
+input[type="search"]::-webkit-search-cancel-button,
+input[type="search"]::-webkit-search-decoration {
+  -webkit-appearance: none;
+}
+fieldset {
+  border: 1px solid #c0c0c0;
+  margin: 0 2px;
+  padding: 0.35em 0.625em 0.75em;
+}
+legend {
+  border: 0;
+  padding: 0;
+}
+textarea {
+  overflow: auto;
+}
+optgroup {
+  font-weight: bold;
+}
+table {
+  border-collapse: collapse;
+  border-spacing: 0;
+}
+td,
+th {
+  padding: 0;
+}
+/*! Source: https://github.com/h5bp/html5-boilerplate/blob/master/src/css/main.css */
+@media print {
+  *,
+  *:before,
+  *:after {
+    background: transparent !important;
+    color: #000 !important;
+    box-shadow: none !important;
+    text-shadow: none !important;
+  }
+  a,
+  a:visited {
+    text-decoration: underline;
+  }
+  a[href]:after {
+    content: " (" attr(href) ")";
+  }
+  abbr[title]:after {
+    content: " (" attr(title) ")";
+  }
+  a[href^="#"]:after,
+  a[href^="javascript:"]:after {
+    content: "";
+  }
+  pre,
+  blockquote {
+    border: 1px solid #999;
+    page-break-inside: avoid;
+  }
+  thead {
+    display: table-header-group;
+  }
+  tr,
+  img {
+    page-break-inside: avoid;
+  }
+  img {
+    max-width: 100% !important;
+  }
+  p,
+  h2,
+  h3 {
+    orphans: 3;
+    widows: 3;
+  }
+  h2,
+  h3 {
+    page-break-after: avoid;
+  }
+  .navbar {
+    display: none;
+  }
+  .btn > .caret,
+  .dropup > .btn > .caret {
+    border-top-color: #000 !important;
+  }
+  .label {
+    border: 1px solid #000;
+  }
+  .table {
+    border-collapse: collapse !important;
+  }
+  .table td,
+  .table th {
+    background-color: #fff !important;
+  }
+  .table-bordered th,
+  .table-bordered td {
+    border: 1px solid #ddd !important;
+  }
+}
+@font-face {
+  font-family: 'Glyphicons Halflings';
+  src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot');
+  src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot?#iefix') format('embedded-opentype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff2') format('woff2'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff') format('woff'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.ttf') format('truetype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.svg#glyphicons_halflingsregular') format('svg');
+}
+.glyphicon {
+  position: relative;
+  top: 1px;
+  display: inline-block;
+  font-family: 'Glyphicons Halflings';
+  font-style: normal;
+  font-weight: normal;
+  line-height: 1;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+}
+.glyphicon-asterisk:before {
+  content: "\002a";
+}
+.glyphicon-plus:before {
+  content: "\002b";
+}
+.glyphicon-euro:before,
+.glyphicon-eur:before {
+  content: "\20ac";
+}
+.glyphicon-minus:before {
+  content: "\2212";
+}
+.glyphicon-cloud:before {
+  content: "\2601";
+}
+.glyphicon-envelope:before {
+  content: "\2709";
+}
+.glyphicon-pencil:before {
+  content: "\270f";
+}
+.glyphicon-glass:before {
+  content: "\e001";
+}
+.glyphicon-music:before {
+  content: "\e002";
+}
+.glyphicon-search:before {
+  content: "\e003";
+}
+.glyphicon-heart:before {
+  content: "\e005";
+}
+.glyphicon-star:before {
+  content: "\e006";
+}
+.glyphicon-star-empty:before {
+  content: "\e007";
+}
+.glyphicon-user:before {
+  content: "\e008";
+}
+.glyphicon-film:before {
+  content: "\e009";
+}
+.glyphicon-th-large:before {
+  content: "\e010";
+}
+.glyphicon-th:before {
+  content: "\e011";
+}
+.glyphicon-th-list:before {
+  content: "\e012";
+}
+.glyphicon-ok:before {
+  content: "\e013";
+}
+.glyphicon-remove:before {
+  content: "\e014";
+}
+.glyphicon-zoom-in:before {
+  content: "\e015";
+}
+.glyphicon-zoom-out:before {
+  content: "\e016";
+}
+.glyphicon-off:before {
+  content: "\e017";
+}
+.glyphicon-signal:before {
+  content: "\e018";
+}
+.glyphicon-cog:before {
+  content: "\e019";
+}
+.glyphicon-trash:before {
+  content: "\e020";
+}
+.glyphicon-home:before {
+  content: "\e021";
+}
+.glyphicon-file:before {
+  content: "\e022";
+}
+.glyphicon-time:before {
+  content: "\e023";
+}
+.glyphicon-road:before {
+  content: "\e024";
+}
+.glyphicon-download-alt:before {
+  content: "\e025";
+}
+.glyphicon-download:before {
+  content: "\e026";
+}
+.glyphicon-upload:before {
+  content: "\e027";
+}
+.glyphicon-inbox:before {
+  content: "\e028";
+}
+.glyphicon-play-circle:before {
+  content: "\e029";
+}
+.glyphicon-repeat:before {
+  content: "\e030";
+}
+.glyphicon-refresh:before {
+  content: "\e031";
+}
+.glyphicon-list-alt:before {
+  content: "\e032";
+}
+.glyphicon-lock:before {
+  content: "\e033";
+}
+.glyphicon-flag:before {
+  content: "\e034";
+}
+.glyphicon-headphones:before {
+  content: "\e035";
+}
+.glyphicon-volume-off:before {
+  content: "\e036";
+}
+.glyphicon-volume-down:before {
+  content: "\e037";
+}
+.glyphicon-volume-up:before {
+  content: "\e038";
+}
+.glyphicon-qrcode:before {
+  content: "\e039";
+}
+.glyphicon-barcode:before {
+  content: "\e040";
+}
+.glyphicon-tag:before {
+  content: "\e041";
+}
+.glyphicon-tags:before {
+  content: "\e042";
+}
+.glyphicon-book:before {
+  content: "\e043";
+}
+.glyphicon-bookmark:before {
+  content: "\e044";
+}
+.glyphicon-print:before {
+  content: "\e045";
+}
+.glyphicon-camera:before {
+  content: "\e046";
+}
+.glyphicon-font:before {
+  content: "\e047";
+}
+.glyphicon-bold:before {
+  content: "\e048";
+}
+.glyphicon-italic:before {
+  content: "\e049";
+}
+.glyphicon-text-height:before {
+  content: "\e050";
+}
+.glyphicon-text-width:before {
+  content: "\e051";
+}
+.glyphicon-align-left:before {
+  content: "\e052";
+}
+.glyphicon-align-center:before {
+  content: "\e053";
+}
+.glyphicon-align-right:before {
+  content: "\e054";
+}
+.glyphicon-align-justify:before {
+  content: "\e055";
+}
+.glyphicon-list:before {
+  content: "\e056";
+}
+.glyphicon-indent-left:before {
+  content: "\e057";
+}
+.glyphicon-indent-right:before {
+  content: "\e058";
+}
+.glyphicon-facetime-video:before {
+  content: "\e059";
+}
+.glyphicon-picture:before {
+  content: "\e060";
+}
+.glyphicon-map-marker:before {
+  content: "\e062";
+}
+.glyphicon-adjust:before {
+  content: "\e063";
+}
+.glyphicon-tint:before {
+  content: "\e064";
+}
+.glyphicon-edit:before {
+  content: "\e065";
+}
+.glyphicon-share:before {
+  content: "\e066";
+}
+.glyphicon-check:before {
+  content: "\e067";
+}
+.glyphicon-move:before {
+  content: "\e068";
+}
+.glyphicon-step-backward:before {
+  content: "\e069";
+}
+.glyphicon-fast-backward:before {
+  content: "\e070";
+}
+.glyphicon-backward:before {
+  content: "\e071";
+}
+.glyphicon-play:before {
+  content: "\e072";
+}
+.glyphicon-pause:before {
+  content: "\e073";
+}
+.glyphicon-stop:before {
+  content: "\e074";
+}
+.glyphicon-forward:before {
+  content: "\e075";
+}
+.glyphicon-fast-forward:before {
+  content: "\e076";
+}
+.glyphicon-step-forward:before {
+  content: "\e077";
+}
+.glyphicon-eject:before {
+  content: "\e078";
+}
+.glyphicon-chevron-left:before {
+  content: "\e079";
+}
+.glyphicon-chevron-right:before {
+  content: "\e080";
+}
+.glyphicon-plus-sign:before {
+  content: "\e081";
+}
+.glyphicon-minus-sign:before {
+  content: "\e082";
+}
+.glyphicon-remove-sign:before {
+  content: "\e083";
+}
+.glyphicon-ok-sign:before {
+  content: "\e084";
+}
+.glyphicon-question-sign:before {
+  content: "\e085";
+}
+.glyphicon-info-sign:before {
+  content: "\e086";
+}
+.glyphicon-screenshot:before {
+  content: "\e087";
+}
+.glyphicon-remove-circle:before {
+  content: "\e088";
+}
+.glyphicon-ok-circle:before {
+  content: "\e089";
+}
+.glyphicon-ban-circle:before {
+  content: "\e090";
+}
+.glyphicon-arrow-left:before {
+  content: "\e091";
+}
+.glyphicon-arrow-right:before {
+  content: "\e092";
+}
+.glyphicon-arrow-up:before {
+  content: "\e093";
+}
+.glyphicon-arrow-down:before {
+  content: "\e094";
+}
+.glyphicon-share-alt:before {
+  content: "\e095";
+}
+.glyphicon-resize-full:before {
+  content: "\e096";
+}
+.glyphicon-resize-small:before {
+  content: "\e097";
+}
+.glyphicon-exclamation-sign:before {
+  content: "\e101";
+}
+.glyphicon-gift:before {
+  content: "\e102";
+}
+.glyphicon-leaf:before {
+  content: "\e103";
+}
+.glyphicon-fire:before {
+  content: "\e104";
+}
+.glyphicon-eye-open:before {
+  content: "\e105";
+}
+.glyphicon-eye-close:before {
+  content: "\e106";
+}
+.glyphicon-warning-sign:before {
+  content: "\e107";
+}
+.glyphicon-plane:before {
+  content: "\e108";
+}
+.glyphicon-calendar:before {
+  content: "\e109";
+}
+.glyphicon-random:before {
+  content: "\e110";
+}
+.glyphicon-comment:before {
+  content: "\e111";
+}
+.glyphicon-magnet:before {
+  content: "\e112";
+}
+.glyphicon-chevron-up:before {
+  content: "\e113";
+}
+.glyphicon-chevron-down:before {
+  content: "\e114";
+}
+.glyphicon-retweet:before {
+  content: "\e115";
+}
+.glyphicon-shopping-cart:before {
+  content: "\e116";
+}
+.glyphicon-folder-close:before {
+  content: "\e117";
+}
+.glyphicon-folder-open:before {
+  content: "\e118";
+}
+.glyphicon-resize-vertical:before {
+  content: "\e119";
+}
+.glyphicon-resize-horizontal:before {
+  content: "\e120";
+}
+.glyphicon-hdd:before {
+  content: "\e121";
+}
+.glyphicon-bullhorn:before {
+  content: "\e122";
+}
+.glyphicon-bell:before {
+  content: "\e123";
+}
+.glyphicon-certificate:before {
+  content: "\e124";
+}
+.glyphicon-thumbs-up:before {
+  content: "\e125";
+}
+.glyphicon-thumbs-down:before {
+  content: "\e126";
+}
+.glyphicon-hand-right:before {
+  content: "\e127";
+}
+.glyphicon-hand-left:before {
+  content: "\e128";
+}
+.glyphicon-hand-up:before {
+  content: "\e129";
+}
+.glyphicon-hand-down:before {
+  content: "\e130";
+}
+.glyphicon-circle-arrow-right:before {
+  content: "\e131";
+}
+.glyphicon-circle-arrow-left:before {
+  content: "\e132";
+}
+.glyphicon-circle-arrow-up:before {
+  content: "\e133";
+}
+.glyphicon-circle-arrow-down:before {
+  content: "\e134";
+}
+.glyphicon-globe:before {
+  content: "\e135";
+}
+.glyphicon-wrench:before {
+  content: "\e136";
+}
+.glyphicon-tasks:before {
+  content: "\e137";
+}
+.glyphicon-filter:before {
+  content: "\e138";
+}
+.glyphicon-briefcase:before {
+  content: "\e139";
+}
+.glyphicon-fullscreen:before {
+  content: "\e140";
+}
+.glyphicon-dashboard:before {
+  content: "\e141";
+}
+.glyphicon-paperclip:before {
+  content: "\e142";
+}
+.glyphicon-heart-empty:before {
+  content: "\e143";
+}
+.glyphicon-link:before {
+  content: "\e144";
+}
+.glyphicon-phone:before {
+  content: "\e145";
+}
+.glyphicon-pushpin:before {
+  content: "\e146";
+}
+.glyphicon-usd:before {
+  content: "\e148";
+}
+.glyphicon-gbp:before {
+  content: "\e149";
+}
+.glyphicon-sort:before {
+  content: "\e150";
+}
+.glyphicon-sort-by-alphabet:before {
+  content: "\e151";
+}
+.glyphicon-sort-by-alphabet-alt:before {
+  content: "\e152";
+}
+.glyphicon-sort-by-order:before {
+  content: "\e153";
+}
+.glyphicon-sort-by-order-alt:before {
+  content: "\e154";
+}
+.glyphicon-sort-by-attributes:before {
+  content: "\e155";
+}
+.glyphicon-sort-by-attributes-alt:before {
+  content: "\e156";
+}
+.glyphicon-unchecked:before {
+  content: "\e157";
+}
+.glyphicon-expand:before {
+  content: "\e158";
+}
+.glyphicon-collapse-down:before {
+  content: "\e159";
+}
+.glyphicon-collapse-up:before {
+  content: "\e160";
+}
+.glyphicon-log-in:before {
+  content: "\e161";
+}
+.glyphicon-flash:before {
+  content: "\e162";
+}
+.glyphicon-log-out:before {
+  content: "\e163";
+}
+.glyphicon-new-window:before {
+  content: "\e164";
+}
+.glyphicon-record:before {
+  content: "\e165";
+}
+.glyphicon-save:before {
+  content: "\e166";
+}
+.glyphicon-open:before {
+  content: "\e167";
+}
+.glyphicon-saved:before {
+  content: "\e168";
+}
+.glyphicon-import:before {
+  content: "\e169";
+}
+.glyphicon-export:before {
+  content: "\e170";
+}
+.glyphicon-send:before {
+  content: "\e171";
+}
+.glyphicon-floppy-disk:before {
+  content: "\e172";
+}
+.glyphicon-floppy-saved:before {
+  content: "\e173";
+}
+.glyphicon-floppy-remove:before {
+  content: "\e174";
+}
+.glyphicon-floppy-save:before {
+  content: "\e175";
+}
+.glyphicon-floppy-open:before {
+  content: "\e176";
+}
+.glyphicon-credit-card:before {
+  content: "\e177";
+}
+.glyphicon-transfer:before {
+  content: "\e178";
+}
+.glyphicon-cutlery:before {
+  content: "\e179";
+}
+.glyphicon-header:before {
+  content: "\e180";
+}
+.glyphicon-compressed:before {
+  content: "\e181";
+}
+.glyphicon-earphone:before {
+  content: "\e182";
+}
+.glyphicon-phone-alt:before {
+  content: "\e183";
+}
+.glyphicon-tower:before {
+  content: "\e184";
+}
+.glyphicon-stats:before {
+  content: "\e185";
+}
+.glyphicon-sd-video:before {
+  content: "\e186";
+}
+.glyphicon-hd-video:before {
+  content: "\e187";
+}
+.glyphicon-subtitles:before {
+  content: "\e188";
+}
+.glyphicon-sound-stereo:before {
+  content: "\e189";
+}
+.glyphicon-sound-dolby:before {
+  content: "\e190";
+}
+.glyphicon-sound-5-1:before {
+  content: "\e191";
+}
+.glyphicon-sound-6-1:before {
+  content: "\e192";
+}
+.glyphicon-sound-7-1:before {
+  content: "\e193";
+}
+.glyphicon-copyright-mark:before {
+  content: "\e194";
+}
+.glyphicon-registration-mark:before {
+  content: "\e195";
+}
+.glyphicon-cloud-download:before {
+  content: "\e197";
+}
+.glyphicon-cloud-upload:before {
+  content: "\e198";
+}
+.glyphicon-tree-conifer:before {
+  content: "\e199";
+}
+.glyphicon-tree-deciduous:before {
+  content: "\e200";
+}
+.glyphicon-cd:before {
+  content: "\e201";
+}
+.glyphicon-save-file:before {
+  content: "\e202";
+}
+.glyphicon-open-file:before {
+  content: "\e203";
+}
+.glyphicon-level-up:before {
+  content: "\e204";
+}
+.glyphicon-copy:before {
+  content: "\e205";
+}
+.glyphicon-paste:before {
+  content: "\e206";
+}
+.glyphicon-alert:before {
+  content: "\e209";
+}
+.glyphicon-equalizer:before {
+  content: "\e210";
+}
+.glyphicon-king:before {
+  content: "\e211";
+}
+.glyphicon-queen:before {
+  content: "\e212";
+}
+.glyphicon-pawn:before {
+  content: "\e213";
+}
+.glyphicon-bishop:before {
+  content: "\e214";
+}
+.glyphicon-knight:before {
+  content: "\e215";
+}
+.glyphicon-baby-formula:before {
+  content: "\e216";
+}
+.glyphicon-tent:before {
+  content: "\26fa";
+}
+.glyphicon-blackboard:before {
+  content: "\e218";
+}
+.glyphicon-bed:before {
+  content: "\e219";
+}
+.glyphicon-apple:before {
+  content: "\f8ff";
+}
+.glyphicon-erase:before {
+  content: "\e221";
+}
+.glyphicon-hourglass:before {
+  content: "\231b";
+}
+.glyphicon-lamp:before {
+  content: "\e223";
+}
+.glyphicon-duplicate:before {
+  content: "\e224";
+}
+.glyphicon-piggy-bank:before {
+  content: "\e225";
+}
+.glyphicon-scissors:before {
+  content: "\e226";
+}
+.glyphicon-bitcoin:before {
+  content: "\e227";
+}
+.glyphicon-btc:before {
+  content: "\e227";
+}
+.glyphicon-xbt:before {
+  content: "\e227";
+}
+.glyphicon-yen:before {
+  content: "\00a5";
+}
+.glyphicon-jpy:before {
+  content: "\00a5";
+}
+.glyphicon-ruble:before {
+  content: "\20bd";
+}
+.glyphicon-rub:before {
+  content: "\20bd";
+}
+.glyphicon-scale:before {
+  content: "\e230";
+}
+.glyphicon-ice-lolly:before {
+  content: "\e231";
+}
+.glyphicon-ice-lolly-tasted:before {
+  content: "\e232";
+}
+.glyphicon-education:before {
+  content: "\e233";
+}
+.glyphicon-option-horizontal:before {
+  content: "\e234";
+}
+.glyphicon-option-vertical:before {
+  content: "\e235";
+}
+.glyphicon-menu-hamburger:before {
+  content: "\e236";
+}
+.glyphicon-modal-window:before {
+  content: "\e237";
+}
+.glyphicon-oil:before {
+  content: "\e238";
+}
+.glyphicon-grain:before {
+  content: "\e239";
+}
+.glyphicon-sunglasses:before {
+  content: "\e240";
+}
+.glyphicon-text-size:before {
+  content: "\e241";
+}
+.glyphicon-text-color:before {
+  content: "\e242";
+}
+.glyphicon-text-background:before {
+  content: "\e243";
+}
+.glyphicon-object-align-top:before {
+  content: "\e244";
+}
+.glyphicon-object-align-bottom:before {
+  content: "\e245";
+}
+.glyphicon-object-align-horizontal:before {
+  content: "\e246";
+}
+.glyphicon-object-align-left:before {
+  content: "\e247";
+}
+.glyphicon-object-align-vertical:before {
+  content: "\e248";
+}
+.glyphicon-object-align-right:before {
+  content: "\e249";
+}
+.glyphicon-triangle-right:before {
+  content: "\e250";
+}
+.glyphicon-triangle-left:before {
+  content: "\e251";
+}
+.glyphicon-triangle-bottom:before {
+  content: "\e252";
+}
+.glyphicon-triangle-top:before {
+  content: "\e253";
+}
+.glyphicon-console:before {
+  content: "\e254";
+}
+.glyphicon-superscript:before {
+  content: "\e255";
+}
+.glyphicon-subscript:before {
+  content: "\e256";
+}
+.glyphicon-menu-left:before {
+  content: "\e257";
+}
+.glyphicon-menu-right:before {
+  content: "\e258";
+}
+.glyphicon-menu-down:before {
+  content: "\e259";
+}
+.glyphicon-menu-up:before {
+  content: "\e260";
+}
+* {
+  -webkit-box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  box-sizing: border-box;
+}
+*:before,
+*:after {
+  -webkit-box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  box-sizing: border-box;
+}
+html {
+  font-size: 10px;
+  -webkit-tap-highlight-color: rgba(0, 0, 0, 0);
+}
+body {
+  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+  font-size: 13px;
+  line-height: 1.42857143;
+  color: #000;
+  background-color: #fff;
+}
+input,
+button,
+select,
+textarea {
+  font-family: inherit;
+  font-size: inherit;
+  line-height: inherit;
+}
+a {
+  color: #337ab7;
+  text-decoration: none;
+}
+a:hover,
+a:focus {
+  color: #23527c;
+  text-decoration: underline;
+}
+a:focus {
+  outline: thin dotted;
+  outline: 5px auto -webkit-focus-ring-color;
+  outline-offset: -2px;
+}
+figure {
+  margin: 0;
+}
+img {
+  vertical-align: middle;
+}
+.img-responsive,
+.thumbnail > img,
+.thumbnail a > img,
+.carousel-inner > .item > img,
+.carousel-inner > .item > a > img {
+  display: block;
+  max-width: 100%;
+  height: auto;
+}
+.img-rounded {
+  border-radius: 3px;
+}
+.img-thumbnail {
+  padding: 4px;
+  line-height: 1.42857143;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  border-radius: 2px;
+  -webkit-transition: all 0.2s ease-in-out;
+  -o-transition: all 0.2s ease-in-out;
+  transition: all 0.2s ease-in-out;
+  display: inline-block;
+  max-width: 100%;
+  height: auto;
+}
+.img-circle {
+  border-radius: 50%;
+}
+hr {
+  margin-top: 18px;
+  margin-bottom: 18px;
+  border: 0;
+  border-top: 1px solid #eeeeee;
+}
+.sr-only {
+  position: absolute;
+  width: 1px;
+  height: 1px;
+  margin: -1px;
+  padding: 0;
+  overflow: hidden;
+  clip: rect(0, 0, 0, 0);
+  border: 0;
+}
+.sr-only-focusable:active,
+.sr-only-focusable:focus {
+  position: static;
+  width: auto;
+  height: auto;
+  margin: 0;
+  overflow: visible;
+  clip: auto;
+}
+[role="button"] {
+  cursor: pointer;
+}
+h1,
+h2,
+h3,
+h4,
+h5,
+h6,
+.h1,
+.h2,
+.h3,
+.h4,
+.h5,
+.h6 {
+  font-family: inherit;
+  font-weight: 500;
+  line-height: 1.1;
+  color: inherit;
+}
+h1 small,
+h2 small,
+h3 small,
+h4 small,
+h5 small,
+h6 small,
+.h1 small,
+.h2 small,
+.h3 small,
+.h4 small,
+.h5 small,
+.h6 small,
+h1 .small,
+h2 .small,
+h3 .small,
+h4 .small,
+h5 .small,
+h6 .small,
+.h1 .small,
+.h2 .small,
+.h3 .small,
+.h4 .small,
+.h5 .small,
+.h6 .small {
+  font-weight: normal;
+  line-height: 1;
+  color: #777777;
+}
+h1,
+.h1,
+h2,
+.h2,
+h3,
+.h3 {
+  margin-top: 18px;
+  margin-bottom: 9px;
+}
+h1 small,
+.h1 small,
+h2 small,
+.h2 small,
+h3 small,
+.h3 small,
+h1 .small,
+.h1 .small,
+h2 .small,
+.h2 .small,
+h3 .small,
+.h3 .small {
+  font-size: 65%;
+}
+h4,
+.h4,
+h5,
+.h5,
+h6,
+.h6 {
+  margin-top: 9px;
+  margin-bottom: 9px;
+}
+h4 small,
+.h4 small,
+h5 small,
+.h5 small,
+h6 small,
+.h6 small,
+h4 .small,
+.h4 .small,
+h5 .small,
+.h5 .small,
+h6 .small,
+.h6 .small {
+  font-size: 75%;
+}
+h1,
+.h1 {
+  font-size: 33px;
+}
+h2,
+.h2 {
+  font-size: 27px;
+}
+h3,
+.h3 {
+  font-size: 23px;
+}
+h4,
+.h4 {
+  font-size: 17px;
+}
+h5,
+.h5 {
+  font-size: 13px;
+}
+h6,
+.h6 {
+  font-size: 12px;
+}
+p {
+  margin: 0 0 9px;
+}
+.lead {
+  margin-bottom: 18px;
+  font-size: 14px;
+  font-weight: 300;
+  line-height: 1.4;
+}
+@media (min-width: 768px) {
+  .lead {
+    font-size: 19.5px;
+  }
+}
+small,
+.small {
+  font-size: 92%;
+}
+mark,
+.mark {
+  background-color: #fcf8e3;
+  padding: .2em;
+}
+.text-left {
+  text-align: left;
+}
+.text-right {
+  text-align: right;
+}
+.text-center {
+  text-align: center;
+}
+.text-justify {
+  text-align: justify;
+}
+.text-nowrap {
+  white-space: nowrap;
+}
+.text-lowercase {
+  text-transform: lowercase;
+}
+.text-uppercase {
+  text-transform: uppercase;
+}
+.text-capitalize {
+  text-transform: capitalize;
+}
+.text-muted {
+  color: #777777;
+}
+.text-primary {
+  color: #337ab7;
+}
+a.text-primary:hover,
+a.text-primary:focus {
+  color: #286090;
+}
+.text-success {
+  color: #3c763d;
+}
+a.text-success:hover,
+a.text-success:focus {
+  color: #2b542c;
+}
+.text-info {
+  color: #31708f;
+}
+a.text-info:hover,
+a.text-info:focus {
+  color: #245269;
+}
+.text-warning {
+  color: #8a6d3b;
+}
+a.text-warning:hover,
+a.text-warning:focus {
+  color: #66512c;
+}
+.text-danger {
+  color: #a94442;
+}
+a.text-danger:hover,
+a.text-danger:focus {
+  color: #843534;
+}
+.bg-primary {
+  color: #fff;
+  background-color: #337ab7;
+}
+a.bg-primary:hover,
+a.bg-primary:focus {
+  background-color: #286090;
+}
+.bg-success {
+  background-color: #dff0d8;
+}
+a.bg-success:hover,
+a.bg-success:focus {
+  background-color: #c1e2b3;
+}
+.bg-info {
+  background-color: #d9edf7;
+}
+a.bg-info:hover,
+a.bg-info:focus {
+  background-color: #afd9ee;
+}
+.bg-warning {
+  background-color: #fcf8e3;
+}
+a.bg-warning:hover,
+a.bg-warning:focus {
+  background-color: #f7ecb5;
+}
+.bg-danger {
+  background-color: #f2dede;
+}
+a.bg-danger:hover,
+a.bg-danger:focus {
+  background-color: #e4b9b9;
+}
+.page-header {
+  padding-bottom: 8px;
+  margin: 36px 0 18px;
+  border-bottom: 1px solid #eeeeee;
+}
+ul,
+ol {
+  margin-top: 0;
+  margin-bottom: 9px;
+}
+ul ul,
+ol ul,
+ul ol,
+ol ol {
+  margin-bottom: 0;
+}
+.list-unstyled {
+  padding-left: 0;
+  list-style: none;
+}
+.list-inline {
+  padding-left: 0;
+  list-style: none;
+  margin-left: -5px;
+}
+.list-inline > li {
+  display: inline-block;
+  padding-left: 5px;
+  padding-right: 5px;
+}
+dl {
+  margin-top: 0;
+  margin-bottom: 18px;
+}
+dt,
+dd {
+  line-height: 1.42857143;
+}
+dt {
+  font-weight: bold;
+}
+dd {
+  margin-left: 0;
+}
+@media (min-width: 541px) {
+  .dl-horizontal dt {
+    float: left;
+    width: 160px;
+    clear: left;
+    text-align: right;
+    overflow: hidden;
+    text-overflow: ellipsis;
+    white-space: nowrap;
+  }
+  .dl-horizontal dd {
+    margin-left: 180px;
+  }
+}
+abbr[title],
+abbr[data-original-title] {
+  cursor: help;
+  border-bottom: 1px dotted #777777;
+}
+.initialism {
+  font-size: 90%;
+  text-transform: uppercase;
+}
+blockquote {
+  padding: 9px 18px;
+  margin: 0 0 18px;
+  font-size: inherit;
+  border-left: 5px solid #eeeeee;
+}
+blockquote p:last-child,
+blockquote ul:last-child,
+blockquote ol:last-child {
+  margin-bottom: 0;
+}
+blockquote footer,
+blockquote small,
+blockquote .small {
+  display: block;
+  font-size: 80%;
+  line-height: 1.42857143;
+  color: #777777;
+}
+blockquote footer:before,
+blockquote small:before,
+blockquote .small:before {
+  content: '\2014 \00A0';
+}
+.blockquote-reverse,
+blockquote.pull-right {
+  padding-right: 15px;
+  padding-left: 0;
+  border-right: 5px solid #eeeeee;
+  border-left: 0;
+  text-align: right;
+}
+.blockquote-reverse footer:before,
+blockquote.pull-right footer:before,
+.blockquote-reverse small:before,
+blockquote.pull-right small:before,
+.blockquote-reverse .small:before,
+blockquote.pull-right .small:before {
+  content: '';
+}
+.blockquote-reverse footer:after,
+blockquote.pull-right footer:after,
+.blockquote-reverse small:after,
+blockquote.pull-right small:after,
+.blockquote-reverse .small:after,
+blockquote.pull-right .small:after {
+  content: '\00A0 \2014';
+}
+address {
+  margin-bottom: 18px;
+  font-style: normal;
+  line-height: 1.42857143;
+}
+code,
+kbd,
+pre,
+samp {
+  font-family: monospace;
+}
+code {
+  padding: 2px 4px;
+  font-size: 90%;
+  color: #c7254e;
+  background-color: #f9f2f4;
+  border-radius: 2px;
+}
+kbd {
+  padding: 2px 4px;
+  font-size: 90%;
+  color: #888;
+  background-color: transparent;
+  border-radius: 1px;
+  box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25);
+}
+kbd kbd {
+  padding: 0;
+  font-size: 100%;
+  font-weight: bold;
+  box-shadow: none;
+}
+pre {
+  display: block;
+  padding: 8.5px;
+  margin: 0 0 9px;
+  font-size: 12px;
+  line-height: 1.42857143;
+  word-break: break-all;
+  word-wrap: break-word;
+  color: #333333;
+  background-color: #f5f5f5;
+  border: 1px solid #ccc;
+  border-radius: 2px;
+}
+pre code {
+  padding: 0;
+  font-size: inherit;
+  color: inherit;
+  white-space: pre-wrap;
+  background-color: transparent;
+  border-radius: 0;
+}
+.pre-scrollable {
+  max-height: 340px;
+  overflow-y: scroll;
+}
+.container {
+  margin-right: auto;
+  margin-left: auto;
+  padding-left: 0px;
+  padding-right: 0px;
+}
+@media (min-width: 768px) {
+  .container {
+    width: 768px;
+  }
+}
+@media (min-width: 992px) {
+  .container {
+    width: 940px;
+  }
+}
+@media (min-width: 1200px) {
+  .container {
+    width: 1140px;
+  }
+}
+.container-fluid {
+  margin-right: auto;
+  margin-left: auto;
+  padding-left: 0px;
+  padding-right: 0px;
+}
+.row {
+  margin-left: 0px;
+  margin-right: 0px;
+}
+.col-xs-1, .col-sm-1, .col-md-1, .col-lg-1, .col-xs-2, .col-sm-2, .col-md-2, .col-lg-2, .col-xs-3, .col-sm-3, .col-md-3, .col-lg-3, .col-xs-4, .col-sm-4, .col-md-4, .col-lg-4, .col-xs-5, .col-sm-5, .col-md-5, .col-lg-5, .col-xs-6, .col-sm-6, .col-md-6, .col-lg-6, .col-xs-7, .col-sm-7, .col-md-7, .col-lg-7, .col-xs-8, .col-sm-8, .col-md-8, .col-lg-8, .col-xs-9, .col-sm-9, .col-md-9, .col-lg-9, .col-xs-10, .col-sm-10, .col-md-10, .col-lg-10, .col-xs-11, .col-sm-11, .col-md-11, .col-lg-11, .col-xs-12, .col-sm-12, .col-md-12, .col-lg-12 {
+  position: relative;
+  min-height: 1px;
+  padding-left: 0px;
+  padding-right: 0px;
+}
+.col-xs-1, .col-xs-2, .col-xs-3, .col-xs-4, .col-xs-5, .col-xs-6, .col-xs-7, .col-xs-8, .col-xs-9, .col-xs-10, .col-xs-11, .col-xs-12 {
+  float: left;
+}
+.col-xs-12 {
+  width: 100%;
+}
+.col-xs-11 {
+  width: 91.66666667%;
+}
+.col-xs-10 {
+  width: 83.33333333%;
+}
+.col-xs-9 {
+  width: 75%;
+}
+.col-xs-8 {
+  width: 66.66666667%;
+}
+.col-xs-7 {
+  width: 58.33333333%;
+}
+.col-xs-6 {
+  width: 50%;
+}
+.col-xs-5 {
+  width: 41.66666667%;
+}
+.col-xs-4 {
+  width: 33.33333333%;
+}
+.col-xs-3 {
+  width: 25%;
+}
+.col-xs-2 {
+  width: 16.66666667%;
+}
+.col-xs-1 {
+  width: 8.33333333%;
+}
+.col-xs-pull-12 {
+  right: 100%;
+}
+.col-xs-pull-11 {
+  right: 91.66666667%;
+}
+.col-xs-pull-10 {
+  right: 83.33333333%;
+}
+.col-xs-pull-9 {
+  right: 75%;
+}
+.col-xs-pull-8 {
+  right: 66.66666667%;
+}
+.col-xs-pull-7 {
+  right: 58.33333333%;
+}
+.col-xs-pull-6 {
+  right: 50%;
+}
+.col-xs-pull-5 {
+  right: 41.66666667%;
+}
+.col-xs-pull-4 {
+  right: 33.33333333%;
+}
+.col-xs-pull-3 {
+  right: 25%;
+}
+.col-xs-pull-2 {
+  right: 16.66666667%;
+}
+.col-xs-pull-1 {
+  right: 8.33333333%;
+}
+.col-xs-pull-0 {
+  right: auto;
+}
+.col-xs-push-12 {
+  left: 100%;
+}
+.col-xs-push-11 {
+  left: 91.66666667%;
+}
+.col-xs-push-10 {
+  left: 83.33333333%;
+}
+.col-xs-push-9 {
+  left: 75%;
+}
+.col-xs-push-8 {
+  left: 66.66666667%;
+}
+.col-xs-push-7 {
+  left: 58.33333333%;
+}
+.col-xs-push-6 {
+  left: 50%;
+}
+.col-xs-push-5 {
+  left: 41.66666667%;
+}
+.col-xs-push-4 {
+  left: 33.33333333%;
+}
+.col-xs-push-3 {
+  left: 25%;
+}
+.col-xs-push-2 {
+  left: 16.66666667%;
+}
+.col-xs-push-1 {
+  left: 8.33333333%;
+}
+.col-xs-push-0 {
+  left: auto;
+}
+.col-xs-offset-12 {
+  margin-left: 100%;
+}
+.col-xs-offset-11 {
+  margin-left: 91.66666667%;
+}
+.col-xs-offset-10 {
+  margin-left: 83.33333333%;
+}
+.col-xs-offset-9 {
+  margin-left: 75%;
+}
+.col-xs-offset-8 {
+  margin-left: 66.66666667%;
+}
+.col-xs-offset-7 {
+  margin-left: 58.33333333%;
+}
+.col-xs-offset-6 {
+  margin-left: 50%;
+}
+.col-xs-offset-5 {
+  margin-left: 41.66666667%;
+}
+.col-xs-offset-4 {
+  margin-left: 33.33333333%;
+}
+.col-xs-offset-3 {
+  margin-left: 25%;
+}
+.col-xs-offset-2 {
+  margin-left: 16.66666667%;
+}
+.col-xs-offset-1 {
+  margin-left: 8.33333333%;
+}
+.col-xs-offset-0 {
+  margin-left: 0%;
+}
+@media (min-width: 768px) {
+  .col-sm-1, .col-sm-2, .col-sm-3, .col-sm-4, .col-sm-5, .col-sm-6, .col-sm-7, .col-sm-8, .col-sm-9, .col-sm-10, .col-sm-11, .col-sm-12 {
+    float: left;
+  }
+  .col-sm-12 {
+    width: 100%;
+  }
+  .col-sm-11 {
+    width: 91.66666667%;
+  }
+  .col-sm-10 {
+    width: 83.33333333%;
+  }
+  .col-sm-9 {
+    width: 75%;
+  }
+  .col-sm-8 {
+    width: 66.66666667%;
+  }
+  .col-sm-7 {
+    width: 58.33333333%;
+  }
+  .col-sm-6 {
+    width: 50%;
+  }
+  .col-sm-5 {
+    width: 41.66666667%;
+  }
+  .col-sm-4 {
+    width: 33.33333333%;
+  }
+  .col-sm-3 {
+    width: 25%;
+  }
+  .col-sm-2 {
+    width: 16.66666667%;
+  }
+  .col-sm-1 {
+    width: 8.33333333%;
+  }
+  .col-sm-pull-12 {
+    right: 100%;
+  }
+  .col-sm-pull-11 {
+    right: 91.66666667%;
+  }
+  .col-sm-pull-10 {
+    right: 83.33333333%;
+  }
+  .col-sm-pull-9 {
+    right: 75%;
+  }
+  .col-sm-pull-8 {
+    right: 66.66666667%;
+  }
+  .col-sm-pull-7 {
+    right: 58.33333333%;
+  }
+  .col-sm-pull-6 {
+    right: 50%;
+  }
+  .col-sm-pull-5 {
+    right: 41.66666667%;
+  }
+  .col-sm-pull-4 {
+    right: 33.33333333%;
+  }
+  .col-sm-pull-3 {
+    right: 25%;
+  }
+  .col-sm-pull-2 {
+    right: 16.66666667%;
+  }
+  .col-sm-pull-1 {
+    right: 8.33333333%;
+  }
+  .col-sm-pull-0 {
+    right: auto;
+  }
+  .col-sm-push-12 {
+    left: 100%;
+  }
+  .col-sm-push-11 {
+    left: 91.66666667%;
+  }
+  .col-sm-push-10 {
+    left: 83.33333333%;
+  }
+  .col-sm-push-9 {
+    left: 75%;
+  }
+  .col-sm-push-8 {
+    left: 66.66666667%;
+  }
+  .col-sm-push-7 {
+    left: 58.33333333%;
+  }
+  .col-sm-push-6 {
+    left: 50%;
+  }
+  .col-sm-push-5 {
+    left: 41.66666667%;
+  }
+  .col-sm-push-4 {
+    left: 33.33333333%;
+  }
+  .col-sm-push-3 {
+    left: 25%;
+  }
+  .col-sm-push-2 {
+    left: 16.66666667%;
+  }
+  .col-sm-push-1 {
+    left: 8.33333333%;
+  }
+  .col-sm-push-0 {
+    left: auto;
+  }
+  .col-sm-offset-12 {
+    margin-left: 100%;
+  }
+  .col-sm-offset-11 {
+    margin-left: 91.66666667%;
+  }
+  .col-sm-offset-10 {
+    margin-left: 83.33333333%;
+  }
+  .col-sm-offset-9 {
+    margin-left: 75%;
+  }
+  .col-sm-offset-8 {
+    margin-left: 66.66666667%;
+  }
+  .col-sm-offset-7 {
+    margin-left: 58.33333333%;
+  }
+  .col-sm-offset-6 {
+    margin-left: 50%;
+  }
+  .col-sm-offset-5 {
+    margin-left: 41.66666667%;
+  }
+  .col-sm-offset-4 {
+    margin-left: 33.33333333%;
+  }
+  .col-sm-offset-3 {
+    margin-left: 25%;
+  }
+  .col-sm-offset-2 {
+    margin-left: 16.66666667%;
+  }
+  .col-sm-offset-1 {
+    margin-left: 8.33333333%;
+  }
+  .col-sm-offset-0 {
+    margin-left: 0%;
+  }
+}
+@media (min-width: 992px) {
+  .col-md-1, .col-md-2, .col-md-3, .col-md-4, .col-md-5, .col-md-6, .col-md-7, .col-md-8, .col-md-9, .col-md-10, .col-md-11, .col-md-12 {
+    float: left;
+  }
+  .col-md-12 {
+    width: 100%;
+  }
+  .col-md-11 {
+    width: 91.66666667%;
+  }
+  .col-md-10 {
+    width: 83.33333333%;
+  }
+  .col-md-9 {
+    width: 75%;
+  }
+  .col-md-8 {
+    width: 66.66666667%;
+  }
+  .col-md-7 {
+    width: 58.33333333%;
+  }
+  .col-md-6 {
+    width: 50%;
+  }
+  .col-md-5 {
+    width: 41.66666667%;
+  }
+  .col-md-4 {
+    width: 33.33333333%;
+  }
+  .col-md-3 {
+    width: 25%;
+  }
+  .col-md-2 {
+    width: 16.66666667%;
+  }
+  .col-md-1 {
+    width: 8.33333333%;
+  }
+  .col-md-pull-12 {
+    right: 100%;
+  }
+  .col-md-pull-11 {
+    right: 91.66666667%;
+  }
+  .col-md-pull-10 {
+    right: 83.33333333%;
+  }
+  .col-md-pull-9 {
+    right: 75%;
+  }
+  .col-md-pull-8 {
+    right: 66.66666667%;
+  }
+  .col-md-pull-7 {
+    right: 58.33333333%;
+  }
+  .col-md-pull-6 {
+    right: 50%;
+  }
+  .col-md-pull-5 {
+    right: 41.66666667%;
+  }
+  .col-md-pull-4 {
+    right: 33.33333333%;
+  }
+  .col-md-pull-3 {
+    right: 25%;
+  }
+  .col-md-pull-2 {
+    right: 16.66666667%;
+  }
+  .col-md-pull-1 {
+    right: 8.33333333%;
+  }
+  .col-md-pull-0 {
+    right: auto;
+  }
+  .col-md-push-12 {
+    left: 100%;
+  }
+  .col-md-push-11 {
+    left: 91.66666667%;
+  }
+  .col-md-push-10 {
+    left: 83.33333333%;
+  }
+  .col-md-push-9 {
+    left: 75%;
+  }
+  .col-md-push-8 {
+    left: 66.66666667%;
+  }
+  .col-md-push-7 {
+    left: 58.33333333%;
+  }
+  .col-md-push-6 {
+    left: 50%;
+  }
+  .col-md-push-5 {
+    left: 41.66666667%;
+  }
+  .col-md-push-4 {
+    left: 33.33333333%;
+  }
+  .col-md-push-3 {
+    left: 25%;
+  }
+  .col-md-push-2 {
+    left: 16.66666667%;
+  }
+  .col-md-push-1 {
+    left: 8.33333333%;
+  }
+  .col-md-push-0 {
+    left: auto;
+  }
+  .col-md-offset-12 {
+    margin-left: 100%;
+  }
+  .col-md-offset-11 {
+    margin-left: 91.66666667%;
+  }
+  .col-md-offset-10 {
+    margin-left: 83.33333333%;
+  }
+  .col-md-offset-9 {
+    margin-left: 75%;
+  }
+  .col-md-offset-8 {
+    margin-left: 66.66666667%;
+  }
+  .col-md-offset-7 {
+    margin-left: 58.33333333%;
+  }
+  .col-md-offset-6 {
+    margin-left: 50%;
+  }
+  .col-md-offset-5 {
+    margin-left: 41.66666667%;
+  }
+  .col-md-offset-4 {
+    margin-left: 33.33333333%;
+  }
+  .col-md-offset-3 {
+    margin-left: 25%;
+  }
+  .col-md-offset-2 {
+    margin-left: 16.66666667%;
+  }
+  .col-md-offset-1 {
+    margin-left: 8.33333333%;
+  }
+  .col-md-offset-0 {
+    margin-left: 0%;
+  }
+}
+@media (min-width: 1200px) {
+  .col-lg-1, .col-lg-2, .col-lg-3, .col-lg-4, .col-lg-5, .col-lg-6, .col-lg-7, .col-lg-8, .col-lg-9, .col-lg-10, .col-lg-11, .col-lg-12 {
+    float: left;
+  }
+  .col-lg-12 {
+    width: 100%;
+  }
+  .col-lg-11 {
+    width: 91.66666667%;
+  }
+  .col-lg-10 {
+    width: 83.33333333%;
+  }
+  .col-lg-9 {
+    width: 75%;
+  }
+  .col-lg-8 {
+    width: 66.66666667%;
+  }
+  .col-lg-7 {
+    width: 58.33333333%;
+  }
+  .col-lg-6 {
+    width: 50%;
+  }
+  .col-lg-5 {
+    width: 41.66666667%;
+  }
+  .col-lg-4 {
+    width: 33.33333333%;
+  }
+  .col-lg-3 {
+    width: 25%;
+  }
+  .col-lg-2 {
+    width: 16.66666667%;
+  }
+  .col-lg-1 {
+    width: 8.33333333%;
+  }
+  .col-lg-pull-12 {
+    right: 100%;
+  }
+  .col-lg-pull-11 {
+    right: 91.66666667%;
+  }
+  .col-lg-pull-10 {
+    right: 83.33333333%;
+  }
+  .col-lg-pull-9 {
+    right: 75%;
+  }
+  .col-lg-pull-8 {
+    right: 66.66666667%;
+  }
+  .col-lg-pull-7 {
+    right: 58.33333333%;
+  }
+  .col-lg-pull-6 {
+    right: 50%;
+  }
+  .col-lg-pull-5 {
+    right: 41.66666667%;
+  }
+  .col-lg-pull-4 {
+    right: 33.33333333%;
+  }
+  .col-lg-pull-3 {
+    right: 25%;
+  }
+  .col-lg-pull-2 {
+    right: 16.66666667%;
+  }
+  .col-lg-pull-1 {
+    right: 8.33333333%;
+  }
+  .col-lg-pull-0 {
+    right: auto;
+  }
+  .col-lg-push-12 {
+    left: 100%;
+  }
+  .col-lg-push-11 {
+    left: 91.66666667%;
+  }
+  .col-lg-push-10 {
+    left: 83.33333333%;
+  }
+  .col-lg-push-9 {
+    left: 75%;
+  }
+  .col-lg-push-8 {
+    left: 66.66666667%;
+  }
+  .col-lg-push-7 {
+    left: 58.33333333%;
+  }
+  .col-lg-push-6 {
+    left: 50%;
+  }
+  .col-lg-push-5 {
+    left: 41.66666667%;
+  }
+  .col-lg-push-4 {
+    left: 33.33333333%;
+  }
+  .col-lg-push-3 {
+    left: 25%;
+  }
+  .col-lg-push-2 {
+    left: 16.66666667%;
+  }
+  .col-lg-push-1 {
+    left: 8.33333333%;
+  }
+  .col-lg-push-0 {
+    left: auto;
+  }
+  .col-lg-offset-12 {
+    margin-left: 100%;
+  }
+  .col-lg-offset-11 {
+    margin-left: 91.66666667%;
+  }
+  .col-lg-offset-10 {
+    margin-left: 83.33333333%;
+  }
+  .col-lg-offset-9 {
+    margin-left: 75%;
+  }
+  .col-lg-offset-8 {
+    margin-left: 66.66666667%;
+  }
+  .col-lg-offset-7 {
+    margin-left: 58.33333333%;
+  }
+  .col-lg-offset-6 {
+    margin-left: 50%;
+  }
+  .col-lg-offset-5 {
+    margin-left: 41.66666667%;
+  }
+  .col-lg-offset-4 {
+    margin-left: 33.33333333%;
+  }
+  .col-lg-offset-3 {
+    margin-left: 25%;
+  }
+  .col-lg-offset-2 {
+    margin-left: 16.66666667%;
+  }
+  .col-lg-offset-1 {
+    margin-left: 8.33333333%;
+  }
+  .col-lg-offset-0 {
+    margin-left: 0%;
+  }
+}
+table {
+  background-color: transparent;
+}
+caption {
+  padding-top: 8px;
+  padding-bottom: 8px;
+  color: #777777;
+  text-align: left;
+}
+th {
+  text-align: left;
+}
+.table {
+  width: 100%;
+  max-width: 100%;
+  margin-bottom: 18px;
+}
+.table > thead > tr > th,
+.table > tbody > tr > th,
+.table > tfoot > tr > th,
+.table > thead > tr > td,
+.table > tbody > tr > td,
+.table > tfoot > tr > td {
+  padding: 8px;
+  line-height: 1.42857143;
+  vertical-align: top;
+  border-top: 1px solid #ddd;
+}
+.table > thead > tr > th {
+  vertical-align: bottom;
+  border-bottom: 2px solid #ddd;
+}
+.table > caption + thead > tr:first-child > th,
+.table > colgroup + thead > tr:first-child > th,
+.table > thead:first-child > tr:first-child > th,
+.table > caption + thead > tr:first-child > td,
+.table > colgroup + thead > tr:first-child > td,
+.table > thead:first-child > tr:first-child > td {
+  border-top: 0;
+}
+.table > tbody + tbody {
+  border-top: 2px solid #ddd;
+}
+.table .table {
+  background-color: #fff;
+}
+.table-condensed > thead > tr > th,
+.table-condensed > tbody > tr > th,
+.table-condensed > tfoot > tr > th,
+.table-condensed > thead > tr > td,
+.table-condensed > tbody > tr > td,
+.table-condensed > tfoot > tr > td {
+  padding: 5px;
+}
+.table-bordered {
+  border: 1px solid #ddd;
+}
+.table-bordered > thead > tr > th,
+.table-bordered > tbody > tr > th,
+.table-bordered > tfoot > tr > th,
+.table-bordered > thead > tr > td,
+.table-bordered > tbody > tr > td,
+.table-bordered > tfoot > tr > td {
+  border: 1px solid #ddd;
+}
+.table-bordered > thead > tr > th,
+.table-bordered > thead > tr > td {
+  border-bottom-width: 2px;
+}
+.table-striped > tbody > tr:nth-of-type(odd) {
+  background-color: #f9f9f9;
+}
+.table-hover > tbody > tr:hover {
+  background-color: #f5f5f5;
+}
+table col[class*="col-"] {
+  position: static;
+  float: none;
+  display: table-column;
+}
+table td[class*="col-"],
+table th[class*="col-"] {
+  position: static;
+  float: none;
+  display: table-cell;
+}
+.table > thead > tr > td.active,
+.table > tbody > tr > td.active,
+.table > tfoot > tr > td.active,
+.table > thead > tr > th.active,
+.table > tbody > tr > th.active,
+.table > tfoot > tr > th.active,
+.table > thead > tr.active > td,
+.table > tbody > tr.active > td,
+.table > tfoot > tr.active > td,
+.table > thead > tr.active > th,
+.table > tbody > tr.active > th,
+.table > tfoot > tr.active > th {
+  background-color: #f5f5f5;
+}
+.table-hover > tbody > tr > td.active:hover,
+.table-hover > tbody > tr > th.active:hover,
+.table-hover > tbody > tr.active:hover > td,
+.table-hover > tbody > tr:hover > .active,
+.table-hover > tbody > tr.active:hover > th {
+  background-color: #e8e8e8;
+}
+.table > thead > tr > td.success,
+.table > tbody > tr > td.success,
+.table > tfoot > tr > td.success,
+.table > thead > tr > th.success,
+.table > tbody > tr > th.success,
+.table > tfoot > tr > th.success,
+.table > thead > tr.success > td,
+.table > tbody > tr.success > td,
+.table > tfoot > tr.success > td,
+.table > thead > tr.success > th,
+.table > tbody > tr.success > th,
+.table > tfoot > tr.success > th {
+  background-color: #dff0d8;
+}
+.table-hover > tbody > tr > td.success:hover,
+.table-hover > tbody > tr > th.success:hover,
+.table-hover > tbody > tr.success:hover > td,
+.table-hover > tbody > tr:hover > .success,
+.table-hover > tbody > tr.success:hover > th {
+  background-color: #d0e9c6;
+}
+.table > thead > tr > td.info,
+.table > tbody > tr > td.info,
+.table > tfoot > tr > td.info,
+.table > thead > tr > th.info,
+.table > tbody > tr > th.info,
+.table > tfoot > tr > th.info,
+.table > thead > tr.info > td,
+.table > tbody > tr.info > td,
+.table > tfoot > tr.info > td,
+.table > thead > tr.info > th,
+.table > tbody > tr.info > th,
+.table > tfoot > tr.info > th {
+  background-color: #d9edf7;
+}
+.table-hover > tbody > tr > td.info:hover,
+.table-hover > tbody > tr > th.info:hover,
+.table-hover > tbody > tr.info:hover > td,
+.table-hover > tbody > tr:hover > .info,
+.table-hover > tbody > tr.info:hover > th {
+  background-color: #c4e3f3;
+}
+.table > thead > tr > td.warning,
+.table > tbody > tr > td.warning,
+.table > tfoot > tr > td.warning,
+.table > thead > tr > th.warning,
+.table > tbody > tr > th.warning,
+.table > tfoot > tr > th.warning,
+.table > thead > tr.warning > td,
+.table > tbody > tr.warning > td,
+.table > tfoot > tr.warning > td,
+.table > thead > tr.warning > th,
+.table > tbody > tr.warning > th,
+.table > tfoot > tr.warning > th {
+  background-color: #fcf8e3;
+}
+.table-hover > tbody > tr > td.warning:hover,
+.table-hover > tbody > tr > th.warning:hover,
+.table-hover > tbody > tr.warning:hover > td,
+.table-hover > tbody > tr:hover > .warning,
+.table-hover > tbody > tr.warning:hover > th {
+  background-color: #faf2cc;
+}
+.table > thead > tr > td.danger,
+.table > tbody > tr > td.danger,
+.table > tfoot > tr > td.danger,
+.table > thead > tr > th.danger,
+.table > tbody > tr > th.danger,
+.table > tfoot > tr > th.danger,
+.table > thead > tr.danger > td,
+.table > tbody > tr.danger > td,
+.table > tfoot > tr.danger > td,
+.table > thead > tr.danger > th,
+.table > tbody > tr.danger > th,
+.table > tfoot > tr.danger > th {
+  background-color: #f2dede;
+}
+.table-hover > tbody > tr > td.danger:hover,
+.table-hover > tbody > tr > th.danger:hover,
+.table-hover > tbody > tr.danger:hover > td,
+.table-hover > tbody > tr:hover > .danger,
+.table-hover > tbody > tr.danger:hover > th {
+  background-color: #ebcccc;
+}
+.table-responsive {
+  overflow-x: auto;
+  min-height: 0.01%;
+}
+@media screen and (max-width: 767px) {
+  .table-responsive {
+    width: 100%;
+    margin-bottom: 13.5px;
+    overflow-y: hidden;
+    -ms-overflow-style: -ms-autohiding-scrollbar;
+    border: 1px solid #ddd;
+  }
+  .table-responsive > .table {
+    margin-bottom: 0;
+  }
+  .table-responsive > .table > thead > tr > th,
+  .table-responsive > .table > tbody > tr > th,
+  .table-responsive > .table > tfoot > tr > th,
+  .table-responsive > .table > thead > tr > td,
+  .table-responsive > .table > tbody > tr > td,
+  .table-responsive > .table > tfoot > tr > td {
+    white-space: nowrap;
+  }
+  .table-responsive > .table-bordered {
+    border: 0;
+  }
+  .table-responsive > .table-bordered > thead > tr > th:first-child,
+  .table-responsive > .table-bordered > tbody > tr > th:first-child,
+  .table-responsive > .table-bordered > tfoot > tr > th:first-child,
+  .table-responsive > .table-bordered > thead > tr > td:first-child,
+  .table-responsive > .table-bordered > tbody > tr > td:first-child,
+  .table-responsive > .table-bordered > tfoot > tr > td:first-child {
+    border-left: 0;
+  }
+  .table-responsive > .table-bordered > thead > tr > th:last-child,
+  .table-responsive > .table-bordered > tbody > tr > th:last-child,
+  .table-responsive > .table-bordered > tfoot > tr > th:last-child,
+  .table-responsive > .table-bordered > thead > tr > td:last-child,
+  .table-responsive > .table-bordered > tbody > tr > td:last-child,
+  .table-responsive > .table-bordered > tfoot > tr > td:last-child {
+    border-right: 0;
+  }
+  .table-responsive > .table-bordered > tbody > tr:last-child > th,
+  .table-responsive > .table-bordered > tfoot > tr:last-child > th,
+  .table-responsive > .table-bordered > tbody > tr:last-child > td,
+  .table-responsive > .table-bordered > tfoot > tr:last-child > td {
+    border-bottom: 0;
+  }
+}
+fieldset {
+  padding: 0;
+  margin: 0;
+  border: 0;
+  min-width: 0;
+}
+legend {
+  display: block;
+  width: 100%;
+  padding: 0;
+  margin-bottom: 18px;
+  font-size: 19.5px;
+  line-height: inherit;
+  color: #333333;
+  border: 0;
+  border-bottom: 1px solid #e5e5e5;
+}
+label {
+  display: inline-block;
+  max-width: 100%;
+  margin-bottom: 5px;
+  font-weight: bold;
+}
+input[type="search"] {
+  -webkit-box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  box-sizing: border-box;
+}
+input[type="radio"],
+input[type="checkbox"] {
+  margin: 4px 0 0;
+  margin-top: 1px \9;
+  line-height: normal;
+}
+input[type="file"] {
+  display: block;
+}
+input[type="range"] {
+  display: block;
+  width: 100%;
+}
+select[multiple],
+select[size] {
+  height: auto;
+}
+input[type="file"]:focus,
+input[type="radio"]:focus,
+input[type="checkbox"]:focus {
+  outline: thin dotted;
+  outline: 5px auto -webkit-focus-ring-color;
+  outline-offset: -2px;
+}
+output {
+  display: block;
+  padding-top: 7px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  color: #555555;
+}
+.form-control {
+  display: block;
+  width: 100%;
+  height: 32px;
+  padding: 6px 12px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  color: #555555;
+  background-color: #fff;
+  background-image: none;
+  border: 1px solid #ccc;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+}
+.form-control:focus {
+  border-color: #66afe9;
+  outline: 0;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+  box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+}
+.form-control::-moz-placeholder {
+  color: #999;
+  opacity: 1;
+}
+.form-control:-ms-input-placeholder {
+  color: #999;
+}
+.form-control::-webkit-input-placeholder {
+  color: #999;
+}
+.form-control::-ms-expand {
+  border: 0;
+  background-color: transparent;
+}
+.form-control[disabled],
+.form-control[readonly],
+fieldset[disabled] .form-control {
+  background-color: #eeeeee;
+  opacity: 1;
+}
+.form-control[disabled],
+fieldset[disabled] .form-control {
+  cursor: not-allowed;
+}
+textarea.form-control {
+  height: auto;
+}
+input[type="search"] {
+  -webkit-appearance: none;
+}
+@media screen and (-webkit-min-device-pixel-ratio: 0) {
+  input[type="date"].form-control,
+  input[type="time"].form-control,
+  input[type="datetime-local"].form-control,
+  input[type="month"].form-control {
+    line-height: 32px;
+  }
+  input[type="date"].input-sm,
+  input[type="time"].input-sm,
+  input[type="datetime-local"].input-sm,
+  input[type="month"].input-sm,
+  .input-group-sm input[type="date"],
+  .input-group-sm input[type="time"],
+  .input-group-sm input[type="datetime-local"],
+  .input-group-sm input[type="month"] {
+    line-height: 30px;
+  }
+  input[type="date"].input-lg,
+  input[type="time"].input-lg,
+  input[type="datetime-local"].input-lg,
+  input[type="month"].input-lg,
+  .input-group-lg input[type="date"],
+  .input-group-lg input[type="time"],
+  .input-group-lg input[type="datetime-local"],
+  .input-group-lg input[type="month"] {
+    line-height: 45px;
+  }
+}
+.form-group {
+  margin-bottom: 15px;
+}
+.radio,
+.checkbox {
+  position: relative;
+  display: block;
+  margin-top: 10px;
+  margin-bottom: 10px;
+}
+.radio label,
+.checkbox label {
+  min-height: 18px;
+  padding-left: 20px;
+  margin-bottom: 0;
+  font-weight: normal;
+  cursor: pointer;
+}
+.radio input[type="radio"],
+.radio-inline input[type="radio"],
+.checkbox input[type="checkbox"],
+.checkbox-inline input[type="checkbox"] {
+  position: absolute;
+  margin-left: -20px;
+  margin-top: 4px \9;
+}
+.radio + .radio,
+.checkbox + .checkbox {
+  margin-top: -5px;
+}
+.radio-inline,
+.checkbox-inline {
+  position: relative;
+  display: inline-block;
+  padding-left: 20px;
+  margin-bottom: 0;
+  vertical-align: middle;
+  font-weight: normal;
+  cursor: pointer;
+}
+.radio-inline + .radio-inline,
+.checkbox-inline + .checkbox-inline {
+  margin-top: 0;
+  margin-left: 10px;
+}
+input[type="radio"][disabled],
+input[type="checkbox"][disabled],
+input[type="radio"].disabled,
+input[type="checkbox"].disabled,
+fieldset[disabled] input[type="radio"],
+fieldset[disabled] input[type="checkbox"] {
+  cursor: not-allowed;
+}
+.radio-inline.disabled,
+.checkbox-inline.disabled,
+fieldset[disabled] .radio-inline,
+fieldset[disabled] .checkbox-inline {
+  cursor: not-allowed;
+}
+.radio.disabled label,
+.checkbox.disabled label,
+fieldset[disabled] .radio label,
+fieldset[disabled] .checkbox label {
+  cursor: not-allowed;
+}
+.form-control-static {
+  padding-top: 7px;
+  padding-bottom: 7px;
+  margin-bottom: 0;
+  min-height: 31px;
+}
+.form-control-static.input-lg,
+.form-control-static.input-sm {
+  padding-left: 0;
+  padding-right: 0;
+}
+.input-sm {
+  height: 30px;
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+select.input-sm {
+  height: 30px;
+  line-height: 30px;
+}
+textarea.input-sm,
+select[multiple].input-sm {
+  height: auto;
+}
+.form-group-sm .form-control {
+  height: 30px;
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+.form-group-sm select.form-control {
+  height: 30px;
+  line-height: 30px;
+}
+.form-group-sm textarea.form-control,
+.form-group-sm select[multiple].form-control {
+  height: auto;
+}
+.form-group-sm .form-control-static {
+  height: 30px;
+  min-height: 30px;
+  padding: 6px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+}
+.input-lg {
+  height: 45px;
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+  border-radius: 3px;
+}
+select.input-lg {
+  height: 45px;
+  line-height: 45px;
+}
+textarea.input-lg,
+select[multiple].input-lg {
+  height: auto;
+}
+.form-group-lg .form-control {
+  height: 45px;
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+  border-radius: 3px;
+}
+.form-group-lg select.form-control {
+  height: 45px;
+  line-height: 45px;
+}
+.form-group-lg textarea.form-control,
+.form-group-lg select[multiple].form-control {
+  height: auto;
+}
+.form-group-lg .form-control-static {
+  height: 45px;
+  min-height: 35px;
+  padding: 11px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+}
+.has-feedback {
+  position: relative;
+}
+.has-feedback .form-control {
+  padding-right: 40px;
+}
+.form-control-feedback {
+  position: absolute;
+  top: 0;
+  right: 0;
+  z-index: 2;
+  display: block;
+  width: 32px;
+  height: 32px;
+  line-height: 32px;
+  text-align: center;
+  pointer-events: none;
+}
+.input-lg + .form-control-feedback,
+.input-group-lg + .form-control-feedback,
+.form-group-lg .form-control + .form-control-feedback {
+  width: 45px;
+  height: 45px;
+  line-height: 45px;
+}
+.input-sm + .form-control-feedback,
+.input-group-sm + .form-control-feedback,
+.form-group-sm .form-control + .form-control-feedback {
+  width: 30px;
+  height: 30px;
+  line-height: 30px;
+}
+.has-success .help-block,
+.has-success .control-label,
+.has-success .radio,
+.has-success .checkbox,
+.has-success .radio-inline,
+.has-success .checkbox-inline,
+.has-success.radio label,
+.has-success.checkbox label,
+.has-success.radio-inline label,
+.has-success.checkbox-inline label {
+  color: #3c763d;
+}
+.has-success .form-control {
+  border-color: #3c763d;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+}
+.has-success .form-control:focus {
+  border-color: #2b542c;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168;
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168;
+}
+.has-success .input-group-addon {
+  color: #3c763d;
+  border-color: #3c763d;
+  background-color: #dff0d8;
+}
+.has-success .form-control-feedback {
+  color: #3c763d;
+}
+.has-warning .help-block,
+.has-warning .control-label,
+.has-warning .radio,
+.has-warning .checkbox,
+.has-warning .radio-inline,
+.has-warning .checkbox-inline,
+.has-warning.radio label,
+.has-warning.checkbox label,
+.has-warning.radio-inline label,
+.has-warning.checkbox-inline label {
+  color: #8a6d3b;
+}
+.has-warning .form-control {
+  border-color: #8a6d3b;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+}
+.has-warning .form-control:focus {
+  border-color: #66512c;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b;
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b;
+}
+.has-warning .input-group-addon {
+  color: #8a6d3b;
+  border-color: #8a6d3b;
+  background-color: #fcf8e3;
+}
+.has-warning .form-control-feedback {
+  color: #8a6d3b;
+}
+.has-error .help-block,
+.has-error .control-label,
+.has-error .radio,
+.has-error .checkbox,
+.has-error .radio-inline,
+.has-error .checkbox-inline,
+.has-error.radio label,
+.has-error.checkbox label,
+.has-error.radio-inline label,
+.has-error.checkbox-inline label {
+  color: #a94442;
+}
+.has-error .form-control {
+  border-color: #a94442;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+}
+.has-error .form-control:focus {
+  border-color: #843534;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483;
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483;
+}
+.has-error .input-group-addon {
+  color: #a94442;
+  border-color: #a94442;
+  background-color: #f2dede;
+}
+.has-error .form-control-feedback {
+  color: #a94442;
+}
+.has-feedback label ~ .form-control-feedback {
+  top: 23px;
+}
+.has-feedback label.sr-only ~ .form-control-feedback {
+  top: 0;
+}
+.help-block {
+  display: block;
+  margin-top: 5px;
+  margin-bottom: 10px;
+  color: #404040;
+}
+@media (min-width: 768px) {
+  .form-inline .form-group {
+    display: inline-block;
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .form-inline .form-control {
+    display: inline-block;
+    width: auto;
+    vertical-align: middle;
+  }
+  .form-inline .form-control-static {
+    display: inline-block;
+  }
+  .form-inline .input-group {
+    display: inline-table;
+    vertical-align: middle;
+  }
+  .form-inline .input-group .input-group-addon,
+  .form-inline .input-group .input-group-btn,
+  .form-inline .input-group .form-control {
+    width: auto;
+  }
+  .form-inline .input-group > .form-control {
+    width: 100%;
+  }
+  .form-inline .control-label {
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .form-inline .radio,
+  .form-inline .checkbox {
+    display: inline-block;
+    margin-top: 0;
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .form-inline .radio label,
+  .form-inline .checkbox label {
+    padding-left: 0;
+  }
+  .form-inline .radio input[type="radio"],
+  .form-inline .checkbox input[type="checkbox"] {
+    position: relative;
+    margin-left: 0;
+  }
+  .form-inline .has-feedback .form-control-feedback {
+    top: 0;
+  }
+}
+.form-horizontal .radio,
+.form-horizontal .checkbox,
+.form-horizontal .radio-inline,
+.form-horizontal .checkbox-inline {
+  margin-top: 0;
+  margin-bottom: 0;
+  padding-top: 7px;
+}
+.form-horizontal .radio,
+.form-horizontal .checkbox {
+  min-height: 25px;
+}
+.form-horizontal .form-group {
+  margin-left: 0px;
+  margin-right: 0px;
+}
+@media (min-width: 768px) {
+  .form-horizontal .control-label {
+    text-align: right;
+    margin-bottom: 0;
+    padding-top: 7px;
+  }
+}
+.form-horizontal .has-feedback .form-control-feedback {
+  right: 0px;
+}
+@media (min-width: 768px) {
+  .form-horizontal .form-group-lg .control-label {
+    padding-top: 11px;
+    font-size: 17px;
+  }
+}
+@media (min-width: 768px) {
+  .form-horizontal .form-group-sm .control-label {
+    padding-top: 6px;
+    font-size: 12px;
+  }
+}
+.btn {
+  display: inline-block;
+  margin-bottom: 0;
+  font-weight: normal;
+  text-align: center;
+  vertical-align: middle;
+  touch-action: manipulation;
+  cursor: pointer;
+  background-image: none;
+  border: 1px solid transparent;
+  white-space: nowrap;
+  padding: 6px 12px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  border-radius: 2px;
+  -webkit-user-select: none;
+  -moz-user-select: none;
+  -ms-user-select: none;
+  user-select: none;
+}
+.btn:focus,
+.btn:active:focus,
+.btn.active:focus,
+.btn.focus,
+.btn:active.focus,
+.btn.active.focus {
+  outline: thin dotted;
+  outline: 5px auto -webkit-focus-ring-color;
+  outline-offset: -2px;
+}
+.btn:hover,
+.btn:focus,
+.btn.focus {
+  color: #333;
+  text-decoration: none;
+}
+.btn:active,
+.btn.active {
+  outline: 0;
+  background-image: none;
+  -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
+  box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
+}
+.btn.disabled,
+.btn[disabled],
+fieldset[disabled] .btn {
+  cursor: not-allowed;
+  opacity: 0.65;
+  filter: alpha(opacity=65);
+  -webkit-box-shadow: none;
+  box-shadow: none;
+}
+a.btn.disabled,
+fieldset[disabled] a.btn {
+  pointer-events: none;
+}
+.btn-default {
+  color: #333;
+  background-color: #fff;
+  border-color: #ccc;
+}
+.btn-default:focus,
+.btn-default.focus {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #8c8c8c;
+}
+.btn-default:hover {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+.btn-default:active,
+.btn-default.active,
+.open > .dropdown-toggle.btn-default {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+.btn-default:active:hover,
+.btn-default.active:hover,
+.open > .dropdown-toggle.btn-default:hover,
+.btn-default:active:focus,
+.btn-default.active:focus,
+.open > .dropdown-toggle.btn-default:focus,
+.btn-default:active.focus,
+.btn-default.active.focus,
+.open > .dropdown-toggle.btn-default.focus {
+  color: #333;
+  background-color: #d4d4d4;
+  border-color: #8c8c8c;
+}
+.btn-default:active,
+.btn-default.active,
+.open > .dropdown-toggle.btn-default {
+  background-image: none;
+}
+.btn-default.disabled:hover,
+.btn-default[disabled]:hover,
+fieldset[disabled] .btn-default:hover,
+.btn-default.disabled:focus,
+.btn-default[disabled]:focus,
+fieldset[disabled] .btn-default:focus,
+.btn-default.disabled.focus,
+.btn-default[disabled].focus,
+fieldset[disabled] .btn-default.focus {
+  background-color: #fff;
+  border-color: #ccc;
+}
+.btn-default .badge {
+  color: #fff;
+  background-color: #333;
+}
+.btn-primary {
+  color: #fff;
+  background-color: #337ab7;
+  border-color: #2e6da4;
+}
+.btn-primary:focus,
+.btn-primary.focus {
+  color: #fff;
+  background-color: #286090;
+  border-color: #122b40;
+}
+.btn-primary:hover {
+  color: #fff;
+  background-color: #286090;
+  border-color: #204d74;
+}
+.btn-primary:active,
+.btn-primary.active,
+.open > .dropdown-toggle.btn-primary {
+  color: #fff;
+  background-color: #286090;
+  border-color: #204d74;
+}
+.btn-primary:active:hover,
+.btn-primary.active:hover,
+.open > .dropdown-toggle.btn-primary:hover,
+.btn-primary:active:focus,
+.btn-primary.active:focus,
+.open > .dropdown-toggle.btn-primary:focus,
+.btn-primary:active.focus,
+.btn-primary.active.focus,
+.open > .dropdown-toggle.btn-primary.focus {
+  color: #fff;
+  background-color: #204d74;
+  border-color: #122b40;
+}
+.btn-primary:active,
+.btn-primary.active,
+.open > .dropdown-toggle.btn-primary {
+  background-image: none;
+}
+.btn-primary.disabled:hover,
+.btn-primary[disabled]:hover,
+fieldset[disabled] .btn-primary:hover,
+.btn-primary.disabled:focus,
+.btn-primary[disabled]:focus,
+fieldset[disabled] .btn-primary:focus,
+.btn-primary.disabled.focus,
+.btn-primary[disabled].focus,
+fieldset[disabled] .btn-primary.focus {
+  background-color: #337ab7;
+  border-color: #2e6da4;
+}
+.btn-primary .badge {
+  color: #337ab7;
+  background-color: #fff;
+}
+.btn-success {
+  color: #fff;
+  background-color: #5cb85c;
+  border-color: #4cae4c;
+}
+.btn-success:focus,
+.btn-success.focus {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #255625;
+}
+.btn-success:hover {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #398439;
+}
+.btn-success:active,
+.btn-success.active,
+.open > .dropdown-toggle.btn-success {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #398439;
+}
+.btn-success:active:hover,
+.btn-success.active:hover,
+.open > .dropdown-toggle.btn-success:hover,
+.btn-success:active:focus,
+.btn-success.active:focus,
+.open > .dropdown-toggle.btn-success:focus,
+.btn-success:active.focus,
+.btn-success.active.focus,
+.open > .dropdown-toggle.btn-success.focus {
+  color: #fff;
+  background-color: #398439;
+  border-color: #255625;
+}
+.btn-success:active,
+.btn-success.active,
+.open > .dropdown-toggle.btn-success {
+  background-image: none;
+}
+.btn-success.disabled:hover,
+.btn-success[disabled]:hover,
+fieldset[disabled] .btn-success:hover,
+.btn-success.disabled:focus,
+.btn-success[disabled]:focus,
+fieldset[disabled] .btn-success:focus,
+.btn-success.disabled.focus,
+.btn-success[disabled].focus,
+fieldset[disabled] .btn-success.focus {
+  background-color: #5cb85c;
+  border-color: #4cae4c;
+}
+.btn-success .badge {
+  color: #5cb85c;
+  background-color: #fff;
+}
+.btn-info {
+  color: #fff;
+  background-color: #5bc0de;
+  border-color: #46b8da;
+}
+.btn-info:focus,
+.btn-info.focus {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #1b6d85;
+}
+.btn-info:hover {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #269abc;
+}
+.btn-info:active,
+.btn-info.active,
+.open > .dropdown-toggle.btn-info {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #269abc;
+}
+.btn-info:active:hover,
+.btn-info.active:hover,
+.open > .dropdown-toggle.btn-info:hover,
+.btn-info:active:focus,
+.btn-info.active:focus,
+.open > .dropdown-toggle.btn-info:focus,
+.btn-info:active.focus,
+.btn-info.active.focus,
+.open > .dropdown-toggle.btn-info.focus {
+  color: #fff;
+  background-color: #269abc;
+  border-color: #1b6d85;
+}
+.btn-info:active,
+.btn-info.active,
+.open > .dropdown-toggle.btn-info {
+  background-image: none;
+}
+.btn-info.disabled:hover,
+.btn-info[disabled]:hover,
+fieldset[disabled] .btn-info:hover,
+.btn-info.disabled:focus,
+.btn-info[disabled]:focus,
+fieldset[disabled] .btn-info:focus,
+.btn-info.disabled.focus,
+.btn-info[disabled].focus,
+fieldset[disabled] .btn-info.focus {
+  background-color: #5bc0de;
+  border-color: #46b8da;
+}
+.btn-info .badge {
+  color: #5bc0de;
+  background-color: #fff;
+}
+.btn-warning {
+  color: #fff;
+  background-color: #f0ad4e;
+  border-color: #eea236;
+}
+.btn-warning:focus,
+.btn-warning.focus {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #985f0d;
+}
+.btn-warning:hover {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #d58512;
+}
+.btn-warning:active,
+.btn-warning.active,
+.open > .dropdown-toggle.btn-warning {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #d58512;
+}
+.btn-warning:active:hover,
+.btn-warning.active:hover,
+.open > .dropdown-toggle.btn-warning:hover,
+.btn-warning:active:focus,
+.btn-warning.active:focus,
+.open > .dropdown-toggle.btn-warning:focus,
+.btn-warning:active.focus,
+.btn-warning.active.focus,
+.open > .dropdown-toggle.btn-warning.focus {
+  color: #fff;
+  background-color: #d58512;
+  border-color: #985f0d;
+}
+.btn-warning:active,
+.btn-warning.active,
+.open > .dropdown-toggle.btn-warning {
+  background-image: none;
+}
+.btn-warning.disabled:hover,
+.btn-warning[disabled]:hover,
+fieldset[disabled] .btn-warning:hover,
+.btn-warning.disabled:focus,
+.btn-warning[disabled]:focus,
+fieldset[disabled] .btn-warning:focus,
+.btn-warning.disabled.focus,
+.btn-warning[disabled].focus,
+fieldset[disabled] .btn-warning.focus {
+  background-color: #f0ad4e;
+  border-color: #eea236;
+}
+.btn-warning .badge {
+  color: #f0ad4e;
+  background-color: #fff;
+}
+.btn-danger {
+  color: #fff;
+  background-color: #d9534f;
+  border-color: #d43f3a;
+}
+.btn-danger:focus,
+.btn-danger.focus {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #761c19;
+}
+.btn-danger:hover {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #ac2925;
+}
+.btn-danger:active,
+.btn-danger.active,
+.open > .dropdown-toggle.btn-danger {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #ac2925;
+}
+.btn-danger:active:hover,
+.btn-danger.active:hover,
+.open > .dropdown-toggle.btn-danger:hover,
+.btn-danger:active:focus,
+.btn-danger.active:focus,
+.open > .dropdown-toggle.btn-danger:focus,
+.btn-danger:active.focus,
+.btn-danger.active.focus,
+.open > .dropdown-toggle.btn-danger.focus {
+  color: #fff;
+  background-color: #ac2925;
+  border-color: #761c19;
+}
+.btn-danger:active,
+.btn-danger.active,
+.open > .dropdown-toggle.btn-danger {
+  background-image: none;
+}
+.btn-danger.disabled:hover,
+.btn-danger[disabled]:hover,
+fieldset[disabled] .btn-danger:hover,
+.btn-danger.disabled:focus,
+.btn-danger[disabled]:focus,
+fieldset[disabled] .btn-danger:focus,
+.btn-danger.disabled.focus,
+.btn-danger[disabled].focus,
+fieldset[disabled] .btn-danger.focus {
+  background-color: #d9534f;
+  border-color: #d43f3a;
+}
+.btn-danger .badge {
+  color: #d9534f;
+  background-color: #fff;
+}
+.btn-link {
+  color: #337ab7;
+  font-weight: normal;
+  border-radius: 0;
+}
+.btn-link,
+.btn-link:active,
+.btn-link.active,
+.btn-link[disabled],
+fieldset[disabled] .btn-link {
+  background-color: transparent;
+  -webkit-box-shadow: none;
+  box-shadow: none;
+}
+.btn-link,
+.btn-link:hover,
+.btn-link:focus,
+.btn-link:active {
+  border-color: transparent;
+}
+.btn-link:hover,
+.btn-link:focus {
+  color: #23527c;
+  text-decoration: underline;
+  background-color: transparent;
+}
+.btn-link[disabled]:hover,
+fieldset[disabled] .btn-link:hover,
+.btn-link[disabled]:focus,
+fieldset[disabled] .btn-link:focus {
+  color: #777777;
+  text-decoration: none;
+}
+.btn-lg,
+.btn-group-lg > .btn {
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+  border-radius: 3px;
+}
+.btn-sm,
+.btn-group-sm > .btn {
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+.btn-xs,
+.btn-group-xs > .btn {
+  padding: 1px 5px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+.btn-block {
+  display: block;
+  width: 100%;
+}
+.btn-block + .btn-block {
+  margin-top: 5px;
+}
+input[type="submit"].btn-block,
+input[type="reset"].btn-block,
+input[type="button"].btn-block {
+  width: 100%;
+}
+.fade {
+  opacity: 0;
+  -webkit-transition: opacity 0.15s linear;
+  -o-transition: opacity 0.15s linear;
+  transition: opacity 0.15s linear;
+}
+.fade.in {
+  opacity: 1;
+}
+.collapse {
+  display: none;
+}
+.collapse.in {
+  display: block;
+}
+tr.collapse.in {
+  display: table-row;
+}
+tbody.collapse.in {
+  display: table-row-group;
+}
+.collapsing {
+  position: relative;
+  height: 0;
+  overflow: hidden;
+  -webkit-transition-property: height, visibility;
+  transition-property: height, visibility;
+  -webkit-transition-duration: 0.35s;
+  transition-duration: 0.35s;
+  -webkit-transition-timing-function: ease;
+  transition-timing-function: ease;
+}
+.caret {
+  display: inline-block;
+  width: 0;
+  height: 0;
+  margin-left: 2px;
+  vertical-align: middle;
+  border-top: 4px dashed;
+  border-top: 4px solid \9;
+  border-right: 4px solid transparent;
+  border-left: 4px solid transparent;
+}
+.dropup,
+.dropdown {
+  position: relative;
+}
+.dropdown-toggle:focus {
+  outline: 0;
+}
+.dropdown-menu {
+  position: absolute;
+  top: 100%;
+  left: 0;
+  z-index: 1000;
+  display: none;
+  float: left;
+  min-width: 160px;
+  padding: 5px 0;
+  margin: 2px 0 0;
+  list-style: none;
+  font-size: 13px;
+  text-align: left;
+  background-color: #fff;
+  border: 1px solid #ccc;
+  border: 1px solid rgba(0, 0, 0, 0.15);
+  border-radius: 2px;
+  -webkit-box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175);
+  box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175);
+  background-clip: padding-box;
+}
+.dropdown-menu.pull-right {
+  right: 0;
+  left: auto;
+}
+.dropdown-menu .divider {
+  height: 1px;
+  margin: 8px 0;
+  overflow: hidden;
+  background-color: #e5e5e5;
+}
+.dropdown-menu > li > a {
+  display: block;
+  padding: 3px 20px;
+  clear: both;
+  font-weight: normal;
+  line-height: 1.42857143;
+  color: #333333;
+  white-space: nowrap;
+}
+.dropdown-menu > li > a:hover,
+.dropdown-menu > li > a:focus {
+  text-decoration: none;
+  color: #262626;
+  background-color: #f5f5f5;
+}
+.dropdown-menu > .active > a,
+.dropdown-menu > .active > a:hover,
+.dropdown-menu > .active > a:focus {
+  color: #fff;
+  text-decoration: none;
+  outline: 0;
+  background-color: #337ab7;
+}
+.dropdown-menu > .disabled > a,
+.dropdown-menu > .disabled > a:hover,
+.dropdown-menu > .disabled > a:focus {
+  color: #777777;
+}
+.dropdown-menu > .disabled > a:hover,
+.dropdown-menu > .disabled > a:focus {
+  text-decoration: none;
+  background-color: transparent;
+  background-image: none;
+  filter: progid:DXImageTransform.Microsoft.gradient(enabled = false);
+  cursor: not-allowed;
+}
+.open > .dropdown-menu {
+  display: block;
+}
+.open > a {
+  outline: 0;
+}
+.dropdown-menu-right {
+  left: auto;
+  right: 0;
+}
+.dropdown-menu-left {
+  left: 0;
+  right: auto;
+}
+.dropdown-header {
+  display: block;
+  padding: 3px 20px;
+  font-size: 12px;
+  line-height: 1.42857143;
+  color: #777777;
+  white-space: nowrap;
+}
+.dropdown-backdrop {
+  position: fixed;
+  left: 0;
+  right: 0;
+  bottom: 0;
+  top: 0;
+  z-index: 990;
+}
+.pull-right > .dropdown-menu {
+  right: 0;
+  left: auto;
+}
+.dropup .caret,
+.navbar-fixed-bottom .dropdown .caret {
+  border-top: 0;
+  border-bottom: 4px dashed;
+  border-bottom: 4px solid \9;
+  content: "";
+}
+.dropup .dropdown-menu,
+.navbar-fixed-bottom .dropdown .dropdown-menu {
+  top: auto;
+  bottom: 100%;
+  margin-bottom: 2px;
+}
+@media (min-width: 541px) {
+  .navbar-right .dropdown-menu {
+    left: auto;
+    right: 0;
+  }
+  .navbar-right .dropdown-menu-left {
+    left: 0;
+    right: auto;
+  }
+}
+.btn-group,
+.btn-group-vertical {
+  position: relative;
+  display: inline-block;
+  vertical-align: middle;
+}
+.btn-group > .btn,
+.btn-group-vertical > .btn {
+  position: relative;
+  float: left;
+}
+.btn-group > .btn:hover,
+.btn-group-vertical > .btn:hover,
+.btn-group > .btn:focus,
+.btn-group-vertical > .btn:focus,
+.btn-group > .btn:active,
+.btn-group-vertical > .btn:active,
+.btn-group > .btn.active,
+.btn-group-vertical > .btn.active {
+  z-index: 2;
+}
+.btn-group .btn + .btn,
+.btn-group .btn + .btn-group,
+.btn-group .btn-group + .btn,
+.btn-group .btn-group + .btn-group {
+  margin-left: -1px;
+}
+.btn-toolbar {
+  margin-left: -5px;
+}
+.btn-toolbar .btn,
+.btn-toolbar .btn-group,
+.btn-toolbar .input-group {
+  float: left;
+}
+.btn-toolbar > .btn,
+.btn-toolbar > .btn-group,
+.btn-toolbar > .input-group {
+  margin-left: 5px;
+}
+.btn-group > .btn:not(:first-child):not(:last-child):not(.dropdown-toggle) {
+  border-radius: 0;
+}
+.btn-group > .btn:first-child {
+  margin-left: 0;
+}
+.btn-group > .btn:first-child:not(:last-child):not(.dropdown-toggle) {
+  border-bottom-right-radius: 0;
+  border-top-right-radius: 0;
+}
+.btn-group > .btn:last-child:not(:first-child),
+.btn-group > .dropdown-toggle:not(:first-child) {
+  border-bottom-left-radius: 0;
+  border-top-left-radius: 0;
+}
+.btn-group > .btn-group {
+  float: left;
+}
+.btn-group > .btn-group:not(:first-child):not(:last-child) > .btn {
+  border-radius: 0;
+}
+.btn-group > .btn-group:first-child:not(:last-child) > .btn:last-child,
+.btn-group > .btn-group:first-child:not(:last-child) > .dropdown-toggle {
+  border-bottom-right-radius: 0;
+  border-top-right-radius: 0;
+}
+.btn-group > .btn-group:last-child:not(:first-child) > .btn:first-child {
+  border-bottom-left-radius: 0;
+  border-top-left-radius: 0;
+}
+.btn-group .dropdown-toggle:active,
+.btn-group.open .dropdown-toggle {
+  outline: 0;
+}
+.btn-group > .btn + .dropdown-toggle {
+  padding-left: 8px;
+  padding-right: 8px;
+}
+.btn-group > .btn-lg + .dropdown-toggle {
+  padding-left: 12px;
+  padding-right: 12px;
+}
+.btn-group.open .dropdown-toggle {
+  -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
+  box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
+}
+.btn-group.open .dropdown-toggle.btn-link {
+  -webkit-box-shadow: none;
+  box-shadow: none;
+}
+.btn .caret {
+  margin-left: 0;
+}
+.btn-lg .caret {
+  border-width: 5px 5px 0;
+  border-bottom-width: 0;
+}
+.dropup .btn-lg .caret {
+  border-width: 0 5px 5px;
+}
+.btn-group-vertical > .btn,
+.btn-group-vertical > .btn-group,
+.btn-group-vertical > .btn-group > .btn {
+  display: block;
+  float: none;
+  width: 100%;
+  max-width: 100%;
+}
+.btn-group-vertical > .btn-group > .btn {
+  float: none;
+}
+.btn-group-vertical > .btn + .btn,
+.btn-group-vertical > .btn + .btn-group,
+.btn-group-vertical > .btn-group + .btn,
+.btn-group-vertical > .btn-group + .btn-group {
+  margin-top: -1px;
+  margin-left: 0;
+}
+.btn-group-vertical > .btn:not(:first-child):not(:last-child) {
+  border-radius: 0;
+}
+.btn-group-vertical > .btn:first-child:not(:last-child) {
+  border-top-right-radius: 2px;
+  border-top-left-radius: 2px;
+  border-bottom-right-radius: 0;
+  border-bottom-left-radius: 0;
+}
+.btn-group-vertical > .btn:last-child:not(:first-child) {
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+  border-bottom-right-radius: 2px;
+  border-bottom-left-radius: 2px;
+}
+.btn-group-vertical > .btn-group:not(:first-child):not(:last-child) > .btn {
+  border-radius: 0;
+}
+.btn-group-vertical > .btn-group:first-child:not(:last-child) > .btn:last-child,
+.btn-group-vertical > .btn-group:first-child:not(:last-child) > .dropdown-toggle {
+  border-bottom-right-radius: 0;
+  border-bottom-left-radius: 0;
+}
+.btn-group-vertical > .btn-group:last-child:not(:first-child) > .btn:first-child {
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+}
+.btn-group-justified {
+  display: table;
+  width: 100%;
+  table-layout: fixed;
+  border-collapse: separate;
+}
+.btn-group-justified > .btn,
+.btn-group-justified > .btn-group {
+  float: none;
+  display: table-cell;
+  width: 1%;
+}
+.btn-group-justified > .btn-group .btn {
+  width: 100%;
+}
+.btn-group-justified > .btn-group .dropdown-menu {
+  left: auto;
+}
+[data-toggle="buttons"] > .btn input[type="radio"],
+[data-toggle="buttons"] > .btn-group > .btn input[type="radio"],
+[data-toggle="buttons"] > .btn input[type="checkbox"],
+[data-toggle="buttons"] > .btn-group > .btn input[type="checkbox"] {
+  position: absolute;
+  clip: rect(0, 0, 0, 0);
+  pointer-events: none;
+}
+.input-group {
+  position: relative;
+  display: table;
+  border-collapse: separate;
+}
+.input-group[class*="col-"] {
+  float: none;
+  padding-left: 0;
+  padding-right: 0;
+}
+.input-group .form-control {
+  position: relative;
+  z-index: 2;
+  float: left;
+  width: 100%;
+  margin-bottom: 0;
+}
+.input-group .form-control:focus {
+  z-index: 3;
+}
+.input-group-lg > .form-control,
+.input-group-lg > .input-group-addon,
+.input-group-lg > .input-group-btn > .btn {
+  height: 45px;
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+  border-radius: 3px;
+}
+select.input-group-lg > .form-control,
+select.input-group-lg > .input-group-addon,
+select.input-group-lg > .input-group-btn > .btn {
+  height: 45px;
+  line-height: 45px;
+}
+textarea.input-group-lg > .form-control,
+textarea.input-group-lg > .input-group-addon,
+textarea.input-group-lg > .input-group-btn > .btn,
+select[multiple].input-group-lg > .form-control,
+select[multiple].input-group-lg > .input-group-addon,
+select[multiple].input-group-lg > .input-group-btn > .btn {
+  height: auto;
+}
+.input-group-sm > .form-control,
+.input-group-sm > .input-group-addon,
+.input-group-sm > .input-group-btn > .btn {
+  height: 30px;
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+select.input-group-sm > .form-control,
+select.input-group-sm > .input-group-addon,
+select.input-group-sm > .input-group-btn > .btn {
+  height: 30px;
+  line-height: 30px;
+}
+textarea.input-group-sm > .form-control,
+textarea.input-group-sm > .input-group-addon,
+textarea.input-group-sm > .input-group-btn > .btn,
+select[multiple].input-group-sm > .form-control,
+select[multiple].input-group-sm > .input-group-addon,
+select[multiple].input-group-sm > .input-group-btn > .btn {
+  height: auto;
+}
+.input-group-addon,
+.input-group-btn,
+.input-group .form-control {
+  display: table-cell;
+}
+.input-group-addon:not(:first-child):not(:last-child),
+.input-group-btn:not(:first-child):not(:last-child),
+.input-group .form-control:not(:first-child):not(:last-child) {
+  border-radius: 0;
+}
+.input-group-addon,
+.input-group-btn {
+  width: 1%;
+  white-space: nowrap;
+  vertical-align: middle;
+}
+.input-group-addon {
+  padding: 6px 12px;
+  font-size: 13px;
+  font-weight: normal;
+  line-height: 1;
+  color: #555555;
+  text-align: center;
+  background-color: #eeeeee;
+  border: 1px solid #ccc;
+  border-radius: 2px;
+}
+.input-group-addon.input-sm {
+  padding: 5px 10px;
+  font-size: 12px;
+  border-radius: 1px;
+}
+.input-group-addon.input-lg {
+  padding: 10px 16px;
+  font-size: 17px;
+  border-radius: 3px;
+}
+.input-group-addon input[type="radio"],
+.input-group-addon input[type="checkbox"] {
+  margin-top: 0;
+}
+.input-group .form-control:first-child,
+.input-group-addon:first-child,
+.input-group-btn:first-child > .btn,
+.input-group-btn:first-child > .btn-group > .btn,
+.input-group-btn:first-child > .dropdown-toggle,
+.input-group-btn:last-child > .btn:not(:last-child):not(.dropdown-toggle),
+.input-group-btn:last-child > .btn-group:not(:last-child) > .btn {
+  border-bottom-right-radius: 0;
+  border-top-right-radius: 0;
+}
+.input-group-addon:first-child {
+  border-right: 0;
+}
+.input-group .form-control:last-child,
+.input-group-addon:last-child,
+.input-group-btn:last-child > .btn,
+.input-group-btn:last-child > .btn-group > .btn,
+.input-group-btn:last-child > .dropdown-toggle,
+.input-group-btn:first-child > .btn:not(:first-child),
+.input-group-btn:first-child > .btn-group:not(:first-child) > .btn {
+  border-bottom-left-radius: 0;
+  border-top-left-radius: 0;
+}
+.input-group-addon:last-child {
+  border-left: 0;
+}
+.input-group-btn {
+  position: relative;
+  font-size: 0;
+  white-space: nowrap;
+}
+.input-group-btn > .btn {
+  position: relative;
+}
+.input-group-btn > .btn + .btn {
+  margin-left: -1px;
+}
+.input-group-btn > .btn:hover,
+.input-group-btn > .btn:focus,
+.input-group-btn > .btn:active {
+  z-index: 2;
+}
+.input-group-btn:first-child > .btn,
+.input-group-btn:first-child > .btn-group {
+  margin-right: -1px;
+}
+.input-group-btn:last-child > .btn,
+.input-group-btn:last-child > .btn-group {
+  z-index: 2;
+  margin-left: -1px;
+}
+.nav {
+  margin-bottom: 0;
+  padding-left: 0;
+  list-style: none;
+}
+.nav > li {
+  position: relative;
+  display: block;
+}
+.nav > li > a {
+  position: relative;
+  display: block;
+  padding: 10px 15px;
+}
+.nav > li > a:hover,
+.nav > li > a:focus {
+  text-decoration: none;
+  background-color: #eeeeee;
+}
+.nav > li.disabled > a {
+  color: #777777;
+}
+.nav > li.disabled > a:hover,
+.nav > li.disabled > a:focus {
+  color: #777777;
+  text-decoration: none;
+  background-color: transparent;
+  cursor: not-allowed;
+}
+.nav .open > a,
+.nav .open > a:hover,
+.nav .open > a:focus {
+  background-color: #eeeeee;
+  border-color: #337ab7;
+}
+.nav .nav-divider {
+  height: 1px;
+  margin: 8px 0;
+  overflow: hidden;
+  background-color: #e5e5e5;
+}
+.nav > li > a > img {
+  max-width: none;
+}
+.nav-tabs {
+  border-bottom: 1px solid #ddd;
+}
+.nav-tabs > li {
+  float: left;
+  margin-bottom: -1px;
+}
+.nav-tabs > li > a {
+  margin-right: 2px;
+  line-height: 1.42857143;
+  border: 1px solid transparent;
+  border-radius: 2px 2px 0 0;
+}
+.nav-tabs > li > a:hover {
+  border-color: #eeeeee #eeeeee #ddd;
+}
+.nav-tabs > li.active > a,
+.nav-tabs > li.active > a:hover,
+.nav-tabs > li.active > a:focus {
+  color: #555555;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  border-bottom-color: transparent;
+  cursor: default;
+}
+.nav-tabs.nav-justified {
+  width: 100%;
+  border-bottom: 0;
+}
+.nav-tabs.nav-justified > li {
+  float: none;
+}
+.nav-tabs.nav-justified > li > a {
+  text-align: center;
+  margin-bottom: 5px;
+}
+.nav-tabs.nav-justified > .dropdown .dropdown-menu {
+  top: auto;
+  left: auto;
+}
+@media (min-width: 768px) {
+  .nav-tabs.nav-justified > li {
+    display: table-cell;
+    width: 1%;
+  }
+  .nav-tabs.nav-justified > li > a {
+    margin-bottom: 0;
+  }
+}
+.nav-tabs.nav-justified > li > a {
+  margin-right: 0;
+  border-radius: 2px;
+}
+.nav-tabs.nav-justified > .active > a,
+.nav-tabs.nav-justified > .active > a:hover,
+.nav-tabs.nav-justified > .active > a:focus {
+  border: 1px solid #ddd;
+}
+@media (min-width: 768px) {
+  .nav-tabs.nav-justified > li > a {
+    border-bottom: 1px solid #ddd;
+    border-radius: 2px 2px 0 0;
+  }
+  .nav-tabs.nav-justified > .active > a,
+  .nav-tabs.nav-justified > .active > a:hover,
+  .nav-tabs.nav-justified > .active > a:focus {
+    border-bottom-color: #fff;
+  }
+}
+.nav-pills > li {
+  float: left;
+}
+.nav-pills > li > a {
+  border-radius: 2px;
+}
+.nav-pills > li + li {
+  margin-left: 2px;
+}
+.nav-pills > li.active > a,
+.nav-pills > li.active > a:hover,
+.nav-pills > li.active > a:focus {
+  color: #fff;
+  background-color: #337ab7;
+}
+.nav-stacked > li {
+  float: none;
+}
+.nav-stacked > li + li {
+  margin-top: 2px;
+  margin-left: 0;
+}
+.nav-justified {
+  width: 100%;
+}
+.nav-justified > li {
+  float: none;
+}
+.nav-justified > li > a {
+  text-align: center;
+  margin-bottom: 5px;
+}
+.nav-justified > .dropdown .dropdown-menu {
+  top: auto;
+  left: auto;
+}
+@media (min-width: 768px) {
+  .nav-justified > li {
+    display: table-cell;
+    width: 1%;
+  }
+  .nav-justified > li > a {
+    margin-bottom: 0;
+  }
+}
+.nav-tabs-justified {
+  border-bottom: 0;
+}
+.nav-tabs-justified > li > a {
+  margin-right: 0;
+  border-radius: 2px;
+}
+.nav-tabs-justified > .active > a,
+.nav-tabs-justified > .active > a:hover,
+.nav-tabs-justified > .active > a:focus {
+  border: 1px solid #ddd;
+}
+@media (min-width: 768px) {
+  .nav-tabs-justified > li > a {
+    border-bottom: 1px solid #ddd;
+    border-radius: 2px 2px 0 0;
+  }
+  .nav-tabs-justified > .active > a,
+  .nav-tabs-justified > .active > a:hover,
+  .nav-tabs-justified > .active > a:focus {
+    border-bottom-color: #fff;
+  }
+}
+.tab-content > .tab-pane {
+  display: none;
+}
+.tab-content > .active {
+  display: block;
+}
+.nav-tabs .dropdown-menu {
+  margin-top: -1px;
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+}
+.navbar {
+  position: relative;
+  min-height: 30px;
+  margin-bottom: 18px;
+  border: 1px solid transparent;
+}
+@media (min-width: 541px) {
+  .navbar {
+    border-radius: 2px;
+  }
+}
+@media (min-width: 541px) {
+  .navbar-header {
+    float: left;
+  }
+}
+.navbar-collapse {
+  overflow-x: visible;
+  padding-right: 0px;
+  padding-left: 0px;
+  border-top: 1px solid transparent;
+  box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1);
+  -webkit-overflow-scrolling: touch;
+}
+.navbar-collapse.in {
+  overflow-y: auto;
+}
+@media (min-width: 541px) {
+  .navbar-collapse {
+    width: auto;
+    border-top: 0;
+    box-shadow: none;
+  }
+  .navbar-collapse.collapse {
+    display: block !important;
+    height: auto !important;
+    padding-bottom: 0;
+    overflow: visible !important;
+  }
+  .navbar-collapse.in {
+    overflow-y: visible;
+  }
+  .navbar-fixed-top .navbar-collapse,
+  .navbar-static-top .navbar-collapse,
+  .navbar-fixed-bottom .navbar-collapse {
+    padding-left: 0;
+    padding-right: 0;
+  }
+}
+.navbar-fixed-top .navbar-collapse,
+.navbar-fixed-bottom .navbar-collapse {
+  max-height: 340px;
+}
+@media (max-device-width: 540px) and (orientation: landscape) {
+  .navbar-fixed-top .navbar-collapse,
+  .navbar-fixed-bottom .navbar-collapse {
+    max-height: 200px;
+  }
+}
+.container > .navbar-header,
+.container-fluid > .navbar-header,
+.container > .navbar-collapse,
+.container-fluid > .navbar-collapse {
+  margin-right: 0px;
+  margin-left: 0px;
+}
+@media (min-width: 541px) {
+  .container > .navbar-header,
+  .container-fluid > .navbar-header,
+  .container > .navbar-collapse,
+  .container-fluid > .navbar-collapse {
+    margin-right: 0;
+    margin-left: 0;
+  }
+}
+.navbar-static-top {
+  z-index: 1000;
+  border-width: 0 0 1px;
+}
+@media (min-width: 541px) {
+  .navbar-static-top {
+    border-radius: 0;
+  }
+}
+.navbar-fixed-top,
+.navbar-fixed-bottom {
+  position: fixed;
+  right: 0;
+  left: 0;
+  z-index: 1030;
+}
+@media (min-width: 541px) {
+  .navbar-fixed-top,
+  .navbar-fixed-bottom {
+    border-radius: 0;
+  }
+}
+.navbar-fixed-top {
+  top: 0;
+  border-width: 0 0 1px;
+}
+.navbar-fixed-bottom {
+  bottom: 0;
+  margin-bottom: 0;
+  border-width: 1px 0 0;
+}
+.navbar-brand {
+  float: left;
+  padding: 6px 0px;
+  font-size: 17px;
+  line-height: 18px;
+  height: 30px;
+}
+.navbar-brand:hover,
+.navbar-brand:focus {
+  text-decoration: none;
+}
+.navbar-brand > img {
+  display: block;
+}
+@media (min-width: 541px) {
+  .navbar > .container .navbar-brand,
+  .navbar > .container-fluid .navbar-brand {
+    margin-left: 0px;
+  }
+}
+.navbar-toggle {
+  position: relative;
+  float: right;
+  margin-right: 0px;
+  padding: 9px 10px;
+  margin-top: -2px;
+  margin-bottom: -2px;
+  background-color: transparent;
+  background-image: none;
+  border: 1px solid transparent;
+  border-radius: 2px;
+}
+.navbar-toggle:focus {
+  outline: 0;
+}
+.navbar-toggle .icon-bar {
+  display: block;
+  width: 22px;
+  height: 2px;
+  border-radius: 1px;
+}
+.navbar-toggle .icon-bar + .icon-bar {
+  margin-top: 4px;
+}
+@media (min-width: 541px) {
+  .navbar-toggle {
+    display: none;
+  }
+}
+.navbar-nav {
+  margin: 3px 0px;
+}
+.navbar-nav > li > a {
+  padding-top: 10px;
+  padding-bottom: 10px;
+  line-height: 18px;
+}
+@media (max-width: 540px) {
+  .navbar-nav .open .dropdown-menu {
+    position: static;
+    float: none;
+    width: auto;
+    margin-top: 0;
+    background-color: transparent;
+    border: 0;
+    box-shadow: none;
+  }
+  .navbar-nav .open .dropdown-menu > li > a,
+  .navbar-nav .open .dropdown-menu .dropdown-header {
+    padding: 5px 15px 5px 25px;
+  }
+  .navbar-nav .open .dropdown-menu > li > a {
+    line-height: 18px;
+  }
+  .navbar-nav .open .dropdown-menu > li > a:hover,
+  .navbar-nav .open .dropdown-menu > li > a:focus {
+    background-image: none;
+  }
+}
+@media (min-width: 541px) {
+  .navbar-nav {
+    float: left;
+    margin: 0;
+  }
+  .navbar-nav > li {
+    float: left;
+  }
+  .navbar-nav > li > a {
+    padding-top: 6px;
+    padding-bottom: 6px;
+  }
+}
+.navbar-form {
+  margin-left: 0px;
+  margin-right: 0px;
+  padding: 10px 0px;
+  border-top: 1px solid transparent;
+  border-bottom: 1px solid transparent;
+  -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1);
+  box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1);
+  margin-top: -1px;
+  margin-bottom: -1px;
+}
+@media (min-width: 768px) {
+  .navbar-form .form-group {
+    display: inline-block;
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .navbar-form .form-control {
+    display: inline-block;
+    width: auto;
+    vertical-align: middle;
+  }
+  .navbar-form .form-control-static {
+    display: inline-block;
+  }
+  .navbar-form .input-group {
+    display: inline-table;
+    vertical-align: middle;
+  }
+  .navbar-form .input-group .input-group-addon,
+  .navbar-form .input-group .input-group-btn,
+  .navbar-form .input-group .form-control {
+    width: auto;
+  }
+  .navbar-form .input-group > .form-control {
+    width: 100%;
+  }
+  .navbar-form .control-label {
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .navbar-form .radio,
+  .navbar-form .checkbox {
+    display: inline-block;
+    margin-top: 0;
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .navbar-form .radio label,
+  .navbar-form .checkbox label {
+    padding-left: 0;
+  }
+  .navbar-form .radio input[type="radio"],
+  .navbar-form .checkbox input[type="checkbox"] {
+    position: relative;
+    margin-left: 0;
+  }
+  .navbar-form .has-feedback .form-control-feedback {
+    top: 0;
+  }
+}
+@media (max-width: 540px) {
+  .navbar-form .form-group {
+    margin-bottom: 5px;
+  }
+  .navbar-form .form-group:last-child {
+    margin-bottom: 0;
+  }
+}
+@media (min-width: 541px) {
+  .navbar-form {
+    width: auto;
+    border: 0;
+    margin-left: 0;
+    margin-right: 0;
+    padding-top: 0;
+    padding-bottom: 0;
+    -webkit-box-shadow: none;
+    box-shadow: none;
+  }
+}
+.navbar-nav > li > .dropdown-menu {
+  margin-top: 0;
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+}
+.navbar-fixed-bottom .navbar-nav > li > .dropdown-menu {
+  margin-bottom: 0;
+  border-top-right-radius: 2px;
+  border-top-left-radius: 2px;
+  border-bottom-right-radius: 0;
+  border-bottom-left-radius: 0;
+}
+.navbar-btn {
+  margin-top: -1px;
+  margin-bottom: -1px;
+}
+.navbar-btn.btn-sm {
+  margin-top: 0px;
+  margin-bottom: 0px;
+}
+.navbar-btn.btn-xs {
+  margin-top: 4px;
+  margin-bottom: 4px;
+}
+.navbar-text {
+  margin-top: 6px;
+  margin-bottom: 6px;
+}
+@media (min-width: 541px) {
+  .navbar-text {
+    float: left;
+    margin-left: 0px;
+    margin-right: 0px;
+  }
+}
+@media (min-width: 541px) {
+  .navbar-left {
+    float: left !important;
+    float: left;
+  }
+  .navbar-right {
+    float: right !important;
+    float: right;
+    margin-right: 0px;
+  }
+  .navbar-right ~ .navbar-right {
+    margin-right: 0;
+  }
+}
+.navbar-default {
+  background-color: #f8f8f8;
+  border-color: #e7e7e7;
+}
+.navbar-default .navbar-brand {
+  color: #777;
+}
+.navbar-default .navbar-brand:hover,
+.navbar-default .navbar-brand:focus {
+  color: #5e5e5e;
+  background-color: transparent;
+}
+.navbar-default .navbar-text {
+  color: #777;
+}
+.navbar-default .navbar-nav > li > a {
+  color: #777;
+}
+.navbar-default .navbar-nav > li > a:hover,
+.navbar-default .navbar-nav > li > a:focus {
+  color: #333;
+  background-color: transparent;
+}
+.navbar-default .navbar-nav > .active > a,
+.navbar-default .navbar-nav > .active > a:hover,
+.navbar-default .navbar-nav > .active > a:focus {
+  color: #555;
+  background-color: #e7e7e7;
+}
+.navbar-default .navbar-nav > .disabled > a,
+.navbar-default .navbar-nav > .disabled > a:hover,
+.navbar-default .navbar-nav > .disabled > a:focus {
+  color: #ccc;
+  background-color: transparent;
+}
+.navbar-default .navbar-toggle {
+  border-color: #ddd;
+}
+.navbar-default .navbar-toggle:hover,
+.navbar-default .navbar-toggle:focus {
+  background-color: #ddd;
+}
+.navbar-default .navbar-toggle .icon-bar {
+  background-color: #888;
+}
+.navbar-default .navbar-collapse,
+.navbar-default .navbar-form {
+  border-color: #e7e7e7;
+}
+.navbar-default .navbar-nav > .open > a,
+.navbar-default .navbar-nav > .open > a:hover,
+.navbar-default .navbar-nav > .open > a:focus {
+  background-color: #e7e7e7;
+  color: #555;
+}
+@media (max-width: 540px) {
+  .navbar-default .navbar-nav .open .dropdown-menu > li > a {
+    color: #777;
+  }
+  .navbar-default .navbar-nav .open .dropdown-menu > li > a:hover,
+  .navbar-default .navbar-nav .open .dropdown-menu > li > a:focus {
+    color: #333;
+    background-color: transparent;
+  }
+  .navbar-default .navbar-nav .open .dropdown-menu > .active > a,
+  .navbar-default .navbar-nav .open .dropdown-menu > .active > a:hover,
+  .navbar-default .navbar-nav .open .dropdown-menu > .active > a:focus {
+    color: #555;
+    background-color: #e7e7e7;
+  }
+  .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a,
+  .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:hover,
+  .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:focus {
+    color: #ccc;
+    background-color: transparent;
+  }
+}
+.navbar-default .navbar-link {
+  color: #777;
+}
+.navbar-default .navbar-link:hover {
+  color: #333;
+}
+.navbar-default .btn-link {
+  color: #777;
+}
+.navbar-default .btn-link:hover,
+.navbar-default .btn-link:focus {
+  color: #333;
+}
+.navbar-default .btn-link[disabled]:hover,
+fieldset[disabled] .navbar-default .btn-link:hover,
+.navbar-default .btn-link[disabled]:focus,
+fieldset[disabled] .navbar-default .btn-link:focus {
+  color: #ccc;
+}
+.navbar-inverse {
+  background-color: #222;
+  border-color: #080808;
+}
+.navbar-inverse .navbar-brand {
+  color: #9d9d9d;
+}
+.navbar-inverse .navbar-brand:hover,
+.navbar-inverse .navbar-brand:focus {
+  color: #fff;
+  background-color: transparent;
+}
+.navbar-inverse .navbar-text {
+  color: #9d9d9d;
+}
+.navbar-inverse .navbar-nav > li > a {
+  color: #9d9d9d;
+}
+.navbar-inverse .navbar-nav > li > a:hover,
+.navbar-inverse .navbar-nav > li > a:focus {
+  color: #fff;
+  background-color: transparent;
+}
+.navbar-inverse .navbar-nav > .active > a,
+.navbar-inverse .navbar-nav > .active > a:hover,
+.navbar-inverse .navbar-nav > .active > a:focus {
+  color: #fff;
+  background-color: #080808;
+}
+.navbar-inverse .navbar-nav > .disabled > a,
+.navbar-inverse .navbar-nav > .disabled > a:hover,
+.navbar-inverse .navbar-nav > .disabled > a:focus {
+  color: #444;
+  background-color: transparent;
+}
+.navbar-inverse .navbar-toggle {
+  border-color: #333;
+}
+.navbar-inverse .navbar-toggle:hover,
+.navbar-inverse .navbar-toggle:focus {
+  background-color: #333;
+}
+.navbar-inverse .navbar-toggle .icon-bar {
+  background-color: #fff;
+}
+.navbar-inverse .navbar-collapse,
+.navbar-inverse .navbar-form {
+  border-color: #101010;
+}
+.navbar-inverse .navbar-nav > .open > a,
+.navbar-inverse .navbar-nav > .open > a:hover,
+.navbar-inverse .navbar-nav > .open > a:focus {
+  background-color: #080808;
+  color: #fff;
+}
+@media (max-width: 540px) {
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .dropdown-header {
+    border-color: #080808;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu .divider {
+    background-color: #080808;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu > li > a {
+    color: #9d9d9d;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:hover,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:focus {
+    color: #fff;
+    background-color: transparent;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:hover,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:focus {
+    color: #fff;
+    background-color: #080808;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:hover,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:focus {
+    color: #444;
+    background-color: transparent;
+  }
+}
+.navbar-inverse .navbar-link {
+  color: #9d9d9d;
+}
+.navbar-inverse .navbar-link:hover {
+  color: #fff;
+}
+.navbar-inverse .btn-link {
+  color: #9d9d9d;
+}
+.navbar-inverse .btn-link:hover,
+.navbar-inverse .btn-link:focus {
+  color: #fff;
+}
+.navbar-inverse .btn-link[disabled]:hover,
+fieldset[disabled] .navbar-inverse .btn-link:hover,
+.navbar-inverse .btn-link[disabled]:focus,
+fieldset[disabled] .navbar-inverse .btn-link:focus {
+  color: #444;
+}
+.breadcrumb {
+  padding: 8px 15px;
+  margin-bottom: 18px;
+  list-style: none;
+  background-color: #f5f5f5;
+  border-radius: 2px;
+}
+.breadcrumb > li {
+  display: inline-block;
+}
+.breadcrumb > li + li:before {
+  content: "/\00a0";
+  padding: 0 5px;
+  color: #5e5e5e;
+}
+.breadcrumb > .active {
+  color: #777777;
+}
+.pagination {
+  display: inline-block;
+  padding-left: 0;
+  margin: 18px 0;
+  border-radius: 2px;
+}
+.pagination > li {
+  display: inline;
+}
+.pagination > li > a,
+.pagination > li > span {
+  position: relative;
+  float: left;
+  padding: 6px 12px;
+  line-height: 1.42857143;
+  text-decoration: none;
+  color: #337ab7;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  margin-left: -1px;
+}
+.pagination > li:first-child > a,
+.pagination > li:first-child > span {
+  margin-left: 0;
+  border-bottom-left-radius: 2px;
+  border-top-left-radius: 2px;
+}
+.pagination > li:last-child > a,
+.pagination > li:last-child > span {
+  border-bottom-right-radius: 2px;
+  border-top-right-radius: 2px;
+}
+.pagination > li > a:hover,
+.pagination > li > span:hover,
+.pagination > li > a:focus,
+.pagination > li > span:focus {
+  z-index: 2;
+  color: #23527c;
+  background-color: #eeeeee;
+  border-color: #ddd;
+}
+.pagination > .active > a,
+.pagination > .active > span,
+.pagination > .active > a:hover,
+.pagination > .active > span:hover,
+.pagination > .active > a:focus,
+.pagination > .active > span:focus {
+  z-index: 3;
+  color: #fff;
+  background-color: #337ab7;
+  border-color: #337ab7;
+  cursor: default;
+}
+.pagination > .disabled > span,
+.pagination > .disabled > span:hover,
+.pagination > .disabled > span:focus,
+.pagination > .disabled > a,
+.pagination > .disabled > a:hover,
+.pagination > .disabled > a:focus {
+  color: #777777;
+  background-color: #fff;
+  border-color: #ddd;
+  cursor: not-allowed;
+}
+.pagination-lg > li > a,
+.pagination-lg > li > span {
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+}
+.pagination-lg > li:first-child > a,
+.pagination-lg > li:first-child > span {
+  border-bottom-left-radius: 3px;
+  border-top-left-radius: 3px;
+}
+.pagination-lg > li:last-child > a,
+.pagination-lg > li:last-child > span {
+  border-bottom-right-radius: 3px;
+  border-top-right-radius: 3px;
+}
+.pagination-sm > li > a,
+.pagination-sm > li > span {
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+}
+.pagination-sm > li:first-child > a,
+.pagination-sm > li:first-child > span {
+  border-bottom-left-radius: 1px;
+  border-top-left-radius: 1px;
+}
+.pagination-sm > li:last-child > a,
+.pagination-sm > li:last-child > span {
+  border-bottom-right-radius: 1px;
+  border-top-right-radius: 1px;
+}
+.pager {
+  padding-left: 0;
+  margin: 18px 0;
+  list-style: none;
+  text-align: center;
+}
+.pager li {
+  display: inline;
+}
+.pager li > a,
+.pager li > span {
+  display: inline-block;
+  padding: 5px 14px;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  border-radius: 15px;
+}
+.pager li > a:hover,
+.pager li > a:focus {
+  text-decoration: none;
+  background-color: #eeeeee;
+}
+.pager .next > a,
+.pager .next > span {
+  float: right;
+}
+.pager .previous > a,
+.pager .previous > span {
+  float: left;
+}
+.pager .disabled > a,
+.pager .disabled > a:hover,
+.pager .disabled > a:focus,
+.pager .disabled > span {
+  color: #777777;
+  background-color: #fff;
+  cursor: not-allowed;
+}
+.label {
+  display: inline;
+  padding: .2em .6em .3em;
+  font-size: 75%;
+  font-weight: bold;
+  line-height: 1;
+  color: #fff;
+  text-align: center;
+  white-space: nowrap;
+  vertical-align: baseline;
+  border-radius: .25em;
+}
+a.label:hover,
+a.label:focus {
+  color: #fff;
+  text-decoration: none;
+  cursor: pointer;
+}
+.label:empty {
+  display: none;
+}
+.btn .label {
+  position: relative;
+  top: -1px;
+}
+.label-default {
+  background-color: #777777;
+}
+.label-default[href]:hover,
+.label-default[href]:focus {
+  background-color: #5e5e5e;
+}
+.label-primary {
+  background-color: #337ab7;
+}
+.label-primary[href]:hover,
+.label-primary[href]:focus {
+  background-color: #286090;
+}
+.label-success {
+  background-color: #5cb85c;
+}
+.label-success[href]:hover,
+.label-success[href]:focus {
+  background-color: #449d44;
+}
+.label-info {
+  background-color: #5bc0de;
+}
+.label-info[href]:hover,
+.label-info[href]:focus {
+  background-color: #31b0d5;
+}
+.label-warning {
+  background-color: #f0ad4e;
+}
+.label-warning[href]:hover,
+.label-warning[href]:focus {
+  background-color: #ec971f;
+}
+.label-danger {
+  background-color: #d9534f;
+}
+.label-danger[href]:hover,
+.label-danger[href]:focus {
+  background-color: #c9302c;
+}
+.badge {
+  display: inline-block;
+  min-width: 10px;
+  padding: 3px 7px;
+  font-size: 12px;
+  font-weight: bold;
+  color: #fff;
+  line-height: 1;
+  vertical-align: middle;
+  white-space: nowrap;
+  text-align: center;
+  background-color: #777777;
+  border-radius: 10px;
+}
+.badge:empty {
+  display: none;
+}
+.btn .badge {
+  position: relative;
+  top: -1px;
+}
+.btn-xs .badge,
+.btn-group-xs > .btn .badge {
+  top: 0;
+  padding: 1px 5px;
+}
+a.badge:hover,
+a.badge:focus {
+  color: #fff;
+  text-decoration: none;
+  cursor: pointer;
+}
+.list-group-item.active > .badge,
+.nav-pills > .active > a > .badge {
+  color: #337ab7;
+  background-color: #fff;
+}
+.list-group-item > .badge {
+  float: right;
+}
+.list-group-item > .badge + .badge {
+  margin-right: 5px;
+}
+.nav-pills > li > a > .badge {
+  margin-left: 3px;
+}
+.jumbotron {
+  padding-top: 30px;
+  padding-bottom: 30px;
+  margin-bottom: 30px;
+  color: inherit;
+  background-color: #eeeeee;
+}
+.jumbotron h1,
+.jumbotron .h1 {
+  color: inherit;
+}
+.jumbotron p {
+  margin-bottom: 15px;
+  font-size: 20px;
+  font-weight: 200;
+}
+.jumbotron > hr {
+  border-top-color: #d5d5d5;
+}
+.container .jumbotron,
+.container-fluid .jumbotron {
+  border-radius: 3px;
+  padding-left: 0px;
+  padding-right: 0px;
+}
+.jumbotron .container {
+  max-width: 100%;
+}
+@media screen and (min-width: 768px) {
+  .jumbotron {
+    padding-top: 48px;
+    padding-bottom: 48px;
+  }
+  .container .jumbotron,
+  .container-fluid .jumbotron {
+    padding-left: 60px;
+    padding-right: 60px;
+  }
+  .jumbotron h1,
+  .jumbotron .h1 {
+    font-size: 59px;
+  }
+}
+.thumbnail {
+  display: block;
+  padding: 4px;
+  margin-bottom: 18px;
+  line-height: 1.42857143;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  border-radius: 2px;
+  -webkit-transition: border 0.2s ease-in-out;
+  -o-transition: border 0.2s ease-in-out;
+  transition: border 0.2s ease-in-out;
+}
+.thumbnail > img,
+.thumbnail a > img {
+  margin-left: auto;
+  margin-right: auto;
+}
+a.thumbnail:hover,
+a.thumbnail:focus,
+a.thumbnail.active {
+  border-color: #337ab7;
+}
+.thumbnail .caption {
+  padding: 9px;
+  color: #000;
+}
+.alert {
+  padding: 15px;
+  margin-bottom: 18px;
+  border: 1px solid transparent;
+  border-radius: 2px;
+}
+.alert h4 {
+  margin-top: 0;
+  color: inherit;
+}
+.alert .alert-link {
+  font-weight: bold;
+}
+.alert > p,
+.alert > ul {
+  margin-bottom: 0;
+}
+.alert > p + p {
+  margin-top: 5px;
+}
+.alert-dismissable,
+.alert-dismissible {
+  padding-right: 35px;
+}
+.alert-dismissable .close,
+.alert-dismissible .close {
+  position: relative;
+  top: -2px;
+  right: -21px;
+  color: inherit;
+}
+.alert-success {
+  background-color: #dff0d8;
+  border-color: #d6e9c6;
+  color: #3c763d;
+}
+.alert-success hr {
+  border-top-color: #c9e2b3;
+}
+.alert-success .alert-link {
+  color: #2b542c;
+}
+.alert-info {
+  background-color: #d9edf7;
+  border-color: #bce8f1;
+  color: #31708f;
+}
+.alert-info hr {
+  border-top-color: #a6e1ec;
+}
+.alert-info .alert-link {
+  color: #245269;
+}
+.alert-warning {
+  background-color: #fcf8e3;
+  border-color: #faebcc;
+  color: #8a6d3b;
+}
+.alert-warning hr {
+  border-top-color: #f7e1b5;
+}
+.alert-warning .alert-link {
+  color: #66512c;
+}
+.alert-danger {
+  background-color: #f2dede;
+  border-color: #ebccd1;
+  color: #a94442;
+}
+.alert-danger hr {
+  border-top-color: #e4b9c0;
+}
+.alert-danger .alert-link {
+  color: #843534;
+}
+@-webkit-keyframes progress-bar-stripes {
+  from {
+    background-position: 40px 0;
+  }
+  to {
+    background-position: 0 0;
+  }
+}
+@keyframes progress-bar-stripes {
+  from {
+    background-position: 40px 0;
+  }
+  to {
+    background-position: 0 0;
+  }
+}
+.progress {
+  overflow: hidden;
+  height: 18px;
+  margin-bottom: 18px;
+  background-color: #f5f5f5;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1);
+  box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1);
+}
+.progress-bar {
+  float: left;
+  width: 0%;
+  height: 100%;
+  font-size: 12px;
+  line-height: 18px;
+  color: #fff;
+  text-align: center;
+  background-color: #337ab7;
+  -webkit-box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15);
+  box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15);
+  -webkit-transition: width 0.6s ease;
+  -o-transition: width 0.6s ease;
+  transition: width 0.6s ease;
+}
+.progress-striped .progress-bar,
+.progress-bar-striped {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-size: 40px 40px;
+}
+.progress.active .progress-bar,
+.progress-bar.active {
+  -webkit-animation: progress-bar-stripes 2s linear infinite;
+  -o-animation: progress-bar-stripes 2s linear infinite;
+  animation: progress-bar-stripes 2s linear infinite;
+}
+.progress-bar-success {
+  background-color: #5cb85c;
+}
+.progress-striped .progress-bar-success {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+}
+.progress-bar-info {
+  background-color: #5bc0de;
+}
+.progress-striped .progress-bar-info {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+}
+.progress-bar-warning {
+  background-color: #f0ad4e;
+}
+.progress-striped .progress-bar-warning {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+}
+.progress-bar-danger {
+  background-color: #d9534f;
+}
+.progress-striped .progress-bar-danger {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+}
+.media {
+  margin-top: 15px;
+}
+.media:first-child {
+  margin-top: 0;
+}
+.media,
+.media-body {
+  zoom: 1;
+  overflow: hidden;
+}
+.media-body {
+  width: 10000px;
+}
+.media-object {
+  display: block;
+}
+.media-object.img-thumbnail {
+  max-width: none;
+}
+.media-right,
+.media > .pull-right {
+  padding-left: 10px;
+}
+.media-left,
+.media > .pull-left {
+  padding-right: 10px;
+}
+.media-left,
+.media-right,
+.media-body {
+  display: table-cell;
+  vertical-align: top;
+}
+.media-middle {
+  vertical-align: middle;
+}
+.media-bottom {
+  vertical-align: bottom;
+}
+.media-heading {
+  margin-top: 0;
+  margin-bottom: 5px;
+}
+.media-list {
+  padding-left: 0;
+  list-style: none;
+}
+.list-group {
+  margin-bottom: 20px;
+  padding-left: 0;
+}
+.list-group-item {
+  position: relative;
+  display: block;
+  padding: 10px 15px;
+  margin-bottom: -1px;
+  background-color: #fff;
+  border: 1px solid #ddd;
+}
+.list-group-item:first-child {
+  border-top-right-radius: 2px;
+  border-top-left-radius: 2px;
+}
+.list-group-item:last-child {
+  margin-bottom: 0;
+  border-bottom-right-radius: 2px;
+  border-bottom-left-radius: 2px;
+}
+a.list-group-item,
+button.list-group-item {
+  color: #555;
+}
+a.list-group-item .list-group-item-heading,
+button.list-group-item .list-group-item-heading {
+  color: #333;
+}
+a.list-group-item:hover,
+button.list-group-item:hover,
+a.list-group-item:focus,
+button.list-group-item:focus {
+  text-decoration: none;
+  color: #555;
+  background-color: #f5f5f5;
+}
+button.list-group-item {
+  width: 100%;
+  text-align: left;
+}
+.list-group-item.disabled,
+.list-group-item.disabled:hover,
+.list-group-item.disabled:focus {
+  background-color: #eeeeee;
+  color: #777777;
+  cursor: not-allowed;
+}
+.list-group-item.disabled .list-group-item-heading,
+.list-group-item.disabled:hover .list-group-item-heading,
+.list-group-item.disabled:focus .list-group-item-heading {
+  color: inherit;
+}
+.list-group-item.disabled .list-group-item-text,
+.list-group-item.disabled:hover .list-group-item-text,
+.list-group-item.disabled:focus .list-group-item-text {
+  color: #777777;
+}
+.list-group-item.active,
+.list-group-item.active:hover,
+.list-group-item.active:focus {
+  z-index: 2;
+  color: #fff;
+  background-color: #337ab7;
+  border-color: #337ab7;
+}
+.list-group-item.active .list-group-item-heading,
+.list-group-item.active:hover .list-group-item-heading,
+.list-group-item.active:focus .list-group-item-heading,
+.list-group-item.active .list-group-item-heading > small,
+.list-group-item.active:hover .list-group-item-heading > small,
+.list-group-item.active:focus .list-group-item-heading > small,
+.list-group-item.active .list-group-item-heading > .small,
+.list-group-item.active:hover .list-group-item-heading > .small,
+.list-group-item.active:focus .list-group-item-heading > .small {
+  color: inherit;
+}
+.list-group-item.active .list-group-item-text,
+.list-group-item.active:hover .list-group-item-text,
+.list-group-item.active:focus .list-group-item-text {
+  color: #c7ddef;
+}
+.list-group-item-success {
+  color: #3c763d;
+  background-color: #dff0d8;
+}
+a.list-group-item-success,
+button.list-group-item-success {
+  color: #3c763d;
+}
+a.list-group-item-success .list-group-item-heading,
+button.list-group-item-success .list-group-item-heading {
+  color: inherit;
+}
+a.list-group-item-success:hover,
+button.list-group-item-success:hover,
+a.list-group-item-success:focus,
+button.list-group-item-success:focus {
+  color: #3c763d;
+  background-color: #d0e9c6;
+}
+a.list-group-item-success.active,
+button.list-group-item-success.active,
+a.list-group-item-success.active:hover,
+button.list-group-item-success.active:hover,
+a.list-group-item-success.active:focus,
+button.list-group-item-success.active:focus {
+  color: #fff;
+  background-color: #3c763d;
+  border-color: #3c763d;
+}
+.list-group-item-info {
+  color: #31708f;
+  background-color: #d9edf7;
+}
+a.list-group-item-info,
+button.list-group-item-info {
+  color: #31708f;
+}
+a.list-group-item-info .list-group-item-heading,
+button.list-group-item-info .list-group-item-heading {
+  color: inherit;
+}
+a.list-group-item-info:hover,
+button.list-group-item-info:hover,
+a.list-group-item-info:focus,
+button.list-group-item-info:focus {
+  color: #31708f;
+  background-color: #c4e3f3;
+}
+a.list-group-item-info.active,
+button.list-group-item-info.active,
+a.list-group-item-info.active:hover,
+button.list-group-item-info.active:hover,
+a.list-group-item-info.active:focus,
+button.list-group-item-info.active:focus {
+  color: #fff;
+  background-color: #31708f;
+  border-color: #31708f;
+}
+.list-group-item-warning {
+  color: #8a6d3b;
+  background-color: #fcf8e3;
+}
+a.list-group-item-warning,
+button.list-group-item-warning {
+  color: #8a6d3b;
+}
+a.list-group-item-warning .list-group-item-heading,
+button.list-group-item-warning .list-group-item-heading {
+  color: inherit;
+}
+a.list-group-item-warning:hover,
+button.list-group-item-warning:hover,
+a.list-group-item-warning:focus,
+button.list-group-item-warning:focus {
+  color: #8a6d3b;
+  background-color: #faf2cc;
+}
+a.list-group-item-warning.active,
+button.list-group-item-warning.active,
+a.list-group-item-warning.active:hover,
+button.list-group-item-warning.active:hover,
+a.list-group-item-warning.active:focus,
+button.list-group-item-warning.active:focus {
+  color: #fff;
+  background-color: #8a6d3b;
+  border-color: #8a6d3b;
+}
+.list-group-item-danger {
+  color: #a94442;
+  background-color: #f2dede;
+}
+a.list-group-item-danger,
+button.list-group-item-danger {
+  color: #a94442;
+}
+a.list-group-item-danger .list-group-item-heading,
+button.list-group-item-danger .list-group-item-heading {
+  color: inherit;
+}
+a.list-group-item-danger:hover,
+button.list-group-item-danger:hover,
+a.list-group-item-danger:focus,
+button.list-group-item-danger:focus {
+  color: #a94442;
+  background-color: #ebcccc;
+}
+a.list-group-item-danger.active,
+button.list-group-item-danger.active,
+a.list-group-item-danger.active:hover,
+button.list-group-item-danger.active:hover,
+a.list-group-item-danger.active:focus,
+button.list-group-item-danger.active:focus {
+  color: #fff;
+  background-color: #a94442;
+  border-color: #a94442;
+}
+.list-group-item-heading {
+  margin-top: 0;
+  margin-bottom: 5px;
+}
+.list-group-item-text {
+  margin-bottom: 0;
+  line-height: 1.3;
+}
+.panel {
+  margin-bottom: 18px;
+  background-color: #fff;
+  border: 1px solid transparent;
+  border-radius: 2px;
+  -webkit-box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05);
+  box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05);
+}
+.panel-body {
+  padding: 15px;
+}
+.panel-heading {
+  padding: 10px 15px;
+  border-bottom: 1px solid transparent;
+  border-top-right-radius: 1px;
+  border-top-left-radius: 1px;
+}
+.panel-heading > .dropdown .dropdown-toggle {
+  color: inherit;
+}
+.panel-title {
+  margin-top: 0;
+  margin-bottom: 0;
+  font-size: 15px;
+  color: inherit;
+}
+.panel-title > a,
+.panel-title > small,
+.panel-title > .small,
+.panel-title > small > a,
+.panel-title > .small > a {
+  color: inherit;
+}
+.panel-footer {
+  padding: 10px 15px;
+  background-color: #f5f5f5;
+  border-top: 1px solid #ddd;
+  border-bottom-right-radius: 1px;
+  border-bottom-left-radius: 1px;
+}
+.panel > .list-group,
+.panel > .panel-collapse > .list-group {
+  margin-bottom: 0;
+}
+.panel > .list-group .list-group-item,
+.panel > .panel-collapse > .list-group .list-group-item {
+  border-width: 1px 0;
+  border-radius: 0;
+}
+.panel > .list-group:first-child .list-group-item:first-child,
+.panel > .panel-collapse > .list-group:first-child .list-group-item:first-child {
+  border-top: 0;
+  border-top-right-radius: 1px;
+  border-top-left-radius: 1px;
+}
+.panel > .list-group:last-child .list-group-item:last-child,
+.panel > .panel-collapse > .list-group:last-child .list-group-item:last-child {
+  border-bottom: 0;
+  border-bottom-right-radius: 1px;
+  border-bottom-left-radius: 1px;
+}
+.panel > .panel-heading + .panel-collapse > .list-group .list-group-item:first-child {
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+}
+.panel-heading + .list-group .list-group-item:first-child {
+  border-top-width: 0;
+}
+.list-group + .panel-footer {
+  border-top-width: 0;
+}
+.panel > .table,
+.panel > .table-responsive > .table,
+.panel > .panel-collapse > .table {
+  margin-bottom: 0;
+}
+.panel > .table caption,
+.panel > .table-responsive > .table caption,
+.panel > .panel-collapse > .table caption {
+  padding-left: 15px;
+  padding-right: 15px;
+}
+.panel > .table:first-child,
+.panel > .table-responsive:first-child > .table:first-child {
+  border-top-right-radius: 1px;
+  border-top-left-radius: 1px;
+}
+.panel > .table:first-child > thead:first-child > tr:first-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child {
+  border-top-left-radius: 1px;
+  border-top-right-radius: 1px;
+}
+.panel > .table:first-child > thead:first-child > tr:first-child td:first-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:first-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child td:first-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:first-child,
+.panel > .table:first-child > thead:first-child > tr:first-child th:first-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:first-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child th:first-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:first-child {
+  border-top-left-radius: 1px;
+}
+.panel > .table:first-child > thead:first-child > tr:first-child td:last-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:last-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child td:last-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:last-child,
+.panel > .table:first-child > thead:first-child > tr:first-child th:last-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:last-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child th:last-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:last-child {
+  border-top-right-radius: 1px;
+}
+.panel > .table:last-child,
+.panel > .table-responsive:last-child > .table:last-child {
+  border-bottom-right-radius: 1px;
+  border-bottom-left-radius: 1px;
+}
+.panel > .table:last-child > tbody:last-child > tr:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child {
+  border-bottom-left-radius: 1px;
+  border-bottom-right-radius: 1px;
+}
+.panel > .table:last-child > tbody:last-child > tr:last-child td:first-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:first-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child td:first-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:first-child,
+.panel > .table:last-child > tbody:last-child > tr:last-child th:first-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:first-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child th:first-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:first-child {
+  border-bottom-left-radius: 1px;
+}
+.panel > .table:last-child > tbody:last-child > tr:last-child td:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:last-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child td:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:last-child,
+.panel > .table:last-child > tbody:last-child > tr:last-child th:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:last-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child th:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:last-child {
+  border-bottom-right-radius: 1px;
+}
+.panel > .panel-body + .table,
+.panel > .panel-body + .table-responsive,
+.panel > .table + .panel-body,
+.panel > .table-responsive + .panel-body {
+  border-top: 1px solid #ddd;
+}
+.panel > .table > tbody:first-child > tr:first-child th,
+.panel > .table > tbody:first-child > tr:first-child td {
+  border-top: 0;
+}
+.panel > .table-bordered,
+.panel > .table-responsive > .table-bordered {
+  border: 0;
+}
+.panel > .table-bordered > thead > tr > th:first-child,
+.panel > .table-responsive > .table-bordered > thead > tr > th:first-child,
+.panel > .table-bordered > tbody > tr > th:first-child,
+.panel > .table-responsive > .table-bordered > tbody > tr > th:first-child,
+.panel > .table-bordered > tfoot > tr > th:first-child,
+.panel > .table-responsive > .table-bordered > tfoot > tr > th:first-child,
+.panel > .table-bordered > thead > tr > td:first-child,
+.panel > .table-responsive > .table-bordered > thead > tr > td:first-child,
+.panel > .table-bordered > tbody > tr > td:first-child,
+.panel > .table-responsive > .table-bordered > tbody > tr > td:first-child,
+.panel > .table-bordered > tfoot > tr > td:first-child,
+.panel > .table-responsive > .table-bordered > tfoot > tr > td:first-child {
+  border-left: 0;
+}
+.panel > .table-bordered > thead > tr > th:last-child,
+.panel > .table-responsive > .table-bordered > thead > tr > th:last-child,
+.panel > .table-bordered > tbody > tr > th:last-child,
+.panel > .table-responsive > .table-bordered > tbody > tr > th:last-child,
+.panel > .table-bordered > tfoot > tr > th:last-child,
+.panel > .table-responsive > .table-bordered > tfoot > tr > th:last-child,
+.panel > .table-bordered > thead > tr > td:last-child,
+.panel > .table-responsive > .table-bordered > thead > tr > td:last-child,
+.panel > .table-bordered > tbody > tr > td:last-child,
+.panel > .table-responsive > .table-bordered > tbody > tr > td:last-child,
+.panel > .table-bordered > tfoot > tr > td:last-child,
+.panel > .table-responsive > .table-bordered > tfoot > tr > td:last-child {
+  border-right: 0;
+}
+.panel > .table-bordered > thead > tr:first-child > td,
+.panel > .table-responsive > .table-bordered > thead > tr:first-child > td,
+.panel > .table-bordered > tbody > tr:first-child > td,
+.panel > .table-responsive > .table-bordered > tbody > tr:first-child > td,
+.panel > .table-bordered > thead > tr:first-child > th,
+.panel > .table-responsive > .table-bordered > thead > tr:first-child > th,
+.panel > .table-bordered > tbody > tr:first-child > th,
+.panel > .table-responsive > .table-bordered > tbody > tr:first-child > th {
+  border-bottom: 0;
+}
+.panel > .table-bordered > tbody > tr:last-child > td,
+.panel > .table-responsive > .table-bordered > tbody > tr:last-child > td,
+.panel > .table-bordered > tfoot > tr:last-child > td,
+.panel > .table-responsive > .table-bordered > tfoot > tr:last-child > td,
+.panel > .table-bordered > tbody > tr:last-child > th,
+.panel > .table-responsive > .table-bordered > tbody > tr:last-child > th,
+.panel > .table-bordered > tfoot > tr:last-child > th,
+.panel > .table-responsive > .table-bordered > tfoot > tr:last-child > th {
+  border-bottom: 0;
+}
+.panel > .table-responsive {
+  border: 0;
+  margin-bottom: 0;
+}
+.panel-group {
+  margin-bottom: 18px;
+}
+.panel-group .panel {
+  margin-bottom: 0;
+  border-radius: 2px;
+}
+.panel-group .panel + .panel {
+  margin-top: 5px;
+}
+.panel-group .panel-heading {
+  border-bottom: 0;
+}
+.panel-group .panel-heading + .panel-collapse > .panel-body,
+.panel-group .panel-heading + .panel-collapse > .list-group {
+  border-top: 1px solid #ddd;
+}
+.panel-group .panel-footer {
+  border-top: 0;
+}
+.panel-group .panel-footer + .panel-collapse .panel-body {
+  border-bottom: 1px solid #ddd;
+}
+.panel-default {
+  border-color: #ddd;
+}
+.panel-default > .panel-heading {
+  color: #333333;
+  background-color: #f5f5f5;
+  border-color: #ddd;
+}
+.panel-default > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #ddd;
+}
+.panel-default > .panel-heading .badge {
+  color: #f5f5f5;
+  background-color: #333333;
+}
+.panel-default > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #ddd;
+}
+.panel-primary {
+  border-color: #337ab7;
+}
+.panel-primary > .panel-heading {
+  color: #fff;
+  background-color: #337ab7;
+  border-color: #337ab7;
+}
+.panel-primary > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #337ab7;
+}
+.panel-primary > .panel-heading .badge {
+  color: #337ab7;
+  background-color: #fff;
+}
+.panel-primary > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #337ab7;
+}
+.panel-success {
+  border-color: #d6e9c6;
+}
+.panel-success > .panel-heading {
+  color: #3c763d;
+  background-color: #dff0d8;
+  border-color: #d6e9c6;
+}
+.panel-success > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #d6e9c6;
+}
+.panel-success > .panel-heading .badge {
+  color: #dff0d8;
+  background-color: #3c763d;
+}
+.panel-success > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #d6e9c6;
+}
+.panel-info {
+  border-color: #bce8f1;
+}
+.panel-info > .panel-heading {
+  color: #31708f;
+  background-color: #d9edf7;
+  border-color: #bce8f1;
+}
+.panel-info > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #bce8f1;
+}
+.panel-info > .panel-heading .badge {
+  color: #d9edf7;
+  background-color: #31708f;
+}
+.panel-info > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #bce8f1;
+}
+.panel-warning {
+  border-color: #faebcc;
+}
+.panel-warning > .panel-heading {
+  color: #8a6d3b;
+  background-color: #fcf8e3;
+  border-color: #faebcc;
+}
+.panel-warning > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #faebcc;
+}
+.panel-warning > .panel-heading .badge {
+  color: #fcf8e3;
+  background-color: #8a6d3b;
+}
+.panel-warning > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #faebcc;
+}
+.panel-danger {
+  border-color: #ebccd1;
+}
+.panel-danger > .panel-heading {
+  color: #a94442;
+  background-color: #f2dede;
+  border-color: #ebccd1;
+}
+.panel-danger > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #ebccd1;
+}
+.panel-danger > .panel-heading .badge {
+  color: #f2dede;
+  background-color: #a94442;
+}
+.panel-danger > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #ebccd1;
+}
+.embed-responsive {
+  position: relative;
+  display: block;
+  height: 0;
+  padding: 0;
+  overflow: hidden;
+}
+.embed-responsive .embed-responsive-item,
+.embed-responsive iframe,
+.embed-responsive embed,
+.embed-responsive object,
+.embed-responsive video {
+  position: absolute;
+  top: 0;
+  left: 0;
+  bottom: 0;
+  height: 100%;
+  width: 100%;
+  border: 0;
+}
+.embed-responsive-16by9 {
+  padding-bottom: 56.25%;
+}
+.embed-responsive-4by3 {
+  padding-bottom: 75%;
+}
+.well {
+  min-height: 20px;
+  padding: 19px;
+  margin-bottom: 20px;
+  background-color: #f5f5f5;
+  border: 1px solid #e3e3e3;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05);
+}
+.well blockquote {
+  border-color: #ddd;
+  border-color: rgba(0, 0, 0, 0.15);
+}
+.well-lg {
+  padding: 24px;
+  border-radius: 3px;
+}
+.well-sm {
+  padding: 9px;
+  border-radius: 1px;
+}
+.close {
+  float: right;
+  font-size: 19.5px;
+  font-weight: bold;
+  line-height: 1;
+  color: #000;
+  text-shadow: 0 1px 0 #fff;
+  opacity: 0.2;
+  filter: alpha(opacity=20);
+}
+.close:hover,
+.close:focus {
+  color: #000;
+  text-decoration: none;
+  cursor: pointer;
+  opacity: 0.5;
+  filter: alpha(opacity=50);
+}
+button.close {
+  padding: 0;
+  cursor: pointer;
+  background: transparent;
+  border: 0;
+  -webkit-appearance: none;
+}
+.modal-open {
+  overflow: hidden;
+}
+.modal {
+  display: none;
+  overflow: hidden;
+  position: fixed;
+  top: 0;
+  right: 0;
+  bottom: 0;
+  left: 0;
+  z-index: 1050;
+  -webkit-overflow-scrolling: touch;
+  outline: 0;
+}
+.modal.fade .modal-dialog {
+  -webkit-transform: translate(0, -25%);
+  -ms-transform: translate(0, -25%);
+  -o-transform: translate(0, -25%);
+  transform: translate(0, -25%);
+  -webkit-transition: -webkit-transform 0.3s ease-out;
+  -moz-transition: -moz-transform 0.3s ease-out;
+  -o-transition: -o-transform 0.3s ease-out;
+  transition: transform 0.3s ease-out;
+}
+.modal.in .modal-dialog {
+  -webkit-transform: translate(0, 0);
+  -ms-transform: translate(0, 0);
+  -o-transform: translate(0, 0);
+  transform: translate(0, 0);
+}
+.modal-open .modal {
+  overflow-x: hidden;
+  overflow-y: auto;
+}
+.modal-dialog {
+  position: relative;
+  width: auto;
+  margin: 10px;
+}
+.modal-content {
+  position: relative;
+  background-color: #fff;
+  border: 1px solid #999;
+  border: 1px solid rgba(0, 0, 0, 0.2);
+  border-radius: 3px;
+  -webkit-box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5);
+  box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5);
+  background-clip: padding-box;
+  outline: 0;
+}
+.modal-backdrop {
+  position: fixed;
+  top: 0;
+  right: 0;
+  bottom: 0;
+  left: 0;
+  z-index: 1040;
+  background-color: #000;
+}
+.modal-backdrop.fade {
+  opacity: 0;
+  filter: alpha(opacity=0);
+}
+.modal-backdrop.in {
+  opacity: 0.5;
+  filter: alpha(opacity=50);
+}
+.modal-header {
+  padding: 15px;
+  border-bottom: 1px solid #e5e5e5;
+}
+.modal-header .close {
+  margin-top: -2px;
+}
+.modal-title {
+  margin: 0;
+  line-height: 1.42857143;
+}
+.modal-body {
+  position: relative;
+  padding: 15px;
+}
+.modal-footer {
+  padding: 15px;
+  text-align: right;
+  border-top: 1px solid #e5e5e5;
+}
+.modal-footer .btn + .btn {
+  margin-left: 5px;
+  margin-bottom: 0;
+}
+.modal-footer .btn-group .btn + .btn {
+  margin-left: -1px;
+}
+.modal-footer .btn-block + .btn-block {
+  margin-left: 0;
+}
+.modal-scrollbar-measure {
+  position: absolute;
+  top: -9999px;
+  width: 50px;
+  height: 50px;
+  overflow: scroll;
+}
+@media (min-width: 768px) {
+  .modal-dialog {
+    width: 600px;
+    margin: 30px auto;
+  }
+  .modal-content {
+    -webkit-box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5);
+    box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5);
+  }
+  .modal-sm {
+    width: 300px;
+  }
+}
+@media (min-width: 992px) {
+  .modal-lg {
+    width: 900px;
+  }
+}
+.tooltip {
+  position: absolute;
+  z-index: 1070;
+  display: block;
+  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+  font-style: normal;
+  font-weight: normal;
+  letter-spacing: normal;
+  line-break: auto;
+  line-height: 1.42857143;
+  text-align: left;
+  text-align: start;
+  text-decoration: none;
+  text-shadow: none;
+  text-transform: none;
+  white-space: normal;
+  word-break: normal;
+  word-spacing: normal;
+  word-wrap: normal;
+  font-size: 12px;
+  opacity: 0;
+  filter: alpha(opacity=0);
+}
+.tooltip.in {
+  opacity: 0.9;
+  filter: alpha(opacity=90);
+}
+.tooltip.top {
+  margin-top: -3px;
+  padding: 5px 0;
+}
+.tooltip.right {
+  margin-left: 3px;
+  padding: 0 5px;
+}
+.tooltip.bottom {
+  margin-top: 3px;
+  padding: 5px 0;
+}
+.tooltip.left {
+  margin-left: -3px;
+  padding: 0 5px;
+}
+.tooltip-inner {
+  max-width: 200px;
+  padding: 3px 8px;
+  color: #fff;
+  text-align: center;
+  background-color: #000;
+  border-radius: 2px;
+}
+.tooltip-arrow {
+  position: absolute;
+  width: 0;
+  height: 0;
+  border-color: transparent;
+  border-style: solid;
+}
+.tooltip.top .tooltip-arrow {
+  bottom: 0;
+  left: 50%;
+  margin-left: -5px;
+  border-width: 5px 5px 0;
+  border-top-color: #000;
+}
+.tooltip.top-left .tooltip-arrow {
+  bottom: 0;
+  right: 5px;
+  margin-bottom: -5px;
+  border-width: 5px 5px 0;
+  border-top-color: #000;
+}
+.tooltip.top-right .tooltip-arrow {
+  bottom: 0;
+  left: 5px;
+  margin-bottom: -5px;
+  border-width: 5px 5px 0;
+  border-top-color: #000;
+}
+.tooltip.right .tooltip-arrow {
+  top: 50%;
+  left: 0;
+  margin-top: -5px;
+  border-width: 5px 5px 5px 0;
+  border-right-color: #000;
+}
+.tooltip.left .tooltip-arrow {
+  top: 50%;
+  right: 0;
+  margin-top: -5px;
+  border-width: 5px 0 5px 5px;
+  border-left-color: #000;
+}
+.tooltip.bottom .tooltip-arrow {
+  top: 0;
+  left: 50%;
+  margin-left: -5px;
+  border-width: 0 5px 5px;
+  border-bottom-color: #000;
+}
+.tooltip.bottom-left .tooltip-arrow {
+  top: 0;
+  right: 5px;
+  margin-top: -5px;
+  border-width: 0 5px 5px;
+  border-bottom-color: #000;
+}
+.tooltip.bottom-right .tooltip-arrow {
+  top: 0;
+  left: 5px;
+  margin-top: -5px;
+  border-width: 0 5px 5px;
+  border-bottom-color: #000;
+}
+.popover {
+  position: absolute;
+  top: 0;
+  left: 0;
+  z-index: 1060;
+  display: none;
+  max-width: 276px;
+  padding: 1px;
+  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+  font-style: normal;
+  font-weight: normal;
+  letter-spacing: normal;
+  line-break: auto;
+  line-height: 1.42857143;
+  text-align: left;
+  text-align: start;
+  text-decoration: none;
+  text-shadow: none;
+  text-transform: none;
+  white-space: normal;
+  word-break: normal;
+  word-spacing: normal;
+  word-wrap: normal;
+  font-size: 13px;
+  background-color: #fff;
+  background-clip: padding-box;
+  border: 1px solid #ccc;
+  border: 1px solid rgba(0, 0, 0, 0.2);
+  border-radius: 3px;
+  -webkit-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
+  box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
+}
+.popover.top {
+  margin-top: -10px;
+}
+.popover.right {
+  margin-left: 10px;
+}
+.popover.bottom {
+  margin-top: 10px;
+}
+.popover.left {
+  margin-left: -10px;
+}
+.popover-title {
+  margin: 0;
+  padding: 8px 14px;
+  font-size: 13px;
+  background-color: #f7f7f7;
+  border-bottom: 1px solid #ebebeb;
+  border-radius: 2px 2px 0 0;
+}
+.popover-content {
+  padding: 9px 14px;
+}
+.popover > .arrow,
+.popover > .arrow:after {
+  position: absolute;
+  display: block;
+  width: 0;
+  height: 0;
+  border-color: transparent;
+  border-style: solid;
+}
+.popover > .arrow {
+  border-width: 11px;
+}
+.popover > .arrow:after {
+  border-width: 10px;
+  content: "";
+}
+.popover.top > .arrow {
+  left: 50%;
+  margin-left: -11px;
+  border-bottom-width: 0;
+  border-top-color: #999999;
+  border-top-color: rgba(0, 0, 0, 0.25);
+  bottom: -11px;
+}
+.popover.top > .arrow:after {
+  content: " ";
+  bottom: 1px;
+  margin-left: -10px;
+  border-bottom-width: 0;
+  border-top-color: #fff;
+}
+.popover.right > .arrow {
+  top: 50%;
+  left: -11px;
+  margin-top: -11px;
+  border-left-width: 0;
+  border-right-color: #999999;
+  border-right-color: rgba(0, 0, 0, 0.25);
+}
+.popover.right > .arrow:after {
+  content: " ";
+  left: 1px;
+  bottom: -10px;
+  border-left-width: 0;
+  border-right-color: #fff;
+}
+.popover.bottom > .arrow {
+  left: 50%;
+  margin-left: -11px;
+  border-top-width: 0;
+  border-bottom-color: #999999;
+  border-bottom-color: rgba(0, 0, 0, 0.25);
+  top: -11px;
+}
+.popover.bottom > .arrow:after {
+  content: " ";
+  top: 1px;
+  margin-left: -10px;
+  border-top-width: 0;
+  border-bottom-color: #fff;
+}
+.popover.left > .arrow {
+  top: 50%;
+  right: -11px;
+  margin-top: -11px;
+  border-right-width: 0;
+  border-left-color: #999999;
+  border-left-color: rgba(0, 0, 0, 0.25);
+}
+.popover.left > .arrow:after {
+  content: " ";
+  right: 1px;
+  border-right-width: 0;
+  border-left-color: #fff;
+  bottom: -10px;
+}
+.carousel {
+  position: relative;
+}
+.carousel-inner {
+  position: relative;
+  overflow: hidden;
+  width: 100%;
+}
+.carousel-inner > .item {
+  display: none;
+  position: relative;
+  -webkit-transition: 0.6s ease-in-out left;
+  -o-transition: 0.6s ease-in-out left;
+  transition: 0.6s ease-in-out left;
+}
+.carousel-inner > .item > img,
+.carousel-inner > .item > a > img {
+  line-height: 1;
+}
+@media all and (transform-3d), (-webkit-transform-3d) {
+  .carousel-inner > .item {
+    -webkit-transition: -webkit-transform 0.6s ease-in-out;
+    -moz-transition: -moz-transform 0.6s ease-in-out;
+    -o-transition: -o-transform 0.6s ease-in-out;
+    transition: transform 0.6s ease-in-out;
+    -webkit-backface-visibility: hidden;
+    -moz-backface-visibility: hidden;
+    backface-visibility: hidden;
+    -webkit-perspective: 1000px;
+    -moz-perspective: 1000px;
+    perspective: 1000px;
+  }
+  .carousel-inner > .item.next,
+  .carousel-inner > .item.active.right {
+    -webkit-transform: translate3d(100%, 0, 0);
+    transform: translate3d(100%, 0, 0);
+    left: 0;
+  }
+  .carousel-inner > .item.prev,
+  .carousel-inner > .item.active.left {
+    -webkit-transform: translate3d(-100%, 0, 0);
+    transform: translate3d(-100%, 0, 0);
+    left: 0;
+  }
+  .carousel-inner > .item.next.left,
+  .carousel-inner > .item.prev.right,
+  .carousel-inner > .item.active {
+    -webkit-transform: translate3d(0, 0, 0);
+    transform: translate3d(0, 0, 0);
+    left: 0;
+  }
+}
+.carousel-inner > .active,
+.carousel-inner > .next,
+.carousel-inner > .prev {
+  display: block;
+}
+.carousel-inner > .active {
+  left: 0;
+}
+.carousel-inner > .next,
+.carousel-inner > .prev {
+  position: absolute;
+  top: 0;
+  width: 100%;
+}
+.carousel-inner > .next {
+  left: 100%;
+}
+.carousel-inner > .prev {
+  left: -100%;
+}
+.carousel-inner > .next.left,
+.carousel-inner > .prev.right {
+  left: 0;
+}
+.carousel-inner > .active.left {
+  left: -100%;
+}
+.carousel-inner > .active.right {
+  left: 100%;
+}
+.carousel-control {
+  position: absolute;
+  top: 0;
+  left: 0;
+  bottom: 0;
+  width: 15%;
+  opacity: 0.5;
+  filter: alpha(opacity=50);
+  font-size: 20px;
+  color: #fff;
+  text-align: center;
+  text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6);
+  background-color: rgba(0, 0, 0, 0);
+}
+.carousel-control.left {
+  background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
+  background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
+  background-image: linear-gradient(to right, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
+  background-repeat: repeat-x;
+  filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#80000000', endColorstr='#00000000', GradientType=1);
+}
+.carousel-control.right {
+  left: auto;
+  right: 0;
+  background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
+  background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
+  background-image: linear-gradient(to right, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
+  background-repeat: repeat-x;
+  filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#00000000', endColorstr='#80000000', GradientType=1);
+}
+.carousel-control:hover,
+.carousel-control:focus {
+  outline: 0;
+  color: #fff;
+  text-decoration: none;
+  opacity: 0.9;
+  filter: alpha(opacity=90);
+}
+.carousel-control .icon-prev,
+.carousel-control .icon-next,
+.carousel-control .glyphicon-chevron-left,
+.carousel-control .glyphicon-chevron-right {
+  position: absolute;
+  top: 50%;
+  margin-top: -10px;
+  z-index: 5;
+  display: inline-block;
+}
+.carousel-control .icon-prev,
+.carousel-control .glyphicon-chevron-left {
+  left: 50%;
+  margin-left: -10px;
+}
+.carousel-control .icon-next,
+.carousel-control .glyphicon-chevron-right {
+  right: 50%;
+  margin-right: -10px;
+}
+.carousel-control .icon-prev,
+.carousel-control .icon-next {
+  width: 20px;
+  height: 20px;
+  line-height: 1;
+  font-family: serif;
+}
+.carousel-control .icon-prev:before {
+  content: '\2039';
+}
+.carousel-control .icon-next:before {
+  content: '\203a';
+}
+.carousel-indicators {
+  position: absolute;
+  bottom: 10px;
+  left: 50%;
+  z-index: 15;
+  width: 60%;
+  margin-left: -30%;
+  padding-left: 0;
+  list-style: none;
+  text-align: center;
+}
+.carousel-indicators li {
+  display: inline-block;
+  width: 10px;
+  height: 10px;
+  margin: 1px;
+  text-indent: -999px;
+  border: 1px solid #fff;
+  border-radius: 10px;
+  cursor: pointer;
+  background-color: #000 \9;
+  background-color: rgba(0, 0, 0, 0);
+}
+.carousel-indicators .active {
+  margin: 0;
+  width: 12px;
+  height: 12px;
+  background-color: #fff;
+}
+.carousel-caption {
+  position: absolute;
+  left: 15%;
+  right: 15%;
+  bottom: 20px;
+  z-index: 10;
+  padding-top: 20px;
+  padding-bottom: 20px;
+  color: #fff;
+  text-align: center;
+  text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6);
+}
+.carousel-caption .btn {
+  text-shadow: none;
+}
+@media screen and (min-width: 768px) {
+  .carousel-control .glyphicon-chevron-left,
+  .carousel-control .glyphicon-chevron-right,
+  .carousel-control .icon-prev,
+  .carousel-control .icon-next {
+    width: 30px;
+    height: 30px;
+    margin-top: -10px;
+    font-size: 30px;
+  }
+  .carousel-control .glyphicon-chevron-left,
+  .carousel-control .icon-prev {
+    margin-left: -10px;
+  }
+  .carousel-control .glyphicon-chevron-right,
+  .carousel-control .icon-next {
+    margin-right: -10px;
+  }
+  .carousel-caption {
+    left: 20%;
+    right: 20%;
+    padding-bottom: 30px;
+  }
+  .carousel-indicators {
+    bottom: 20px;
+  }
+}
+.clearfix:before,
+.clearfix:after,
+.dl-horizontal dd:before,
+.dl-horizontal dd:after,
+.container:before,
+.container:after,
+.container-fluid:before,
+.container-fluid:after,
+.row:before,
+.row:after,
+.form-horizontal .form-group:before,
+.form-horizontal .form-group:after,
+.btn-toolbar:before,
+.btn-toolbar:after,
+.btn-group-vertical > .btn-group:before,
+.btn-group-vertical > .btn-group:after,
+.nav:before,
+.nav:after,
+.navbar:before,
+.navbar:after,
+.navbar-header:before,
+.navbar-header:after,
+.navbar-collapse:before,
+.navbar-collapse:after,
+.pager:before,
+.pager:after,
+.panel-body:before,
+.panel-body:after,
+.modal-header:before,
+.modal-header:after,
+.modal-footer:before,
+.modal-footer:after,
+.item_buttons:before,
+.item_buttons:after {
+  content: " ";
+  display: table;
+}
+.clearfix:after,
+.dl-horizontal dd:after,
+.container:after,
+.container-fluid:after,
+.row:after,
+.form-horizontal .form-group:after,
+.btn-toolbar:after,
+.btn-group-vertical > .btn-group:after,
+.nav:after,
+.navbar:after,
+.navbar-header:after,
+.navbar-collapse:after,
+.pager:after,
+.panel-body:after,
+.modal-header:after,
+.modal-footer:after,
+.item_buttons:after {
+  clear: both;
+}
+.center-block {
+  display: block;
+  margin-left: auto;
+  margin-right: auto;
+}
+.pull-right {
+  float: right !important;
+}
+.pull-left {
+  float: left !important;
+}
+.hide {
+  display: none !important;
+}
+.show {
+  display: block !important;
+}
+.invisible {
+  visibility: hidden;
+}
+.text-hide {
+  font: 0/0 a;
+  color: transparent;
+  text-shadow: none;
+  background-color: transparent;
+  border: 0;
+}
+.hidden {
+  display: none !important;
+}
+.affix {
+  position: fixed;
+}
+@-ms-viewport {
+  width: device-width;
+}
+.visible-xs,
+.visible-sm,
+.visible-md,
+.visible-lg {
+  display: none !important;
+}
+.visible-xs-block,
+.visible-xs-inline,
+.visible-xs-inline-block,
+.visible-sm-block,
+.visible-sm-inline,
+.visible-sm-inline-block,
+.visible-md-block,
+.visible-md-inline,
+.visible-md-inline-block,
+.visible-lg-block,
+.visible-lg-inline,
+.visible-lg-inline-block {
+  display: none !important;
+}
+@media (max-width: 767px) {
+  .visible-xs {
+    display: block !important;
+  }
+  table.visible-xs {
+    display: table !important;
+  }
+  tr.visible-xs {
+    display: table-row !important;
+  }
+  th.visible-xs,
+  td.visible-xs {
+    display: table-cell !important;
+  }
+}
+@media (max-width: 767px) {
+  .visible-xs-block {
+    display: block !important;
+  }
+}
+@media (max-width: 767px) {
+  .visible-xs-inline {
+    display: inline !important;
+  }
+}
+@media (max-width: 767px) {
+  .visible-xs-inline-block {
+    display: inline-block !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .visible-sm {
+    display: block !important;
+  }
+  table.visible-sm {
+    display: table !important;
+  }
+  tr.visible-sm {
+    display: table-row !important;
+  }
+  th.visible-sm,
+  td.visible-sm {
+    display: table-cell !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .visible-sm-block {
+    display: block !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .visible-sm-inline {
+    display: inline !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .visible-sm-inline-block {
+    display: inline-block !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .visible-md {
+    display: block !important;
+  }
+  table.visible-md {
+    display: table !important;
+  }
+  tr.visible-md {
+    display: table-row !important;
+  }
+  th.visible-md,
+  td.visible-md {
+    display: table-cell !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .visible-md-block {
+    display: block !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .visible-md-inline {
+    display: inline !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .visible-md-inline-block {
+    display: inline-block !important;
+  }
+}
+@media (min-width: 1200px) {
+  .visible-lg {
+    display: block !important;
+  }
+  table.visible-lg {
+    display: table !important;
+  }
+  tr.visible-lg {
+    display: table-row !important;
+  }
+  th.visible-lg,
+  td.visible-lg {
+    display: table-cell !important;
+  }
+}
+@media (min-width: 1200px) {
+  .visible-lg-block {
+    display: block !important;
+  }
+}
+@media (min-width: 1200px) {
+  .visible-lg-inline {
+    display: inline !important;
+  }
+}
+@media (min-width: 1200px) {
+  .visible-lg-inline-block {
+    display: inline-block !important;
+  }
+}
+@media (max-width: 767px) {
+  .hidden-xs {
+    display: none !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .hidden-sm {
+    display: none !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .hidden-md {
+    display: none !important;
+  }
+}
+@media (min-width: 1200px) {
+  .hidden-lg {
+    display: none !important;
+  }
+}
+.visible-print {
+  display: none !important;
+}
+@media print {
+  .visible-print {
+    display: block !important;
+  }
+  table.visible-print {
+    display: table !important;
+  }
+  tr.visible-print {
+    display: table-row !important;
+  }
+  th.visible-print,
+  td.visible-print {
+    display: table-cell !important;
+  }
+}
+.visible-print-block {
+  display: none !important;
+}
+@media print {
+  .visible-print-block {
+    display: block !important;
+  }
+}
+.visible-print-inline {
+  display: none !important;
+}
+@media print {
+  .visible-print-inline {
+    display: inline !important;
+  }
+}
+.visible-print-inline-block {
+  display: none !important;
+}
+@media print {
+  .visible-print-inline-block {
+    display: inline-block !important;
+  }
+}
+@media print {
+  .hidden-print {
+    display: none !important;
+  }
+}
+/*!
+*
+* Font Awesome
+*
+*/
+/*!
+ *  Font Awesome 4.2.0 by @davegandy - http://fontawesome.io - @fontawesome
+ *  License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
+ */
+/* FONT PATH
+ * -------------------------- */
+@font-face {
+  font-family: 'FontAwesome';
+  src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?v=4.2.0');
+  src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?#iefix&v=4.2.0') format('embedded-opentype'), url('../components/font-awesome/fonts/fontawesome-webfont.woff?v=4.2.0') format('woff'), url('../components/font-awesome/fonts/fontawesome-webfont.ttf?v=4.2.0') format('truetype'), url('../components/font-awesome/fonts/fontawesome-webfont.svg?v=4.2.0#fontawesomeregular') format('svg');
+  font-weight: normal;
+  font-style: normal;
+}
+.fa {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+}
+/* makes the font 33% larger relative to the icon container */
+.fa-lg {
+  font-size: 1.33333333em;
+  line-height: 0.75em;
+  vertical-align: -15%;
+}
+.fa-2x {
+  font-size: 2em;
+}
+.fa-3x {
+  font-size: 3em;
+}
+.fa-4x {
+  font-size: 4em;
+}
+.fa-5x {
+  font-size: 5em;
+}
+.fa-fw {
+  width: 1.28571429em;
+  text-align: center;
+}
+.fa-ul {
+  padding-left: 0;
+  margin-left: 2.14285714em;
+  list-style-type: none;
+}
+.fa-ul > li {
+  position: relative;
+}
+.fa-li {
+  position: absolute;
+  left: -2.14285714em;
+  width: 2.14285714em;
+  top: 0.14285714em;
+  text-align: center;
+}
+.fa-li.fa-lg {
+  left: -1.85714286em;
+}
+.fa-border {
+  padding: .2em .25em .15em;
+  border: solid 0.08em #eee;
+  border-radius: .1em;
+}
+.pull-right {
+  float: right;
+}
+.pull-left {
+  float: left;
+}
+.fa.pull-left {
+  margin-right: .3em;
+}
+.fa.pull-right {
+  margin-left: .3em;
+}
+.fa-spin {
+  -webkit-animation: fa-spin 2s infinite linear;
+  animation: fa-spin 2s infinite linear;
+}
+@-webkit-keyframes fa-spin {
+  0% {
+    -webkit-transform: rotate(0deg);
+    transform: rotate(0deg);
+  }
+  100% {
+    -webkit-transform: rotate(359deg);
+    transform: rotate(359deg);
+  }
+}
+@keyframes fa-spin {
+  0% {
+    -webkit-transform: rotate(0deg);
+    transform: rotate(0deg);
+  }
+  100% {
+    -webkit-transform: rotate(359deg);
+    transform: rotate(359deg);
+  }
+}
+.fa-rotate-90 {
+  filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=1);
+  -webkit-transform: rotate(90deg);
+  -ms-transform: rotate(90deg);
+  transform: rotate(90deg);
+}
+.fa-rotate-180 {
+  filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=2);
+  -webkit-transform: rotate(180deg);
+  -ms-transform: rotate(180deg);
+  transform: rotate(180deg);
+}
+.fa-rotate-270 {
+  filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=3);
+  -webkit-transform: rotate(270deg);
+  -ms-transform: rotate(270deg);
+  transform: rotate(270deg);
+}
+.fa-flip-horizontal {
+  filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1);
+  -webkit-transform: scale(-1, 1);
+  -ms-transform: scale(-1, 1);
+  transform: scale(-1, 1);
+}
+.fa-flip-vertical {
+  filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1);
+  -webkit-transform: scale(1, -1);
+  -ms-transform: scale(1, -1);
+  transform: scale(1, -1);
+}
+:root .fa-rotate-90,
+:root .fa-rotate-180,
+:root .fa-rotate-270,
+:root .fa-flip-horizontal,
+:root .fa-flip-vertical {
+  filter: none;
+}
+.fa-stack {
+  position: relative;
+  display: inline-block;
+  width: 2em;
+  height: 2em;
+  line-height: 2em;
+  vertical-align: middle;
+}
+.fa-stack-1x,
+.fa-stack-2x {
+  position: absolute;
+  left: 0;
+  width: 100%;
+  text-align: center;
+}
+.fa-stack-1x {
+  line-height: inherit;
+}
+.fa-stack-2x {
+  font-size: 2em;
+}
+.fa-inverse {
+  color: #fff;
+}
+/* Font Awesome uses the Unicode Private Use Area (PUA) to ensure screen
+   readers do not read off random characters that represent icons */
+.fa-glass:before {
+  content: "\f000";
+}
+.fa-music:before {
+  content: "\f001";
+}
+.fa-search:before {
+  content: "\f002";
+}
+.fa-envelope-o:before {
+  content: "\f003";
+}
+.fa-heart:before {
+  content: "\f004";
+}
+.fa-star:before {
+  content: "\f005";
+}
+.fa-star-o:before {
+  content: "\f006";
+}
+.fa-user:before {
+  content: "\f007";
+}
+.fa-film:before {
+  content: "\f008";
+}
+.fa-th-large:before {
+  content: "\f009";
+}
+.fa-th:before {
+  content: "\f00a";
+}
+.fa-th-list:before {
+  content: "\f00b";
+}
+.fa-check:before {
+  content: "\f00c";
+}
+.fa-remove:before,
+.fa-close:before,
+.fa-times:before {
+  content: "\f00d";
+}
+.fa-search-plus:before {
+  content: "\f00e";
+}
+.fa-search-minus:before {
+  content: "\f010";
+}
+.fa-power-off:before {
+  content: "\f011";
+}
+.fa-signal:before {
+  content: "\f012";
+}
+.fa-gear:before,
+.fa-cog:before {
+  content: "\f013";
+}
+.fa-trash-o:before {
+  content: "\f014";
+}
+.fa-home:before {
+  content: "\f015";
+}
+.fa-file-o:before {
+  content: "\f016";
+}
+.fa-clock-o:before {
+  content: "\f017";
+}
+.fa-road:before {
+  content: "\f018";
+}
+.fa-download:before {
+  content: "\f019";
+}
+.fa-arrow-circle-o-down:before {
+  content: "\f01a";
+}
+.fa-arrow-circle-o-up:before {
+  content: "\f01b";
+}
+.fa-inbox:before {
+  content: "\f01c";
+}
+.fa-play-circle-o:before {
+  content: "\f01d";
+}
+.fa-rotate-right:before,
+.fa-repeat:before {
+  content: "\f01e";
+}
+.fa-refresh:before {
+  content: "\f021";
+}
+.fa-list-alt:before {
+  content: "\f022";
+}
+.fa-lock:before {
+  content: "\f023";
+}
+.fa-flag:before {
+  content: "\f024";
+}
+.fa-headphones:before {
+  content: "\f025";
+}
+.fa-volume-off:before {
+  content: "\f026";
+}
+.fa-volume-down:before {
+  content: "\f027";
+}
+.fa-volume-up:before {
+  content: "\f028";
+}
+.fa-qrcode:before {
+  content: "\f029";
+}
+.fa-barcode:before {
+  content: "\f02a";
+}
+.fa-tag:before {
+  content: "\f02b";
+}
+.fa-tags:before {
+  content: "\f02c";
+}
+.fa-book:before {
+  content: "\f02d";
+}
+.fa-bookmark:before {
+  content: "\f02e";
+}
+.fa-print:before {
+  content: "\f02f";
+}
+.fa-camera:before {
+  content: "\f030";
+}
+.fa-font:before {
+  content: "\f031";
+}
+.fa-bold:before {
+  content: "\f032";
+}
+.fa-italic:before {
+  content: "\f033";
+}
+.fa-text-height:before {
+  content: "\f034";
+}
+.fa-text-width:before {
+  content: "\f035";
+}
+.fa-align-left:before {
+  content: "\f036";
+}
+.fa-align-center:before {
+  content: "\f037";
+}
+.fa-align-right:before {
+  content: "\f038";
+}
+.fa-align-justify:before {
+  content: "\f039";
+}
+.fa-list:before {
+  content: "\f03a";
+}
+.fa-dedent:before,
+.fa-outdent:before {
+  content: "\f03b";
+}
+.fa-indent:before {
+  content: "\f03c";
+}
+.fa-video-camera:before {
+  content: "\f03d";
+}
+.fa-photo:before,
+.fa-image:before,
+.fa-picture-o:before {
+  content: "\f03e";
+}
+.fa-pencil:before {
+  content: "\f040";
+}
+.fa-map-marker:before {
+  content: "\f041";
+}
+.fa-adjust:before {
+  content: "\f042";
+}
+.fa-tint:before {
+  content: "\f043";
+}
+.fa-edit:before,
+.fa-pencil-square-o:before {
+  content: "\f044";
+}
+.fa-share-square-o:before {
+  content: "\f045";
+}
+.fa-check-square-o:before {
+  content: "\f046";
+}
+.fa-arrows:before {
+  content: "\f047";
+}
+.fa-step-backward:before {
+  content: "\f048";
+}
+.fa-fast-backward:before {
+  content: "\f049";
+}
+.fa-backward:before {
+  content: "\f04a";
+}
+.fa-play:before {
+  content: "\f04b";
+}
+.fa-pause:before {
+  content: "\f04c";
+}
+.fa-stop:before {
+  content: "\f04d";
+}
+.fa-forward:before {
+  content: "\f04e";
+}
+.fa-fast-forward:before {
+  content: "\f050";
+}
+.fa-step-forward:before {
+  content: "\f051";
+}
+.fa-eject:before {
+  content: "\f052";
+}
+.fa-chevron-left:before {
+  content: "\f053";
+}
+.fa-chevron-right:before {
+  content: "\f054";
+}
+.fa-plus-circle:before {
+  content: "\f055";
+}
+.fa-minus-circle:before {
+  content: "\f056";
+}
+.fa-times-circle:before {
+  content: "\f057";
+}
+.fa-check-circle:before {
+  content: "\f058";
+}
+.fa-question-circle:before {
+  content: "\f059";
+}
+.fa-info-circle:before {
+  content: "\f05a";
+}
+.fa-crosshairs:before {
+  content: "\f05b";
+}
+.fa-times-circle-o:before {
+  content: "\f05c";
+}
+.fa-check-circle-o:before {
+  content: "\f05d";
+}
+.fa-ban:before {
+  content: "\f05e";
+}
+.fa-arrow-left:before {
+  content: "\f060";
+}
+.fa-arrow-right:before {
+  content: "\f061";
+}
+.fa-arrow-up:before {
+  content: "\f062";
+}
+.fa-arrow-down:before {
+  content: "\f063";
+}
+.fa-mail-forward:before,
+.fa-share:before {
+  content: "\f064";
+}
+.fa-expand:before {
+  content: "\f065";
+}
+.fa-compress:before {
+  content: "\f066";
+}
+.fa-plus:before {
+  content: "\f067";
+}
+.fa-minus:before {
+  content: "\f068";
+}
+.fa-asterisk:before {
+  content: "\f069";
+}
+.fa-exclamation-circle:before {
+  content: "\f06a";
+}
+.fa-gift:before {
+  content: "\f06b";
+}
+.fa-leaf:before {
+  content: "\f06c";
+}
+.fa-fire:before {
+  content: "\f06d";
+}
+.fa-eye:before {
+  content: "\f06e";
+}
+.fa-eye-slash:before {
+  content: "\f070";
+}
+.fa-warning:before,
+.fa-exclamation-triangle:before {
+  content: "\f071";
+}
+.fa-plane:before {
+  content: "\f072";
+}
+.fa-calendar:before {
+  content: "\f073";
+}
+.fa-random:before {
+  content: "\f074";
+}
+.fa-comment:before {
+  content: "\f075";
+}
+.fa-magnet:before {
+  content: "\f076";
+}
+.fa-chevron-up:before {
+  content: "\f077";
+}
+.fa-chevron-down:before {
+  content: "\f078";
+}
+.fa-retweet:before {
+  content: "\f079";
+}
+.fa-shopping-cart:before {
+  content: "\f07a";
+}
+.fa-folder:before {
+  content: "\f07b";
+}
+.fa-folder-open:before {
+  content: "\f07c";
+}
+.fa-arrows-v:before {
+  content: "\f07d";
+}
+.fa-arrows-h:before {
+  content: "\f07e";
+}
+.fa-bar-chart-o:before,
+.fa-bar-chart:before {
+  content: "\f080";
+}
+.fa-twitter-square:before {
+  content: "\f081";
+}
+.fa-facebook-square:before {
+  content: "\f082";
+}
+.fa-camera-retro:before {
+  content: "\f083";
+}
+.fa-key:before {
+  content: "\f084";
+}
+.fa-gears:before,
+.fa-cogs:before {
+  content: "\f085";
+}
+.fa-comments:before {
+  content: "\f086";
+}
+.fa-thumbs-o-up:before {
+  content: "\f087";
+}
+.fa-thumbs-o-down:before {
+  content: "\f088";
+}
+.fa-star-half:before {
+  content: "\f089";
+}
+.fa-heart-o:before {
+  content: "\f08a";
+}
+.fa-sign-out:before {
+  content: "\f08b";
+}
+.fa-linkedin-square:before {
+  content: "\f08c";
+}
+.fa-thumb-tack:before {
+  content: "\f08d";
+}
+.fa-external-link:before {
+  content: "\f08e";
+}
+.fa-sign-in:before {
+  content: "\f090";
+}
+.fa-trophy:before {
+  content: "\f091";
+}
+.fa-github-square:before {
+  content: "\f092";
+}
+.fa-upload:before {
+  content: "\f093";
+}
+.fa-lemon-o:before {
+  content: "\f094";
+}
+.fa-phone:before {
+  content: "\f095";
+}
+.fa-square-o:before {
+  content: "\f096";
+}
+.fa-bookmark-o:before {
+  content: "\f097";
+}
+.fa-phone-square:before {
+  content: "\f098";
+}
+.fa-twitter:before {
+  content: "\f099";
+}
+.fa-facebook:before {
+  content: "\f09a";
+}
+.fa-github:before {
+  content: "\f09b";
+}
+.fa-unlock:before {
+  content: "\f09c";
+}
+.fa-credit-card:before {
+  content: "\f09d";
+}
+.fa-rss:before {
+  content: "\f09e";
+}
+.fa-hdd-o:before {
+  content: "\f0a0";
+}
+.fa-bullhorn:before {
+  content: "\f0a1";
+}
+.fa-bell:before {
+  content: "\f0f3";
+}
+.fa-certificate:before {
+  content: "\f0a3";
+}
+.fa-hand-o-right:before {
+  content: "\f0a4";
+}
+.fa-hand-o-left:before {
+  content: "\f0a5";
+}
+.fa-hand-o-up:before {
+  content: "\f0a6";
+}
+.fa-hand-o-down:before {
+  content: "\f0a7";
+}
+.fa-arrow-circle-left:before {
+  content: "\f0a8";
+}
+.fa-arrow-circle-right:before {
+  content: "\f0a9";
+}
+.fa-arrow-circle-up:before {
+  content: "\f0aa";
+}
+.fa-arrow-circle-down:before {
+  content: "\f0ab";
+}
+.fa-globe:before {
+  content: "\f0ac";
+}
+.fa-wrench:before {
+  content: "\f0ad";
+}
+.fa-tasks:before {
+  content: "\f0ae";
+}
+.fa-filter:before {
+  content: "\f0b0";
+}
+.fa-briefcase:before {
+  content: "\f0b1";
+}
+.fa-arrows-alt:before {
+  content: "\f0b2";
+}
+.fa-group:before,
+.fa-users:before {
+  content: "\f0c0";
+}
+.fa-chain:before,
+.fa-link:before {
+  content: "\f0c1";
+}
+.fa-cloud:before {
+  content: "\f0c2";
+}
+.fa-flask:before {
+  content: "\f0c3";
+}
+.fa-cut:before,
+.fa-scissors:before {
+  content: "\f0c4";
+}
+.fa-copy:before,
+.fa-files-o:before {
+  content: "\f0c5";
+}
+.fa-paperclip:before {
+  content: "\f0c6";
+}
+.fa-save:before,
+.fa-floppy-o:before {
+  content: "\f0c7";
+}
+.fa-square:before {
+  content: "\f0c8";
+}
+.fa-navicon:before,
+.fa-reorder:before,
+.fa-bars:before {
+  content: "\f0c9";
+}
+.fa-list-ul:before {
+  content: "\f0ca";
+}
+.fa-list-ol:before {
+  content: "\f0cb";
+}
+.fa-strikethrough:before {
+  content: "\f0cc";
+}
+.fa-underline:before {
+  content: "\f0cd";
+}
+.fa-table:before {
+  content: "\f0ce";
+}
+.fa-magic:before {
+  content: "\f0d0";
+}
+.fa-truck:before {
+  content: "\f0d1";
+}
+.fa-pinterest:before {
+  content: "\f0d2";
+}
+.fa-pinterest-square:before {
+  content: "\f0d3";
+}
+.fa-google-plus-square:before {
+  content: "\f0d4";
+}
+.fa-google-plus:before {
+  content: "\f0d5";
+}
+.fa-money:before {
+  content: "\f0d6";
+}
+.fa-caret-down:before {
+  content: "\f0d7";
+}
+.fa-caret-up:before {
+  content: "\f0d8";
+}
+.fa-caret-left:before {
+  content: "\f0d9";
+}
+.fa-caret-right:before {
+  content: "\f0da";
+}
+.fa-columns:before {
+  content: "\f0db";
+}
+.fa-unsorted:before,
+.fa-sort:before {
+  content: "\f0dc";
+}
+.fa-sort-down:before,
+.fa-sort-desc:before {
+  content: "\f0dd";
+}
+.fa-sort-up:before,
+.fa-sort-asc:before {
+  content: "\f0de";
+}
+.fa-envelope:before {
+  content: "\f0e0";
+}
+.fa-linkedin:before {
+  content: "\f0e1";
+}
+.fa-rotate-left:before,
+.fa-undo:before {
+  content: "\f0e2";
+}
+.fa-legal:before,
+.fa-gavel:before {
+  content: "\f0e3";
+}
+.fa-dashboard:before,
+.fa-tachometer:before {
+  content: "\f0e4";
+}
+.fa-comment-o:before {
+  content: "\f0e5";
+}
+.fa-comments-o:before {
+  content: "\f0e6";
+}
+.fa-flash:before,
+.fa-bolt:before {
+  content: "\f0e7";
+}
+.fa-sitemap:before {
+  content: "\f0e8";
+}
+.fa-umbrella:before {
+  content: "\f0e9";
+}
+.fa-paste:before,
+.fa-clipboard:before {
+  content: "\f0ea";
+}
+.fa-lightbulb-o:before {
+  content: "\f0eb";
+}
+.fa-exchange:before {
+  content: "\f0ec";
+}
+.fa-cloud-download:before {
+  content: "\f0ed";
+}
+.fa-cloud-upload:before {
+  content: "\f0ee";
+}
+.fa-user-md:before {
+  content: "\f0f0";
+}
+.fa-stethoscope:before {
+  content: "\f0f1";
+}
+.fa-suitcase:before {
+  content: "\f0f2";
+}
+.fa-bell-o:before {
+  content: "\f0a2";
+}
+.fa-coffee:before {
+  content: "\f0f4";
+}
+.fa-cutlery:before {
+  content: "\f0f5";
+}
+.fa-file-text-o:before {
+  content: "\f0f6";
+}
+.fa-building-o:before {
+  content: "\f0f7";
+}
+.fa-hospital-o:before {
+  content: "\f0f8";
+}
+.fa-ambulance:before {
+  content: "\f0f9";
+}
+.fa-medkit:before {
+  content: "\f0fa";
+}
+.fa-fighter-jet:before {
+  content: "\f0fb";
+}
+.fa-beer:before {
+  content: "\f0fc";
+}
+.fa-h-square:before {
+  content: "\f0fd";
+}
+.fa-plus-square:before {
+  content: "\f0fe";
+}
+.fa-angle-double-left:before {
+  content: "\f100";
+}
+.fa-angle-double-right:before {
+  content: "\f101";
+}
+.fa-angle-double-up:before {
+  content: "\f102";
+}
+.fa-angle-double-down:before {
+  content: "\f103";
+}
+.fa-angle-left:before {
+  content: "\f104";
+}
+.fa-angle-right:before {
+  content: "\f105";
+}
+.fa-angle-up:before {
+  content: "\f106";
+}
+.fa-angle-down:before {
+  content: "\f107";
+}
+.fa-desktop:before {
+  content: "\f108";
+}
+.fa-laptop:before {
+  content: "\f109";
+}
+.fa-tablet:before {
+  content: "\f10a";
+}
+.fa-mobile-phone:before,
+.fa-mobile:before {
+  content: "\f10b";
+}
+.fa-circle-o:before {
+  content: "\f10c";
+}
+.fa-quote-left:before {
+  content: "\f10d";
+}
+.fa-quote-right:before {
+  content: "\f10e";
+}
+.fa-spinner:before {
+  content: "\f110";
+}
+.fa-circle:before {
+  content: "\f111";
+}
+.fa-mail-reply:before,
+.fa-reply:before {
+  content: "\f112";
+}
+.fa-github-alt:before {
+  content: "\f113";
+}
+.fa-folder-o:before {
+  content: "\f114";
+}
+.fa-folder-open-o:before {
+  content: "\f115";
+}
+.fa-smile-o:before {
+  content: "\f118";
+}
+.fa-frown-o:before {
+  content: "\f119";
+}
+.fa-meh-o:before {
+  content: "\f11a";
+}
+.fa-gamepad:before {
+  content: "\f11b";
+}
+.fa-keyboard-o:before {
+  content: "\f11c";
+}
+.fa-flag-o:before {
+  content: "\f11d";
+}
+.fa-flag-checkered:before {
+  content: "\f11e";
+}
+.fa-terminal:before {
+  content: "\f120";
+}
+.fa-code:before {
+  content: "\f121";
+}
+.fa-mail-reply-all:before,
+.fa-reply-all:before {
+  content: "\f122";
+}
+.fa-star-half-empty:before,
+.fa-star-half-full:before,
+.fa-star-half-o:before {
+  content: "\f123";
+}
+.fa-location-arrow:before {
+  content: "\f124";
+}
+.fa-crop:before {
+  content: "\f125";
+}
+.fa-code-fork:before {
+  content: "\f126";
+}
+.fa-unlink:before,
+.fa-chain-broken:before {
+  content: "\f127";
+}
+.fa-question:before {
+  content: "\f128";
+}
+.fa-info:before {
+  content: "\f129";
+}
+.fa-exclamation:before {
+  content: "\f12a";
+}
+.fa-superscript:before {
+  content: "\f12b";
+}
+.fa-subscript:before {
+  content: "\f12c";
+}
+.fa-eraser:before {
+  content: "\f12d";
+}
+.fa-puzzle-piece:before {
+  content: "\f12e";
+}
+.fa-microphone:before {
+  content: "\f130";
+}
+.fa-microphone-slash:before {
+  content: "\f131";
+}
+.fa-shield:before {
+  content: "\f132";
+}
+.fa-calendar-o:before {
+  content: "\f133";
+}
+.fa-fire-extinguisher:before {
+  content: "\f134";
+}
+.fa-rocket:before {
+  content: "\f135";
+}
+.fa-maxcdn:before {
+  content: "\f136";
+}
+.fa-chevron-circle-left:before {
+  content: "\f137";
+}
+.fa-chevron-circle-right:before {
+  content: "\f138";
+}
+.fa-chevron-circle-up:before {
+  content: "\f139";
+}
+.fa-chevron-circle-down:before {
+  content: "\f13a";
+}
+.fa-html5:before {
+  content: "\f13b";
+}
+.fa-css3:before {
+  content: "\f13c";
+}
+.fa-anchor:before {
+  content: "\f13d";
+}
+.fa-unlock-alt:before {
+  content: "\f13e";
+}
+.fa-bullseye:before {
+  content: "\f140";
+}
+.fa-ellipsis-h:before {
+  content: "\f141";
+}
+.fa-ellipsis-v:before {
+  content: "\f142";
+}
+.fa-rss-square:before {
+  content: "\f143";
+}
+.fa-play-circle:before {
+  content: "\f144";
+}
+.fa-ticket:before {
+  content: "\f145";
+}
+.fa-minus-square:before {
+  content: "\f146";
+}
+.fa-minus-square-o:before {
+  content: "\f147";
+}
+.fa-level-up:before {
+  content: "\f148";
+}
+.fa-level-down:before {
+  content: "\f149";
+}
+.fa-check-square:before {
+  content: "\f14a";
+}
+.fa-pencil-square:before {
+  content: "\f14b";
+}
+.fa-external-link-square:before {
+  content: "\f14c";
+}
+.fa-share-square:before {
+  content: "\f14d";
+}
+.fa-compass:before {
+  content: "\f14e";
+}
+.fa-toggle-down:before,
+.fa-caret-square-o-down:before {
+  content: "\f150";
+}
+.fa-toggle-up:before,
+.fa-caret-square-o-up:before {
+  content: "\f151";
+}
+.fa-toggle-right:before,
+.fa-caret-square-o-right:before {
+  content: "\f152";
+}
+.fa-euro:before,
+.fa-eur:before {
+  content: "\f153";
+}
+.fa-gbp:before {
+  content: "\f154";
+}
+.fa-dollar:before,
+.fa-usd:before {
+  content: "\f155";
+}
+.fa-rupee:before,
+.fa-inr:before {
+  content: "\f156";
+}
+.fa-cny:before,
+.fa-rmb:before,
+.fa-yen:before,
+.fa-jpy:before {
+  content: "\f157";
+}
+.fa-ruble:before,
+.fa-rouble:before,
+.fa-rub:before {
+  content: "\f158";
+}
+.fa-won:before,
+.fa-krw:before {
+  content: "\f159";
+}
+.fa-bitcoin:before,
+.fa-btc:before {
+  content: "\f15a";
+}
+.fa-file:before {
+  content: "\f15b";
+}
+.fa-file-text:before {
+  content: "\f15c";
+}
+.fa-sort-alpha-asc:before {
+  content: "\f15d";
+}
+.fa-sort-alpha-desc:before {
+  content: "\f15e";
+}
+.fa-sort-amount-asc:before {
+  content: "\f160";
+}
+.fa-sort-amount-desc:before {
+  content: "\f161";
+}
+.fa-sort-numeric-asc:before {
+  content: "\f162";
+}
+.fa-sort-numeric-desc:before {
+  content: "\f163";
+}
+.fa-thumbs-up:before {
+  content: "\f164";
+}
+.fa-thumbs-down:before {
+  content: "\f165";
+}
+.fa-youtube-square:before {
+  content: "\f166";
+}
+.fa-youtube:before {
+  content: "\f167";
+}
+.fa-xing:before {
+  content: "\f168";
+}
+.fa-xing-square:before {
+  content: "\f169";
+}
+.fa-youtube-play:before {
+  content: "\f16a";
+}
+.fa-dropbox:before {
+  content: "\f16b";
+}
+.fa-stack-overflow:before {
+  content: "\f16c";
+}
+.fa-instagram:before {
+  content: "\f16d";
+}
+.fa-flickr:before {
+  content: "\f16e";
+}
+.fa-adn:before {
+  content: "\f170";
+}
+.fa-bitbucket:before {
+  content: "\f171";
+}
+.fa-bitbucket-square:before {
+  content: "\f172";
+}
+.fa-tumblr:before {
+  content: "\f173";
+}
+.fa-tumblr-square:before {
+  content: "\f174";
+}
+.fa-long-arrow-down:before {
+  content: "\f175";
+}
+.fa-long-arrow-up:before {
+  content: "\f176";
+}
+.fa-long-arrow-left:before {
+  content: "\f177";
+}
+.fa-long-arrow-right:before {
+  content: "\f178";
+}
+.fa-apple:before {
+  content: "\f179";
+}
+.fa-windows:before {
+  content: "\f17a";
+}
+.fa-android:before {
+  content: "\f17b";
+}
+.fa-linux:before {
+  content: "\f17c";
+}
+.fa-dribbble:before {
+  content: "\f17d";
+}
+.fa-skype:before {
+  content: "\f17e";
+}
+.fa-foursquare:before {
+  content: "\f180";
+}
+.fa-trello:before {
+  content: "\f181";
+}
+.fa-female:before {
+  content: "\f182";
+}
+.fa-male:before {
+  content: "\f183";
+}
+.fa-gittip:before {
+  content: "\f184";
+}
+.fa-sun-o:before {
+  content: "\f185";
+}
+.fa-moon-o:before {
+  content: "\f186";
+}
+.fa-archive:before {
+  content: "\f187";
+}
+.fa-bug:before {
+  content: "\f188";
+}
+.fa-vk:before {
+  content: "\f189";
+}
+.fa-weibo:before {
+  content: "\f18a";
+}
+.fa-renren:before {
+  content: "\f18b";
+}
+.fa-pagelines:before {
+  content: "\f18c";
+}
+.fa-stack-exchange:before {
+  content: "\f18d";
+}
+.fa-arrow-circle-o-right:before {
+  content: "\f18e";
+}
+.fa-arrow-circle-o-left:before {
+  content: "\f190";
+}
+.fa-toggle-left:before,
+.fa-caret-square-o-left:before {
+  content: "\f191";
+}
+.fa-dot-circle-o:before {
+  content: "\f192";
+}
+.fa-wheelchair:before {
+  content: "\f193";
+}
+.fa-vimeo-square:before {
+  content: "\f194";
+}
+.fa-turkish-lira:before,
+.fa-try:before {
+  content: "\f195";
+}
+.fa-plus-square-o:before {
+  content: "\f196";
+}
+.fa-space-shuttle:before {
+  content: "\f197";
+}
+.fa-slack:before {
+  content: "\f198";
+}
+.fa-envelope-square:before {
+  content: "\f199";
+}
+.fa-wordpress:before {
+  content: "\f19a";
+}
+.fa-openid:before {
+  content: "\f19b";
+}
+.fa-institution:before,
+.fa-bank:before,
+.fa-university:before {
+  content: "\f19c";
+}
+.fa-mortar-board:before,
+.fa-graduation-cap:before {
+  content: "\f19d";
+}
+.fa-yahoo:before {
+  content: "\f19e";
+}
+.fa-google:before {
+  content: "\f1a0";
+}
+.fa-reddit:before {
+  content: "\f1a1";
+}
+.fa-reddit-square:before {
+  content: "\f1a2";
+}
+.fa-stumbleupon-circle:before {
+  content: "\f1a3";
+}
+.fa-stumbleupon:before {
+  content: "\f1a4";
+}
+.fa-delicious:before {
+  content: "\f1a5";
+}
+.fa-digg:before {
+  content: "\f1a6";
+}
+.fa-pied-piper:before {
+  content: "\f1a7";
+}
+.fa-pied-piper-alt:before {
+  content: "\f1a8";
+}
+.fa-drupal:before {
+  content: "\f1a9";
+}
+.fa-joomla:before {
+  content: "\f1aa";
+}
+.fa-language:before {
+  content: "\f1ab";
+}
+.fa-fax:before {
+  content: "\f1ac";
+}
+.fa-building:before {
+  content: "\f1ad";
+}
+.fa-child:before {
+  content: "\f1ae";
+}
+.fa-paw:before {
+  content: "\f1b0";
+}
+.fa-spoon:before {
+  content: "\f1b1";
+}
+.fa-cube:before {
+  content: "\f1b2";
+}
+.fa-cubes:before {
+  content: "\f1b3";
+}
+.fa-behance:before {
+  content: "\f1b4";
+}
+.fa-behance-square:before {
+  content: "\f1b5";
+}
+.fa-steam:before {
+  content: "\f1b6";
+}
+.fa-steam-square:before {
+  content: "\f1b7";
+}
+.fa-recycle:before {
+  content: "\f1b8";
+}
+.fa-automobile:before,
+.fa-car:before {
+  content: "\f1b9";
+}
+.fa-cab:before,
+.fa-taxi:before {
+  content: "\f1ba";
+}
+.fa-tree:before {
+  content: "\f1bb";
+}
+.fa-spotify:before {
+  content: "\f1bc";
+}
+.fa-deviantart:before {
+  content: "\f1bd";
+}
+.fa-soundcloud:before {
+  content: "\f1be";
+}
+.fa-database:before {
+  content: "\f1c0";
+}
+.fa-file-pdf-o:before {
+  content: "\f1c1";
+}
+.fa-file-word-o:before {
+  content: "\f1c2";
+}
+.fa-file-excel-o:before {
+  content: "\f1c3";
+}
+.fa-file-powerpoint-o:before {
+  content: "\f1c4";
+}
+.fa-file-photo-o:before,
+.fa-file-picture-o:before,
+.fa-file-image-o:before {
+  content: "\f1c5";
+}
+.fa-file-zip-o:before,
+.fa-file-archive-o:before {
+  content: "\f1c6";
+}
+.fa-file-sound-o:before,
+.fa-file-audio-o:before {
+  content: "\f1c7";
+}
+.fa-file-movie-o:before,
+.fa-file-video-o:before {
+  content: "\f1c8";
+}
+.fa-file-code-o:before {
+  content: "\f1c9";
+}
+.fa-vine:before {
+  content: "\f1ca";
+}
+.fa-codepen:before {
+  content: "\f1cb";
+}
+.fa-jsfiddle:before {
+  content: "\f1cc";
+}
+.fa-life-bouy:before,
+.fa-life-buoy:before,
+.fa-life-saver:before,
+.fa-support:before,
+.fa-life-ring:before {
+  content: "\f1cd";
+}
+.fa-circle-o-notch:before {
+  content: "\f1ce";
+}
+.fa-ra:before,
+.fa-rebel:before {
+  content: "\f1d0";
+}
+.fa-ge:before,
+.fa-empire:before {
+  content: "\f1d1";
+}
+.fa-git-square:before {
+  content: "\f1d2";
+}
+.fa-git:before {
+  content: "\f1d3";
+}
+.fa-hacker-news:before {
+  content: "\f1d4";
+}
+.fa-tencent-weibo:before {
+  content: "\f1d5";
+}
+.fa-qq:before {
+  content: "\f1d6";
+}
+.fa-wechat:before,
+.fa-weixin:before {
+  content: "\f1d7";
+}
+.fa-send:before,
+.fa-paper-plane:before {
+  content: "\f1d8";
+}
+.fa-send-o:before,
+.fa-paper-plane-o:before {
+  content: "\f1d9";
+}
+.fa-history:before {
+  content: "\f1da";
+}
+.fa-circle-thin:before {
+  content: "\f1db";
+}
+.fa-header:before {
+  content: "\f1dc";
+}
+.fa-paragraph:before {
+  content: "\f1dd";
+}
+.fa-sliders:before {
+  content: "\f1de";
+}
+.fa-share-alt:before {
+  content: "\f1e0";
+}
+.fa-share-alt-square:before {
+  content: "\f1e1";
+}
+.fa-bomb:before {
+  content: "\f1e2";
+}
+.fa-soccer-ball-o:before,
+.fa-futbol-o:before {
+  content: "\f1e3";
+}
+.fa-tty:before {
+  content: "\f1e4";
+}
+.fa-binoculars:before {
+  content: "\f1e5";
+}
+.fa-plug:before {
+  content: "\f1e6";
+}
+.fa-slideshare:before {
+  content: "\f1e7";
+}
+.fa-twitch:before {
+  content: "\f1e8";
+}
+.fa-yelp:before {
+  content: "\f1e9";
+}
+.fa-newspaper-o:before {
+  content: "\f1ea";
+}
+.fa-wifi:before {
+  content: "\f1eb";
+}
+.fa-calculator:before {
+  content: "\f1ec";
+}
+.fa-paypal:before {
+  content: "\f1ed";
+}
+.fa-google-wallet:before {
+  content: "\f1ee";
+}
+.fa-cc-visa:before {
+  content: "\f1f0";
+}
+.fa-cc-mastercard:before {
+  content: "\f1f1";
+}
+.fa-cc-discover:before {
+  content: "\f1f2";
+}
+.fa-cc-amex:before {
+  content: "\f1f3";
+}
+.fa-cc-paypal:before {
+  content: "\f1f4";
+}
+.fa-cc-stripe:before {
+  content: "\f1f5";
+}
+.fa-bell-slash:before {
+  content: "\f1f6";
+}
+.fa-bell-slash-o:before {
+  content: "\f1f7";
+}
+.fa-trash:before {
+  content: "\f1f8";
+}
+.fa-copyright:before {
+  content: "\f1f9";
+}
+.fa-at:before {
+  content: "\f1fa";
+}
+.fa-eyedropper:before {
+  content: "\f1fb";
+}
+.fa-paint-brush:before {
+  content: "\f1fc";
+}
+.fa-birthday-cake:before {
+  content: "\f1fd";
+}
+.fa-area-chart:before {
+  content: "\f1fe";
+}
+.fa-pie-chart:before {
+  content: "\f200";
+}
+.fa-line-chart:before {
+  content: "\f201";
+}
+.fa-lastfm:before {
+  content: "\f202";
+}
+.fa-lastfm-square:before {
+  content: "\f203";
+}
+.fa-toggle-off:before {
+  content: "\f204";
+}
+.fa-toggle-on:before {
+  content: "\f205";
+}
+.fa-bicycle:before {
+  content: "\f206";
+}
+.fa-bus:before {
+  content: "\f207";
+}
+.fa-ioxhost:before {
+  content: "\f208";
+}
+.fa-angellist:before {
+  content: "\f209";
+}
+.fa-cc:before {
+  content: "\f20a";
+}
+.fa-shekel:before,
+.fa-sheqel:before,
+.fa-ils:before {
+  content: "\f20b";
+}
+.fa-meanpath:before {
+  content: "\f20c";
+}
+/*!
+*
+* IPython base
+*
+*/
+.modal.fade .modal-dialog {
+  -webkit-transform: translate(0, 0);
+  -ms-transform: translate(0, 0);
+  -o-transform: translate(0, 0);
+  transform: translate(0, 0);
+}
+code {
+  color: #000;
+}
+pre {
+  font-size: inherit;
+  line-height: inherit;
+}
+label {
+  font-weight: normal;
+}
+/* Make the page background atleast 100% the height of the view port */
+/* Make the page itself atleast 70% the height of the view port */
+.border-box-sizing {
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+.corner-all {
+  border-radius: 2px;
+}
+.no-padding {
+  padding: 0px;
+}
+/* Flexible box model classes */
+/* Taken from Alex Russell http://infrequently.org/2009/08/css-3-progress/ */
+/* This file is a compatability layer.  It allows the usage of flexible box 
+model layouts accross multiple browsers, including older browsers.  The newest,
+universal implementation of the flexible box model is used when available (see
+`Modern browsers` comments below).  Browsers that are known to implement this 
+new spec completely include:
+
+    Firefox 28.0+
+    Chrome 29.0+
+    Internet Explorer 11+ 
+    Opera 17.0+
+
+Browsers not listed, including Safari, are supported via the styling under the
+`Old browsers` comments below.
+*/
+.hbox {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+.hbox > * {
+  /* Old browsers */
+  -webkit-box-flex: 0;
+  -moz-box-flex: 0;
+  box-flex: 0;
+  /* Modern browsers */
+  flex: none;
+}
+.vbox {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+}
+.vbox > * {
+  /* Old browsers */
+  -webkit-box-flex: 0;
+  -moz-box-flex: 0;
+  box-flex: 0;
+  /* Modern browsers */
+  flex: none;
+}
+.hbox.reverse,
+.vbox.reverse,
+.reverse {
+  /* Old browsers */
+  -webkit-box-direction: reverse;
+  -moz-box-direction: reverse;
+  box-direction: reverse;
+  /* Modern browsers */
+  flex-direction: row-reverse;
+}
+.hbox.box-flex0,
+.vbox.box-flex0,
+.box-flex0 {
+  /* Old browsers */
+  -webkit-box-flex: 0;
+  -moz-box-flex: 0;
+  box-flex: 0;
+  /* Modern browsers */
+  flex: none;
+  width: auto;
+}
+.hbox.box-flex1,
+.vbox.box-flex1,
+.box-flex1 {
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+}
+.hbox.box-flex,
+.vbox.box-flex,
+.box-flex {
+  /* Old browsers */
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+}
+.hbox.box-flex2,
+.vbox.box-flex2,
+.box-flex2 {
+  /* Old browsers */
+  -webkit-box-flex: 2;
+  -moz-box-flex: 2;
+  box-flex: 2;
+  /* Modern browsers */
+  flex: 2;
+}
+.box-group1 {
+  /*  Deprecated */
+  -webkit-box-flex-group: 1;
+  -moz-box-flex-group: 1;
+  box-flex-group: 1;
+}
+.box-group2 {
+  /* Deprecated */
+  -webkit-box-flex-group: 2;
+  -moz-box-flex-group: 2;
+  box-flex-group: 2;
+}
+.hbox.start,
+.vbox.start,
+.start {
+  /* Old browsers */
+  -webkit-box-pack: start;
+  -moz-box-pack: start;
+  box-pack: start;
+  /* Modern browsers */
+  justify-content: flex-start;
+}
+.hbox.end,
+.vbox.end,
+.end {
+  /* Old browsers */
+  -webkit-box-pack: end;
+  -moz-box-pack: end;
+  box-pack: end;
+  /* Modern browsers */
+  justify-content: flex-end;
+}
+.hbox.center,
+.vbox.center,
+.center {
+  /* Old browsers */
+  -webkit-box-pack: center;
+  -moz-box-pack: center;
+  box-pack: center;
+  /* Modern browsers */
+  justify-content: center;
+}
+.hbox.baseline,
+.vbox.baseline,
+.baseline {
+  /* Old browsers */
+  -webkit-box-pack: baseline;
+  -moz-box-pack: baseline;
+  box-pack: baseline;
+  /* Modern browsers */
+  justify-content: baseline;
+}
+.hbox.stretch,
+.vbox.stretch,
+.stretch {
+  /* Old browsers */
+  -webkit-box-pack: stretch;
+  -moz-box-pack: stretch;
+  box-pack: stretch;
+  /* Modern browsers */
+  justify-content: stretch;
+}
+.hbox.align-start,
+.vbox.align-start,
+.align-start {
+  /* Old browsers */
+  -webkit-box-align: start;
+  -moz-box-align: start;
+  box-align: start;
+  /* Modern browsers */
+  align-items: flex-start;
+}
+.hbox.align-end,
+.vbox.align-end,
+.align-end {
+  /* Old browsers */
+  -webkit-box-align: end;
+  -moz-box-align: end;
+  box-align: end;
+  /* Modern browsers */
+  align-items: flex-end;
+}
+.hbox.align-center,
+.vbox.align-center,
+.align-center {
+  /* Old browsers */
+  -webkit-box-align: center;
+  -moz-box-align: center;
+  box-align: center;
+  /* Modern browsers */
+  align-items: center;
+}
+.hbox.align-baseline,
+.vbox.align-baseline,
+.align-baseline {
+  /* Old browsers */
+  -webkit-box-align: baseline;
+  -moz-box-align: baseline;
+  box-align: baseline;
+  /* Modern browsers */
+  align-items: baseline;
+}
+.hbox.align-stretch,
+.vbox.align-stretch,
+.align-stretch {
+  /* Old browsers */
+  -webkit-box-align: stretch;
+  -moz-box-align: stretch;
+  box-align: stretch;
+  /* Modern browsers */
+  align-items: stretch;
+}
+div.error {
+  margin: 2em;
+  text-align: center;
+}
+div.error > h1 {
+  font-size: 500%;
+  line-height: normal;
+}
+div.error > p {
+  font-size: 200%;
+  line-height: normal;
+}
+div.traceback-wrapper {
+  text-align: left;
+  max-width: 800px;
+  margin: auto;
+}
+/**
+ * Primary styles
+ *
+ * Author: Jupyter Development Team
+ */
+body {
+  background-color: #fff;
+  /* This makes sure that the body covers the entire window and needs to
+       be in a different element than the display: box in wrapper below */
+  position: absolute;
+  left: 0px;
+  right: 0px;
+  top: 0px;
+  bottom: 0px;
+  overflow: visible;
+}
+body > #header {
+  /* Initially hidden to prevent FLOUC */
+  display: none;
+  background-color: #fff;
+  /* Display over codemirror */
+  position: relative;
+  z-index: 100;
+}
+body > #header #header-container {
+  padding-bottom: 5px;
+  padding-top: 5px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+body > #header .header-bar {
+  width: 100%;
+  height: 1px;
+  background: #e7e7e7;
+  margin-bottom: -1px;
+}
+@media print {
+  body > #header {
+    display: none !important;
+  }
+}
+#header-spacer {
+  width: 100%;
+  visibility: hidden;
+}
+@media print {
+  #header-spacer {
+    display: none;
+  }
+}
+#ipython_notebook {
+  padding-left: 0px;
+  padding-top: 1px;
+  padding-bottom: 1px;
+}
+@media (max-width: 991px) {
+  #ipython_notebook {
+    margin-left: 10px;
+  }
+}
+#noscript {
+  width: auto;
+  padding-top: 16px;
+  padding-bottom: 16px;
+  text-align: center;
+  font-size: 22px;
+  color: red;
+  font-weight: bold;
+}
+#ipython_notebook img {
+  height: 28px;
+}
+#site {
+  width: 100%;
+  display: none;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  overflow: auto;
+}
+@media print {
+  #site {
+    height: auto !important;
+  }
+}
+/* Smaller buttons */
+.ui-button .ui-button-text {
+  padding: 0.2em 0.8em;
+  font-size: 77%;
+}
+input.ui-button {
+  padding: 0.3em 0.9em;
+}
+span#login_widget {
+  float: right;
+}
+span#login_widget > .button,
+#logout {
+  color: #333;
+  background-color: #fff;
+  border-color: #ccc;
+}
+span#login_widget > .button:focus,
+#logout:focus,
+span#login_widget > .button.focus,
+#logout.focus {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #8c8c8c;
+}
+span#login_widget > .button:hover,
+#logout:hover {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+span#login_widget > .button:active,
+#logout:active,
+span#login_widget > .button.active,
+#logout.active,
+.open > .dropdown-togglespan#login_widget > .button,
+.open > .dropdown-toggle#logout {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+span#login_widget > .button:active:hover,
+#logout:active:hover,
+span#login_widget > .button.active:hover,
+#logout.active:hover,
+.open > .dropdown-togglespan#login_widget > .button:hover,
+.open > .dropdown-toggle#logout:hover,
+span#login_widget > .button:active:focus,
+#logout:active:focus,
+span#login_widget > .button.active:focus,
+#logout.active:focus,
+.open > .dropdown-togglespan#login_widget > .button:focus,
+.open > .dropdown-toggle#logout:focus,
+span#login_widget > .button:active.focus,
+#logout:active.focus,
+span#login_widget > .button.active.focus,
+#logout.active.focus,
+.open > .dropdown-togglespan#login_widget > .button.focus,
+.open > .dropdown-toggle#logout.focus {
+  color: #333;
+  background-color: #d4d4d4;
+  border-color: #8c8c8c;
+}
+span#login_widget > .button:active,
+#logout:active,
+span#login_widget > .button.active,
+#logout.active,
+.open > .dropdown-togglespan#login_widget > .button,
+.open > .dropdown-toggle#logout {
+  background-image: none;
+}
+span#login_widget > .button.disabled:hover,
+#logout.disabled:hover,
+span#login_widget > .button[disabled]:hover,
+#logout[disabled]:hover,
+fieldset[disabled] span#login_widget > .button:hover,
+fieldset[disabled] #logout:hover,
+span#login_widget > .button.disabled:focus,
+#logout.disabled:focus,
+span#login_widget > .button[disabled]:focus,
+#logout[disabled]:focus,
+fieldset[disabled] span#login_widget > .button:focus,
+fieldset[disabled] #logout:focus,
+span#login_widget > .button.disabled.focus,
+#logout.disabled.focus,
+span#login_widget > .button[disabled].focus,
+#logout[disabled].focus,
+fieldset[disabled] span#login_widget > .button.focus,
+fieldset[disabled] #logout.focus {
+  background-color: #fff;
+  border-color: #ccc;
+}
+span#login_widget > .button .badge,
+#logout .badge {
+  color: #fff;
+  background-color: #333;
+}
+.nav-header {
+  text-transform: none;
+}
+#header > span {
+  margin-top: 10px;
+}
+.modal_stretch .modal-dialog {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+  min-height: 80vh;
+}
+.modal_stretch .modal-dialog .modal-body {
+  max-height: calc(100vh - 200px);
+  overflow: auto;
+  flex: 1;
+}
+@media (min-width: 768px) {
+  .modal .modal-dialog {
+    width: 700px;
+  }
+}
+@media (min-width: 768px) {
+  select.form-control {
+    margin-left: 12px;
+    margin-right: 12px;
+  }
+}
+/*!
+*
+* IPython auth
+*
+*/
+.center-nav {
+  display: inline-block;
+  margin-bottom: -4px;
+}
+/*!
+*
+* IPython tree view
+*
+*/
+/* We need an invisible input field on top of the sentense*/
+/* "Drag file onto the list ..." */
+.alternate_upload {
+  background-color: none;
+  display: inline;
+}
+.alternate_upload.form {
+  padding: 0;
+  margin: 0;
+}
+.alternate_upload input.fileinput {
+  text-align: center;
+  vertical-align: middle;
+  display: inline;
+  opacity: 0;
+  z-index: 2;
+  width: 12ex;
+  margin-right: -12ex;
+}
+.alternate_upload .btn-upload {
+  height: 22px;
+}
+/**
+ * Primary styles
+ *
+ * Author: Jupyter Development Team
+ */
+ul#tabs {
+  margin-bottom: 4px;
+}
+ul#tabs a {
+  padding-top: 6px;
+  padding-bottom: 4px;
+}
+ul.breadcrumb a:focus,
+ul.breadcrumb a:hover {
+  text-decoration: none;
+}
+ul.breadcrumb i.icon-home {
+  font-size: 16px;
+  margin-right: 4px;
+}
+ul.breadcrumb span {
+  color: #5e5e5e;
+}
+.list_toolbar {
+  padding: 4px 0 4px 0;
+  vertical-align: middle;
+}
+.list_toolbar .tree-buttons {
+  padding-top: 1px;
+}
+.dynamic-buttons {
+  padding-top: 3px;
+  display: inline-block;
+}
+.list_toolbar [class*="span"] {
+  min-height: 24px;
+}
+.list_header {
+  font-weight: bold;
+  background-color: #EEE;
+}
+.list_placeholder {
+  font-weight: bold;
+  padding-top: 4px;
+  padding-bottom: 4px;
+  padding-left: 7px;
+  padding-right: 7px;
+}
+.list_container {
+  margin-top: 4px;
+  margin-bottom: 20px;
+  border: 1px solid #ddd;
+  border-radius: 2px;
+}
+.list_container > div {
+  border-bottom: 1px solid #ddd;
+}
+.list_container > div:hover .list-item {
+  background-color: red;
+}
+.list_container > div:last-child {
+  border: none;
+}
+.list_item:hover .list_item {
+  background-color: #ddd;
+}
+.list_item a {
+  text-decoration: none;
+}
+.list_item:hover {
+  background-color: #fafafa;
+}
+.list_header > div,
+.list_item > div {
+  padding-top: 4px;
+  padding-bottom: 4px;
+  padding-left: 7px;
+  padding-right: 7px;
+  line-height: 22px;
+}
+.list_header > div input,
+.list_item > div input {
+  margin-right: 7px;
+  margin-left: 14px;
+  vertical-align: baseline;
+  line-height: 22px;
+  position: relative;
+  top: -1px;
+}
+.list_header > div .item_link,
+.list_item > div .item_link {
+  margin-left: -1px;
+  vertical-align: baseline;
+  line-height: 22px;
+}
+.new-file input[type=checkbox] {
+  visibility: hidden;
+}
+.item_name {
+  line-height: 22px;
+  height: 24px;
+}
+.item_icon {
+  font-size: 14px;
+  color: #5e5e5e;
+  margin-right: 7px;
+  margin-left: 7px;
+  line-height: 22px;
+  vertical-align: baseline;
+}
+.item_buttons {
+  line-height: 1em;
+  margin-left: -5px;
+}
+.item_buttons .btn,
+.item_buttons .btn-group,
+.item_buttons .input-group {
+  float: left;
+}
+.item_buttons > .btn,
+.item_buttons > .btn-group,
+.item_buttons > .input-group {
+  margin-left: 5px;
+}
+.item_buttons .btn {
+  min-width: 13ex;
+}
+.item_buttons .running-indicator {
+  padding-top: 4px;
+  color: #5cb85c;
+}
+.item_buttons .kernel-name {
+  padding-top: 4px;
+  color: #5bc0de;
+  margin-right: 7px;
+  float: left;
+}
+.toolbar_info {
+  height: 24px;
+  line-height: 24px;
+}
+.list_item input:not([type=checkbox]) {
+  padding-top: 3px;
+  padding-bottom: 3px;
+  height: 22px;
+  line-height: 14px;
+  margin: 0px;
+}
+.highlight_text {
+  color: blue;
+}
+#project_name {
+  display: inline-block;
+  padding-left: 7px;
+  margin-left: -2px;
+}
+#project_name > .breadcrumb {
+  padding: 0px;
+  margin-bottom: 0px;
+  background-color: transparent;
+  font-weight: bold;
+}
+#tree-selector {
+  padding-right: 0px;
+}
+#button-select-all {
+  min-width: 50px;
+}
+#select-all {
+  margin-left: 7px;
+  margin-right: 2px;
+}
+.menu_icon {
+  margin-right: 2px;
+}
+.tab-content .row {
+  margin-left: 0px;
+  margin-right: 0px;
+}
+.folder_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f114";
+}
+.folder_icon:before.pull-left {
+  margin-right: .3em;
+}
+.folder_icon:before.pull-right {
+  margin-left: .3em;
+}
+.notebook_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f02d";
+  position: relative;
+  top: -1px;
+}
+.notebook_icon:before.pull-left {
+  margin-right: .3em;
+}
+.notebook_icon:before.pull-right {
+  margin-left: .3em;
+}
+.running_notebook_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f02d";
+  position: relative;
+  top: -1px;
+  color: #5cb85c;
+}
+.running_notebook_icon:before.pull-left {
+  margin-right: .3em;
+}
+.running_notebook_icon:before.pull-right {
+  margin-left: .3em;
+}
+.file_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f016";
+  position: relative;
+  top: -2px;
+}
+.file_icon:before.pull-left {
+  margin-right: .3em;
+}
+.file_icon:before.pull-right {
+  margin-left: .3em;
+}
+#notebook_toolbar .pull-right {
+  padding-top: 0px;
+  margin-right: -1px;
+}
+ul#new-menu {
+  left: auto;
+  right: 0;
+}
+.kernel-menu-icon {
+  padding-right: 12px;
+  width: 24px;
+  content: "\f096";
+}
+.kernel-menu-icon:before {
+  content: "\f096";
+}
+.kernel-menu-icon-current:before {
+  content: "\f00c";
+}
+#tab_content {
+  padding-top: 20px;
+}
+#running .panel-group .panel {
+  margin-top: 3px;
+  margin-bottom: 1em;
+}
+#running .panel-group .panel .panel-heading {
+  background-color: #EEE;
+  padding-top: 4px;
+  padding-bottom: 4px;
+  padding-left: 7px;
+  padding-right: 7px;
+  line-height: 22px;
+}
+#running .panel-group .panel .panel-heading a:focus,
+#running .panel-group .panel .panel-heading a:hover {
+  text-decoration: none;
+}
+#running .panel-group .panel .panel-body {
+  padding: 0px;
+}
+#running .panel-group .panel .panel-body .list_container {
+  margin-top: 0px;
+  margin-bottom: 0px;
+  border: 0px;
+  border-radius: 0px;
+}
+#running .panel-group .panel .panel-body .list_container .list_item {
+  border-bottom: 1px solid #ddd;
+}
+#running .panel-group .panel .panel-body .list_container .list_item:last-child {
+  border-bottom: 0px;
+}
+.delete-button {
+  display: none;
+}
+.duplicate-button {
+  display: none;
+}
+.rename-button {
+  display: none;
+}
+.shutdown-button {
+  display: none;
+}
+.dynamic-instructions {
+  display: inline-block;
+  padding-top: 4px;
+}
+/*!
+*
+* IPython text editor webapp
+*
+*/
+.selected-keymap i.fa {
+  padding: 0px 5px;
+}
+.selected-keymap i.fa:before {
+  content: "\f00c";
+}
+#mode-menu {
+  overflow: auto;
+  max-height: 20em;
+}
+.edit_app #header {
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+}
+.edit_app #menubar .navbar {
+  /* Use a negative 1 bottom margin, so the border overlaps the border of the
+    header */
+  margin-bottom: -1px;
+}
+.dirty-indicator {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  width: 20px;
+}
+.dirty-indicator.pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator.pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator-dirty {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  width: 20px;
+}
+.dirty-indicator-dirty.pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator-dirty.pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator-clean {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  width: 20px;
+}
+.dirty-indicator-clean.pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator-clean.pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator-clean:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f00c";
+}
+.dirty-indicator-clean:before.pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator-clean:before.pull-right {
+  margin-left: .3em;
+}
+#filename {
+  font-size: 16pt;
+  display: table;
+  padding: 0px 5px;
+}
+#current-mode {
+  padding-left: 5px;
+  padding-right: 5px;
+}
+#texteditor-backdrop {
+  padding-top: 20px;
+  padding-bottom: 20px;
+}
+@media not print {
+  #texteditor-backdrop {
+    background-color: #EEE;
+  }
+}
+@media print {
+  #texteditor-backdrop #texteditor-container .CodeMirror-gutter,
+  #texteditor-backdrop #texteditor-container .CodeMirror-gutters {
+    background-color: #fff;
+  }
+}
+@media not print {
+  #texteditor-backdrop #texteditor-container .CodeMirror-gutter,
+  #texteditor-backdrop #texteditor-container .CodeMirror-gutters {
+    background-color: #fff;
+  }
+}
+@media not print {
+  #texteditor-backdrop #texteditor-container {
+    padding: 0px;
+    background-color: #fff;
+    -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+    box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  }
+}
+/*!
+*
+* IPython notebook
+*
+*/
+/* CSS font colors for translated ANSI colors. */
+.ansibold {
+  font-weight: bold;
+}
+/* use dark versions for foreground, to improve visibility */
+.ansiblack {
+  color: black;
+}
+.ansired {
+  color: darkred;
+}
+.ansigreen {
+  color: darkgreen;
+}
+.ansiyellow {
+  color: #c4a000;
+}
+.ansiblue {
+  color: darkblue;
+}
+.ansipurple {
+  color: darkviolet;
+}
+.ansicyan {
+  color: steelblue;
+}
+.ansigray {
+  color: gray;
+}
+/* and light for background, for the same reason */
+.ansibgblack {
+  background-color: black;
+}
+.ansibgred {
+  background-color: red;
+}
+.ansibggreen {
+  background-color: green;
+}
+.ansibgyellow {
+  background-color: yellow;
+}
+.ansibgblue {
+  background-color: blue;
+}
+.ansibgpurple {
+  background-color: magenta;
+}
+.ansibgcyan {
+  background-color: cyan;
+}
+.ansibggray {
+  background-color: gray;
+}
+div.cell {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+  border-radius: 2px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  border-width: 1px;
+  border-style: solid;
+  border-color: transparent;
+  width: 100%;
+  padding: 5px;
+  /* This acts as a spacer between cells, that is outside the border */
+  margin: 0px;
+  outline: none;
+  border-left-width: 1px;
+  padding-left: 5px;
+  background: linear-gradient(to right, transparent -40px, transparent 1px, transparent 1px, transparent 100%);
+}
+div.cell.jupyter-soft-selected {
+  border-left-color: #90CAF9;
+  border-left-color: #E3F2FD;
+  border-left-width: 1px;
+  padding-left: 5px;
+  border-right-color: #E3F2FD;
+  border-right-width: 1px;
+  background: #E3F2FD;
+}
+@media print {
+  div.cell.jupyter-soft-selected {
+    border-color: transparent;
+  }
+}
+div.cell.selected {
+  border-color: #ababab;
+  border-left-width: 0px;
+  padding-left: 6px;
+  background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 5px, transparent 5px, transparent 100%);
+}
+@media print {
+  div.cell.selected {
+    border-color: transparent;
+  }
+}
+div.cell.selected.jupyter-soft-selected {
+  border-left-width: 0;
+  padding-left: 6px;
+  background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 7px, #E3F2FD 7px, #E3F2FD 100%);
+}
+.edit_mode div.cell.selected {
+  border-color: #66BB6A;
+  border-left-width: 0px;
+  padding-left: 6px;
+  background: linear-gradient(to right, #66BB6A -40px, #66BB6A 5px, transparent 5px, transparent 100%);
+}
+@media print {
+  .edit_mode div.cell.selected {
+    border-color: transparent;
+  }
+}
+.prompt {
+  /* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
+  min-width: 14ex;
+  /* This padding is tuned to match the padding on the CodeMirror editor. */
+  padding: 0.4em;
+  margin: 0px;
+  font-family: monospace;
+  text-align: right;
+  /* This has to match that of the the CodeMirror class line-height below */
+  line-height: 1.21429em;
+  /* Don't highlight prompt number selection */
+  -webkit-touch-callout: none;
+  -webkit-user-select: none;
+  -khtml-user-select: none;
+  -moz-user-select: none;
+  -ms-user-select: none;
+  user-select: none;
+  /* Use default cursor */
+  cursor: default;
+}
+@media (max-width: 540px) {
+  .prompt {
+    text-align: left;
+  }
+}
+div.inner_cell {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+}
+@-moz-document url-prefix() {
+  div.inner_cell {
+    overflow-x: hidden;
+  }
+}
+/* input_area and input_prompt must match in top border and margin for alignment */
+div.input_area {
+  border: 1px solid #cfcfcf;
+  border-radius: 2px;
+  background: #f7f7f7;
+  line-height: 1.21429em;
+}
+/* This is needed so that empty prompt areas can collapse to zero height when there
+   is no content in the output_subarea and the prompt. The main purpose of this is
+   to make sure that empty JavaScript output_subareas have no height. */
+div.prompt:empty {
+  padding-top: 0;
+  padding-bottom: 0;
+}
+div.unrecognized_cell {
+  padding: 5px 5px 5px 0px;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+div.unrecognized_cell .inner_cell {
+  border-radius: 2px;
+  padding: 5px;
+  font-weight: bold;
+  color: red;
+  border: 1px solid #cfcfcf;
+  background: #eaeaea;
+}
+div.unrecognized_cell .inner_cell a {
+  color: inherit;
+  text-decoration: none;
+}
+div.unrecognized_cell .inner_cell a:hover {
+  color: inherit;
+  text-decoration: none;
+}
+@media (max-width: 540px) {
+  div.unrecognized_cell > div.prompt {
+    display: none;
+  }
+}
+div.code_cell {
+  /* avoid page breaking on code cells when printing */
+}
+@media print {
+  div.code_cell {
+    page-break-inside: avoid;
+  }
+}
+/* any special styling for code cells that are currently running goes here */
+div.input {
+  page-break-inside: avoid;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+@media (max-width: 540px) {
+  div.input {
+    /* Old browsers */
+    display: -webkit-box;
+    -webkit-box-orient: vertical;
+    -webkit-box-align: stretch;
+    display: -moz-box;
+    -moz-box-orient: vertical;
+    -moz-box-align: stretch;
+    display: box;
+    box-orient: vertical;
+    box-align: stretch;
+    /* Modern browsers */
+    display: flex;
+    flex-direction: column;
+    align-items: stretch;
+  }
+}
+/* input_area and input_prompt must match in top border and margin for alignment */
+div.input_prompt {
+  color: #303F9F;
+  border-top: 1px solid transparent;
+}
+div.input_area > div.highlight {
+  margin: 0.4em;
+  border: none;
+  padding: 0px;
+  background-color: transparent;
+}
+div.input_area > div.highlight > pre {
+  margin: 0px;
+  border: none;
+  padding: 0px;
+  background-color: transparent;
+}
+/* The following gets added to the <head> if it is detected that the user has a
+ * monospace font with inconsistent normal/bold/italic height.  See
+ * notebookmain.js.  Such fonts will have keywords vertically offset with
+ * respect to the rest of the text.  The user should select a better font.
+ * See: https://github.com/ipython/ipython/issues/1503
+ *
+ * .CodeMirror span {
+ *      vertical-align: bottom;
+ * }
+ */
+.CodeMirror {
+  line-height: 1.21429em;
+  /* Changed from 1em to our global default */
+  font-size: 14px;
+  height: auto;
+  /* Changed to auto to autogrow */
+  background: none;
+  /* Changed from white to allow our bg to show through */
+}
+.CodeMirror-scroll {
+  /*  The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
+  /*  We have found that if it is visible, vertical scrollbars appear with font size changes.*/
+  overflow-y: hidden;
+  overflow-x: auto;
+}
+.CodeMirror-lines {
+  /* In CM2, this used to be 0.4em, but in CM3 it went to 4px. We need the em value because */
+  /* we have set a different line-height and want this to scale with that. */
+  padding: 0.4em;
+}
+.CodeMirror-linenumber {
+  padding: 0 8px 0 4px;
+}
+.CodeMirror-gutters {
+  border-bottom-left-radius: 2px;
+  border-top-left-radius: 2px;
+}
+.CodeMirror pre {
+  /* In CM3 this went to 4px from 0 in CM2. We need the 0 value because of how we size */
+  /* .CodeMirror-lines */
+  padding: 0;
+  border: 0;
+  border-radius: 0;
+}
+/*
+
+Original style from softwaremaniacs.org (c) Ivan Sagalaev <Maniac@SoftwareManiacs.Org>
+Adapted from GitHub theme
+
+*/
+.highlight-base {
+  color: #000;
+}
+.highlight-variable {
+  color: #000;
+}
+.highlight-variable-2 {
+  color: #1a1a1a;
+}
+.highlight-variable-3 {
+  color: #333333;
+}
+.highlight-string {
+  color: #BA2121;
+}
+.highlight-comment {
+  color: #408080;
+  font-style: italic;
+}
+.highlight-number {
+  color: #080;
+}
+.highlight-atom {
+  color: #88F;
+}
+.highlight-keyword {
+  color: #008000;
+  font-weight: bold;
+}
+.highlight-builtin {
+  color: #008000;
+}
+.highlight-error {
+  color: #f00;
+}
+.highlight-operator {
+  color: #AA22FF;
+  font-weight: bold;
+}
+.highlight-meta {
+  color: #AA22FF;
+}
+/* previously not defined, copying from default codemirror */
+.highlight-def {
+  color: #00f;
+}
+.highlight-string-2 {
+  color: #f50;
+}
+.highlight-qualifier {
+  color: #555;
+}
+.highlight-bracket {
+  color: #997;
+}
+.highlight-tag {
+  color: #170;
+}
+.highlight-attribute {
+  color: #00c;
+}
+.highlight-header {
+  color: blue;
+}
+.highlight-quote {
+  color: #090;
+}
+.highlight-link {
+  color: #00c;
+}
+/* apply the same style to codemirror */
+.cm-s-ipython span.cm-keyword {
+  color: #008000;
+  font-weight: bold;
+}
+.cm-s-ipython span.cm-atom {
+  color: #88F;
+}
+.cm-s-ipython span.cm-number {
+  color: #080;
+}
+.cm-s-ipython span.cm-def {
+  color: #00f;
+}
+.cm-s-ipython span.cm-variable {
+  color: #000;
+}
+.cm-s-ipython span.cm-operator {
+  color: #AA22FF;
+  font-weight: bold;
+}
+.cm-s-ipython span.cm-variable-2 {
+  color: #1a1a1a;
+}
+.cm-s-ipython span.cm-variable-3 {
+  color: #333333;
+}
+.cm-s-ipython span.cm-comment {
+  color: #408080;
+  font-style: italic;
+}
+.cm-s-ipython span.cm-string {
+  color: #BA2121;
+}
+.cm-s-ipython span.cm-string-2 {
+  color: #f50;
+}
+.cm-s-ipython span.cm-meta {
+  color: #AA22FF;
+}
+.cm-s-ipython span.cm-qualifier {
+  color: #555;
+}
+.cm-s-ipython span.cm-builtin {
+  color: #008000;
+}
+.cm-s-ipython span.cm-bracket {
+  color: #997;
+}
+.cm-s-ipython span.cm-tag {
+  color: #170;
+}
+.cm-s-ipython span.cm-attribute {
+  color: #00c;
+}
+.cm-s-ipython span.cm-header {
+  color: blue;
+}
+.cm-s-ipython span.cm-quote {
+  color: #090;
+}
+.cm-s-ipython span.cm-link {
+  color: #00c;
+}
+.cm-s-ipython span.cm-error {
+  color: #f00;
+}
+.cm-s-ipython span.cm-tab {
+  background: url();
+  background-position: right;
+  background-repeat: no-repeat;
+}
+div.output_wrapper {
+  /* this position must be relative to enable descendents to be absolute within it */
+  position: relative;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+  z-index: 1;
+}
+/* class for the output area when it should be height-limited */
+div.output_scroll {
+  /* ideally, this would be max-height, but FF barfs all over that */
+  height: 24em;
+  /* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
+  width: 100%;
+  overflow: auto;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
+  box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
+  display: block;
+}
+/* output div while it is collapsed */
+div.output_collapsed {
+  margin: 0px;
+  padding: 0px;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+}
+div.out_prompt_overlay {
+  height: 100%;
+  padding: 0px 0.4em;
+  position: absolute;
+  border-radius: 2px;
+}
+div.out_prompt_overlay:hover {
+  /* use inner shadow to get border that is computed the same on WebKit/FF */
+  -webkit-box-shadow: inset 0 0 1px #000;
+  box-shadow: inset 0 0 1px #000;
+  background: rgba(240, 240, 240, 0.5);
+}
+div.output_prompt {
+  color: #D84315;
+}
+/* This class is the outer container of all output sections. */
+div.output_area {
+  padding: 0px;
+  page-break-inside: avoid;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+div.output_area .MathJax_Display {
+  text-align: left !important;
+}
+div.output_area .rendered_html table {
+  margin-left: 0;
+  margin-right: 0;
+}
+div.output_area .rendered_html img {
+  margin-left: 0;
+  margin-right: 0;
+}
+div.output_area img,
+div.output_area svg {
+  max-width: 100%;
+  height: auto;
+}
+div.output_area img.unconfined,
+div.output_area svg.unconfined {
+  max-width: none;
+}
+/* This is needed to protect the pre formating from global settings such
+   as that of bootstrap */
+.output {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+}
+@media (max-width: 540px) {
+  div.output_area {
+    /* Old browsers */
+    display: -webkit-box;
+    -webkit-box-orient: vertical;
+    -webkit-box-align: stretch;
+    display: -moz-box;
+    -moz-box-orient: vertical;
+    -moz-box-align: stretch;
+    display: box;
+    box-orient: vertical;
+    box-align: stretch;
+    /* Modern browsers */
+    display: flex;
+    flex-direction: column;
+    align-items: stretch;
+  }
+}
+div.output_area pre {
+  margin: 0;
+  padding: 0;
+  border: 0;
+  vertical-align: baseline;
+  color: black;
+  background-color: transparent;
+  border-radius: 0;
+}
+/* This class is for the output subarea inside the output_area and after
+   the prompt div. */
+div.output_subarea {
+  overflow-x: auto;
+  padding: 0.4em;
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+  max-width: calc(100% - 14ex);
+}
+div.output_scroll div.output_subarea {
+  overflow-x: visible;
+}
+/* The rest of the output_* classes are for special styling of the different
+   output types */
+/* all text output has this class: */
+div.output_text {
+  text-align: left;
+  color: #000;
+  /* This has to match that of the the CodeMirror class line-height below */
+  line-height: 1.21429em;
+}
+/* stdout/stderr are 'text' as well as 'stream', but execute_result/error are *not* streams */
+div.output_stderr {
+  background: #fdd;
+  /* very light red background for stderr */
+}
+div.output_latex {
+  text-align: left;
+}
+/* Empty output_javascript divs should have no height */
+div.output_javascript:empty {
+  padding: 0;
+}
+.js-error {
+  color: darkred;
+}
+/* raw_input styles */
+div.raw_input_container {
+  line-height: 1.21429em;
+  padding-top: 5px;
+}
+pre.raw_input_prompt {
+  /* nothing needed here. */
+}
+input.raw_input {
+  font-family: monospace;
+  font-size: inherit;
+  color: inherit;
+  width: auto;
+  /* make sure input baseline aligns with prompt */
+  vertical-align: baseline;
+  /* padding + margin = 0.5em between prompt and cursor */
+  padding: 0em 0.25em;
+  margin: 0em 0.25em;
+}
+input.raw_input:focus {
+  box-shadow: none;
+}
+p.p-space {
+  margin-bottom: 10px;
+}
+div.output_unrecognized {
+  padding: 5px;
+  font-weight: bold;
+  color: red;
+}
+div.output_unrecognized a {
+  color: inherit;
+  text-decoration: none;
+}
+div.output_unrecognized a:hover {
+  color: inherit;
+  text-decoration: none;
+}
+.rendered_html {
+  color: #000;
+  /* any extras will just be numbers: */
+}
+.rendered_html em {
+  font-style: italic;
+}
+.rendered_html strong {
+  font-weight: bold;
+}
+.rendered_html u {
+  text-decoration: underline;
+}
+.rendered_html :link {
+  text-decoration: underline;
+}
+.rendered_html :visited {
+  text-decoration: underline;
+}
+.rendered_html h1 {
+  font-size: 185.7%;
+  margin: 1.08em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+}
+.rendered_html h2 {
+  font-size: 157.1%;
+  margin: 1.27em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+}
+.rendered_html h3 {
+  font-size: 128.6%;
+  margin: 1.55em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+}
+.rendered_html h4 {
+  font-size: 100%;
+  margin: 2em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+}
+.rendered_html h5 {
+  font-size: 100%;
+  margin: 2em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+  font-style: italic;
+}
+.rendered_html h6 {
+  font-size: 100%;
+  margin: 2em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+  font-style: italic;
+}
+.rendered_html h1:first-child {
+  margin-top: 0.538em;
+}
+.rendered_html h2:first-child {
+  margin-top: 0.636em;
+}
+.rendered_html h3:first-child {
+  margin-top: 0.777em;
+}
+.rendered_html h4:first-child {
+  margin-top: 1em;
+}
+.rendered_html h5:first-child {
+  margin-top: 1em;
+}
+.rendered_html h6:first-child {
+  margin-top: 1em;
+}
+.rendered_html ul {
+  list-style: disc;
+  margin: 0em 2em;
+  padding-left: 0px;
+}
+.rendered_html ul ul {
+  list-style: square;
+  margin: 0em 2em;
+}
+.rendered_html ul ul ul {
+  list-style: circle;
+  margin: 0em 2em;
+}
+.rendered_html ol {
+  list-style: decimal;
+  margin: 0em 2em;
+  padding-left: 0px;
+}
+.rendered_html ol ol {
+  list-style: upper-alpha;
+  margin: 0em 2em;
+}
+.rendered_html ol ol ol {
+  list-style: lower-alpha;
+  margin: 0em 2em;
+}
+.rendered_html ol ol ol ol {
+  list-style: lower-roman;
+  margin: 0em 2em;
+}
+.rendered_html ol ol ol ol ol {
+  list-style: decimal;
+  margin: 0em 2em;
+}
+.rendered_html * + ul {
+  margin-top: 1em;
+}
+.rendered_html * + ol {
+  margin-top: 1em;
+}
+.rendered_html hr {
+  color: black;
+  background-color: black;
+}
+.rendered_html pre {
+  margin: 1em 2em;
+}
+.rendered_html pre,
+.rendered_html code {
+  border: 0;
+  background-color: #fff;
+  color: #000;
+  font-size: 100%;
+  padding: 0px;
+}
+.rendered_html blockquote {
+  margin: 1em 2em;
+}
+.rendered_html table {
+  margin-left: auto;
+  margin-right: auto;
+  border: 1px solid black;
+  border-collapse: collapse;
+}
+.rendered_html tr,
+.rendered_html th,
+.rendered_html td {
+  border: 1px solid black;
+  border-collapse: collapse;
+  margin: 1em 2em;
+}
+.rendered_html td,
+.rendered_html th {
+  text-align: left;
+  vertical-align: middle;
+  padding: 4px;
+}
+.rendered_html th {
+  font-weight: bold;
+}
+.rendered_html * + table {
+  margin-top: 1em;
+}
+.rendered_html p {
+  text-align: left;
+}
+.rendered_html * + p {
+  margin-top: 1em;
+}
+.rendered_html img {
+  display: block;
+  margin-left: auto;
+  margin-right: auto;
+}
+.rendered_html * + img {
+  margin-top: 1em;
+}
+.rendered_html img,
+.rendered_html svg {
+  max-width: 100%;
+  height: auto;
+}
+.rendered_html img.unconfined,
+.rendered_html svg.unconfined {
+  max-width: none;
+}
+div.text_cell {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+@media (max-width: 540px) {
+  div.text_cell > div.prompt {
+    display: none;
+  }
+}
+div.text_cell_render {
+  /*font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;*/
+  outline: none;
+  resize: none;
+  width: inherit;
+  border-style: none;
+  padding: 0.5em 0.5em 0.5em 0.4em;
+  color: #000;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+a.anchor-link:link {
+  text-decoration: none;
+  padding: 0px 20px;
+  visibility: hidden;
+}
+h1:hover .anchor-link,
+h2:hover .anchor-link,
+h3:hover .anchor-link,
+h4:hover .anchor-link,
+h5:hover .anchor-link,
+h6:hover .anchor-link {
+  visibility: visible;
+}
+.text_cell.rendered .input_area {
+  display: none;
+}
+.text_cell.rendered .rendered_html {
+  overflow-x: auto;
+  overflow-y: hidden;
+}
+.text_cell.unrendered .text_cell_render {
+  display: none;
+}
+.cm-header-1,
+.cm-header-2,
+.cm-header-3,
+.cm-header-4,
+.cm-header-5,
+.cm-header-6 {
+  font-weight: bold;
+  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+}
+.cm-header-1 {
+  font-size: 185.7%;
+}
+.cm-header-2 {
+  font-size: 157.1%;
+}
+.cm-header-3 {
+  font-size: 128.6%;
+}
+.cm-header-4 {
+  font-size: 110%;
+}
+.cm-header-5 {
+  font-size: 100%;
+  font-style: italic;
+}
+.cm-header-6 {
+  font-size: 100%;
+  font-style: italic;
+}
+/*!
+*
+* IPython notebook webapp
+*
+*/
+@media (max-width: 767px) {
+  .notebook_app {
+    padding-left: 0px;
+    padding-right: 0px;
+  }
+}
+#ipython-main-app {
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  height: 100%;
+}
+div#notebook_panel {
+  margin: 0px;
+  padding: 0px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  height: 100%;
+}
+div#notebook {
+  font-size: 14px;
+  line-height: 20px;
+  overflow-y: hidden;
+  overflow-x: auto;
+  width: 100%;
+  /* This spaces the page away from the edge of the notebook area */
+  padding-top: 20px;
+  margin: 0px;
+  outline: none;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  min-height: 100%;
+}
+@media not print {
+  #notebook-container {
+    padding: 15px;
+    background-color: #fff;
+    min-height: 0;
+    -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+    box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  }
+}
+@media print {
+  #notebook-container {
+    width: 100%;
+  }
+}
+div.ui-widget-content {
+  border: 1px solid #ababab;
+  outline: none;
+}
+pre.dialog {
+  background-color: #f7f7f7;
+  border: 1px solid #ddd;
+  border-radius: 2px;
+  padding: 0.4em;
+  padding-left: 2em;
+}
+p.dialog {
+  padding: 0.2em;
+}
+/* Word-wrap output correctly.  This is the CSS3 spelling, though Firefox seems
+   to not honor it correctly.  Webkit browsers (Chrome, rekonq, Safari) do.
+ */
+pre,
+code,
+kbd,
+samp {
+  white-space: pre-wrap;
+}
+#fonttest {
+  font-family: monospace;
+}
+p {
+  margin-bottom: 0;
+}
+.end_space {
+  min-height: 100px;
+  transition: height .2s ease;
+}
+.notebook_app > #header {
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+}
+@media not print {
+  .notebook_app {
+    background-color: #EEE;
+  }
+}
+kbd {
+  border-style: solid;
+  border-width: 1px;
+  box-shadow: none;
+  margin: 2px;
+  padding-left: 2px;
+  padding-right: 2px;
+  padding-top: 1px;
+  padding-bottom: 1px;
+}
+/* CSS for the cell toolbar */
+.celltoolbar {
+  border: thin solid #CFCFCF;
+  border-bottom: none;
+  background: #EEE;
+  border-radius: 2px 2px 0px 0px;
+  width: 100%;
+  height: 29px;
+  padding-right: 4px;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+  /* Old browsers */
+  -webkit-box-pack: end;
+  -moz-box-pack: end;
+  box-pack: end;
+  /* Modern browsers */
+  justify-content: flex-end;
+  display: -webkit-flex;
+}
+@media print {
+  .celltoolbar {
+    display: none;
+  }
+}
+.ctb_hideshow {
+  display: none;
+  vertical-align: bottom;
+}
+/* ctb_show is added to the ctb_hideshow div to show the cell toolbar.
+   Cell toolbars are only shown when the ctb_global_show class is also set.
+*/
+.ctb_global_show .ctb_show.ctb_hideshow {
+  display: block;
+}
+.ctb_global_show .ctb_show + .input_area,
+.ctb_global_show .ctb_show + div.text_cell_input,
+.ctb_global_show .ctb_show ~ div.text_cell_render {
+  border-top-right-radius: 0px;
+  border-top-left-radius: 0px;
+}
+.ctb_global_show .ctb_show ~ div.text_cell_render {
+  border: 1px solid #cfcfcf;
+}
+.celltoolbar {
+  font-size: 87%;
+  padding-top: 3px;
+}
+.celltoolbar select {
+  display: block;
+  width: 100%;
+  height: 32px;
+  padding: 6px 12px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  color: #555555;
+  background-color: #fff;
+  background-image: none;
+  border: 1px solid #ccc;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  height: 30px;
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+  width: inherit;
+  font-size: inherit;
+  height: 22px;
+  padding: 0px;
+  display: inline-block;
+}
+.celltoolbar select:focus {
+  border-color: #66afe9;
+  outline: 0;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+  box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+}
+.celltoolbar select::-moz-placeholder {
+  color: #999;
+  opacity: 1;
+}
+.celltoolbar select:-ms-input-placeholder {
+  color: #999;
+}
+.celltoolbar select::-webkit-input-placeholder {
+  color: #999;
+}
+.celltoolbar select::-ms-expand {
+  border: 0;
+  background-color: transparent;
+}
+.celltoolbar select[disabled],
+.celltoolbar select[readonly],
+fieldset[disabled] .celltoolbar select {
+  background-color: #eeeeee;
+  opacity: 1;
+}
+.celltoolbar select[disabled],
+fieldset[disabled] .celltoolbar select {
+  cursor: not-allowed;
+}
+textarea.celltoolbar select {
+  height: auto;
+}
+select.celltoolbar select {
+  height: 30px;
+  line-height: 30px;
+}
+textarea.celltoolbar select,
+select[multiple].celltoolbar select {
+  height: auto;
+}
+.celltoolbar label {
+  margin-left: 5px;
+  margin-right: 5px;
+}
+.completions {
+  position: absolute;
+  z-index: 110;
+  overflow: hidden;
+  border: 1px solid #ababab;
+  border-radius: 2px;
+  -webkit-box-shadow: 0px 6px 10px -1px #adadad;
+  box-shadow: 0px 6px 10px -1px #adadad;
+  line-height: 1;
+}
+.completions select {
+  background: white;
+  outline: none;
+  border: none;
+  padding: 0px;
+  margin: 0px;
+  overflow: auto;
+  font-family: monospace;
+  font-size: 110%;
+  color: #000;
+  width: auto;
+}
+.completions select option.context {
+  color: #286090;
+}
+#kernel_logo_widget {
+  float: right !important;
+  float: right;
+}
+#kernel_logo_widget .current_kernel_logo {
+  display: none;
+  margin-top: -1px;
+  margin-bottom: -1px;
+  width: 32px;
+  height: 32px;
+}
+#menubar {
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  margin-top: 1px;
+}
+#menubar .navbar {
+  border-top: 1px;
+  border-radius: 0px 0px 2px 2px;
+  margin-bottom: 0px;
+}
+#menubar .navbar-toggle {
+  float: left;
+  padding-top: 7px;
+  padding-bottom: 7px;
+  border: none;
+}
+#menubar .navbar-collapse {
+  clear: left;
+}
+.nav-wrapper {
+  border-bottom: 1px solid #e7e7e7;
+}
+i.menu-icon {
+  padding-top: 4px;
+}
+ul#help_menu li a {
+  overflow: hidden;
+  padding-right: 2.2em;
+}
+ul#help_menu li a i {
+  margin-right: -1.2em;
+}
+.dropdown-submenu {
+  position: relative;
+}
+.dropdown-submenu > .dropdown-menu {
+  top: 0;
+  left: 100%;
+  margin-top: -6px;
+  margin-left: -1px;
+}
+.dropdown-submenu:hover > .dropdown-menu {
+  display: block;
+}
+.dropdown-submenu > a:after {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  display: block;
+  content: "\f0da";
+  float: right;
+  color: #333333;
+  margin-top: 2px;
+  margin-right: -10px;
+}
+.dropdown-submenu > a:after.pull-left {
+  margin-right: .3em;
+}
+.dropdown-submenu > a:after.pull-right {
+  margin-left: .3em;
+}
+.dropdown-submenu:hover > a:after {
+  color: #262626;
+}
+.dropdown-submenu.pull-left {
+  float: none;
+}
+.dropdown-submenu.pull-left > .dropdown-menu {
+  left: -100%;
+  margin-left: 10px;
+}
+#notification_area {
+  float: right !important;
+  float: right;
+  z-index: 10;
+}
+.indicator_area {
+  float: right !important;
+  float: right;
+  color: #777;
+  margin-left: 5px;
+  margin-right: 5px;
+  width: 11px;
+  z-index: 10;
+  text-align: center;
+  width: auto;
+}
+#kernel_indicator {
+  float: right !important;
+  float: right;
+  color: #777;
+  margin-left: 5px;
+  margin-right: 5px;
+  width: 11px;
+  z-index: 10;
+  text-align: center;
+  width: auto;
+  border-left: 1px solid;
+}
+#kernel_indicator .kernel_indicator_name {
+  padding-left: 5px;
+  padding-right: 5px;
+}
+#modal_indicator {
+  float: right !important;
+  float: right;
+  color: #777;
+  margin-left: 5px;
+  margin-right: 5px;
+  width: 11px;
+  z-index: 10;
+  text-align: center;
+  width: auto;
+}
+#readonly-indicator {
+  float: right !important;
+  float: right;
+  color: #777;
+  margin-left: 5px;
+  margin-right: 5px;
+  width: 11px;
+  z-index: 10;
+  text-align: center;
+  width: auto;
+  margin-top: 2px;
+  margin-bottom: 0px;
+  margin-left: 0px;
+  margin-right: 0px;
+  display: none;
+}
+.modal_indicator:before {
+  width: 1.28571429em;
+  text-align: center;
+}
+.edit_mode .modal_indicator:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f040";
+}
+.edit_mode .modal_indicator:before.pull-left {
+  margin-right: .3em;
+}
+.edit_mode .modal_indicator:before.pull-right {
+  margin-left: .3em;
+}
+.command_mode .modal_indicator:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: ' ';
+}
+.command_mode .modal_indicator:before.pull-left {
+  margin-right: .3em;
+}
+.command_mode .modal_indicator:before.pull-right {
+  margin-left: .3em;
+}
+.kernel_idle_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f10c";
+}
+.kernel_idle_icon:before.pull-left {
+  margin-right: .3em;
+}
+.kernel_idle_icon:before.pull-right {
+  margin-left: .3em;
+}
+.kernel_busy_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f111";
+}
+.kernel_busy_icon:before.pull-left {
+  margin-right: .3em;
+}
+.kernel_busy_icon:before.pull-right {
+  margin-left: .3em;
+}
+.kernel_dead_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f1e2";
+}
+.kernel_dead_icon:before.pull-left {
+  margin-right: .3em;
+}
+.kernel_dead_icon:before.pull-right {
+  margin-left: .3em;
+}
+.kernel_disconnected_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f127";
+}
+.kernel_disconnected_icon:before.pull-left {
+  margin-right: .3em;
+}
+.kernel_disconnected_icon:before.pull-right {
+  margin-left: .3em;
+}
+.notification_widget {
+  color: #777;
+  z-index: 10;
+  background: rgba(240, 240, 240, 0.5);
+  margin-right: 4px;
+  color: #333;
+  background-color: #fff;
+  border-color: #ccc;
+}
+.notification_widget:focus,
+.notification_widget.focus {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #8c8c8c;
+}
+.notification_widget:hover {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+.notification_widget:active,
+.notification_widget.active,
+.open > .dropdown-toggle.notification_widget {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+.notification_widget:active:hover,
+.notification_widget.active:hover,
+.open > .dropdown-toggle.notification_widget:hover,
+.notification_widget:active:focus,
+.notification_widget.active:focus,
+.open > .dropdown-toggle.notification_widget:focus,
+.notification_widget:active.focus,
+.notification_widget.active.focus,
+.open > .dropdown-toggle.notification_widget.focus {
+  color: #333;
+  background-color: #d4d4d4;
+  border-color: #8c8c8c;
+}
+.notification_widget:active,
+.notification_widget.active,
+.open > .dropdown-toggle.notification_widget {
+  background-image: none;
+}
+.notification_widget.disabled:hover,
+.notification_widget[disabled]:hover,
+fieldset[disabled] .notification_widget:hover,
+.notification_widget.disabled:focus,
+.notification_widget[disabled]:focus,
+fieldset[disabled] .notification_widget:focus,
+.notification_widget.disabled.focus,
+.notification_widget[disabled].focus,
+fieldset[disabled] .notification_widget.focus {
+  background-color: #fff;
+  border-color: #ccc;
+}
+.notification_widget .badge {
+  color: #fff;
+  background-color: #333;
+}
+.notification_widget.warning {
+  color: #fff;
+  background-color: #f0ad4e;
+  border-color: #eea236;
+}
+.notification_widget.warning:focus,
+.notification_widget.warning.focus {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #985f0d;
+}
+.notification_widget.warning:hover {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #d58512;
+}
+.notification_widget.warning:active,
+.notification_widget.warning.active,
+.open > .dropdown-toggle.notification_widget.warning {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #d58512;
+}
+.notification_widget.warning:active:hover,
+.notification_widget.warning.active:hover,
+.open > .dropdown-toggle.notification_widget.warning:hover,
+.notification_widget.warning:active:focus,
+.notification_widget.warning.active:focus,
+.open > .dropdown-toggle.notification_widget.warning:focus,
+.notification_widget.warning:active.focus,
+.notification_widget.warning.active.focus,
+.open > .dropdown-toggle.notification_widget.warning.focus {
+  color: #fff;
+  background-color: #d58512;
+  border-color: #985f0d;
+}
+.notification_widget.warning:active,
+.notification_widget.warning.active,
+.open > .dropdown-toggle.notification_widget.warning {
+  background-image: none;
+}
+.notification_widget.warning.disabled:hover,
+.notification_widget.warning[disabled]:hover,
+fieldset[disabled] .notification_widget.warning:hover,
+.notification_widget.warning.disabled:focus,
+.notification_widget.warning[disabled]:focus,
+fieldset[disabled] .notification_widget.warning:focus,
+.notification_widget.warning.disabled.focus,
+.notification_widget.warning[disabled].focus,
+fieldset[disabled] .notification_widget.warning.focus {
+  background-color: #f0ad4e;
+  border-color: #eea236;
+}
+.notification_widget.warning .badge {
+  color: #f0ad4e;
+  background-color: #fff;
+}
+.notification_widget.success {
+  color: #fff;
+  background-color: #5cb85c;
+  border-color: #4cae4c;
+}
+.notification_widget.success:focus,
+.notification_widget.success.focus {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #255625;
+}
+.notification_widget.success:hover {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #398439;
+}
+.notification_widget.success:active,
+.notification_widget.success.active,
+.open > .dropdown-toggle.notification_widget.success {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #398439;
+}
+.notification_widget.success:active:hover,
+.notification_widget.success.active:hover,
+.open > .dropdown-toggle.notification_widget.success:hover,
+.notification_widget.success:active:focus,
+.notification_widget.success.active:focus,
+.open > .dropdown-toggle.notification_widget.success:focus,
+.notification_widget.success:active.focus,
+.notification_widget.success.active.focus,
+.open > .dropdown-toggle.notification_widget.success.focus {
+  color: #fff;
+  background-color: #398439;
+  border-color: #255625;
+}
+.notification_widget.success:active,
+.notification_widget.success.active,
+.open > .dropdown-toggle.notification_widget.success {
+  background-image: none;
+}
+.notification_widget.success.disabled:hover,
+.notification_widget.success[disabled]:hover,
+fieldset[disabled] .notification_widget.success:hover,
+.notification_widget.success.disabled:focus,
+.notification_widget.success[disabled]:focus,
+fieldset[disabled] .notification_widget.success:focus,
+.notification_widget.success.disabled.focus,
+.notification_widget.success[disabled].focus,
+fieldset[disabled] .notification_widget.success.focus {
+  background-color: #5cb85c;
+  border-color: #4cae4c;
+}
+.notification_widget.success .badge {
+  color: #5cb85c;
+  background-color: #fff;
+}
+.notification_widget.info {
+  color: #fff;
+  background-color: #5bc0de;
+  border-color: #46b8da;
+}
+.notification_widget.info:focus,
+.notification_widget.info.focus {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #1b6d85;
+}
+.notification_widget.info:hover {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #269abc;
+}
+.notification_widget.info:active,
+.notification_widget.info.active,
+.open > .dropdown-toggle.notification_widget.info {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #269abc;
+}
+.notification_widget.info:active:hover,
+.notification_widget.info.active:hover,
+.open > .dropdown-toggle.notification_widget.info:hover,
+.notification_widget.info:active:focus,
+.notification_widget.info.active:focus,
+.open > .dropdown-toggle.notification_widget.info:focus,
+.notification_widget.info:active.focus,
+.notification_widget.info.active.focus,
+.open > .dropdown-toggle.notification_widget.info.focus {
+  color: #fff;
+  background-color: #269abc;
+  border-color: #1b6d85;
+}
+.notification_widget.info:active,
+.notification_widget.info.active,
+.open > .dropdown-toggle.notification_widget.info {
+  background-image: none;
+}
+.notification_widget.info.disabled:hover,
+.notification_widget.info[disabled]:hover,
+fieldset[disabled] .notification_widget.info:hover,
+.notification_widget.info.disabled:focus,
+.notification_widget.info[disabled]:focus,
+fieldset[disabled] .notification_widget.info:focus,
+.notification_widget.info.disabled.focus,
+.notification_widget.info[disabled].focus,
+fieldset[disabled] .notification_widget.info.focus {
+  background-color: #5bc0de;
+  border-color: #46b8da;
+}
+.notification_widget.info .badge {
+  color: #5bc0de;
+  background-color: #fff;
+}
+.notification_widget.danger {
+  color: #fff;
+  background-color: #d9534f;
+  border-color: #d43f3a;
+}
+.notification_widget.danger:focus,
+.notification_widget.danger.focus {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #761c19;
+}
+.notification_widget.danger:hover {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #ac2925;
+}
+.notification_widget.danger:active,
+.notification_widget.danger.active,
+.open > .dropdown-toggle.notification_widget.danger {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #ac2925;
+}
+.notification_widget.danger:active:hover,
+.notification_widget.danger.active:hover,
+.open > .dropdown-toggle.notification_widget.danger:hover,
+.notification_widget.danger:active:focus,
+.notification_widget.danger.active:focus,
+.open > .dropdown-toggle.notification_widget.danger:focus,
+.notification_widget.danger:active.focus,
+.notification_widget.danger.active.focus,
+.open > .dropdown-toggle.notification_widget.danger.focus {
+  color: #fff;
+  background-color: #ac2925;
+  border-color: #761c19;
+}
+.notification_widget.danger:active,
+.notification_widget.danger.active,
+.open > .dropdown-toggle.notification_widget.danger {
+  background-image: none;
+}
+.notification_widget.danger.disabled:hover,
+.notification_widget.danger[disabled]:hover,
+fieldset[disabled] .notification_widget.danger:hover,
+.notification_widget.danger.disabled:focus,
+.notification_widget.danger[disabled]:focus,
+fieldset[disabled] .notification_widget.danger:focus,
+.notification_widget.danger.disabled.focus,
+.notification_widget.danger[disabled].focus,
+fieldset[disabled] .notification_widget.danger.focus {
+  background-color: #d9534f;
+  border-color: #d43f3a;
+}
+.notification_widget.danger .badge {
+  color: #d9534f;
+  background-color: #fff;
+}
+div#pager {
+  background-color: #fff;
+  font-size: 14px;
+  line-height: 20px;
+  overflow: hidden;
+  display: none;
+  position: fixed;
+  bottom: 0px;
+  width: 100%;
+  max-height: 50%;
+  padding-top: 8px;
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  /* Display over codemirror */
+  z-index: 100;
+  /* Hack which prevents jquery ui resizable from changing top. */
+  top: auto !important;
+}
+div#pager pre {
+  line-height: 1.21429em;
+  color: #000;
+  background-color: #f7f7f7;
+  padding: 0.4em;
+}
+div#pager #pager-button-area {
+  position: absolute;
+  top: 8px;
+  right: 20px;
+}
+div#pager #pager-contents {
+  position: relative;
+  overflow: auto;
+  width: 100%;
+  height: 100%;
+}
+div#pager #pager-contents #pager-container {
+  position: relative;
+  padding: 15px 0px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+div#pager .ui-resizable-handle {
+  top: 0px;
+  height: 8px;
+  background: #f7f7f7;
+  border-top: 1px solid #cfcfcf;
+  border-bottom: 1px solid #cfcfcf;
+  /* This injects handle bars (a short, wide = symbol) for 
+        the resize handle. */
+}
+div#pager .ui-resizable-handle::after {
+  content: '';
+  top: 2px;
+  left: 50%;
+  height: 3px;
+  width: 30px;
+  margin-left: -15px;
+  position: absolute;
+  border-top: 1px solid #cfcfcf;
+}
+.quickhelp {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+  line-height: 1.8em;
+}
+.shortcut_key {
+  display: inline-block;
+  width: 20ex;
+  text-align: right;
+  font-family: monospace;
+}
+.shortcut_descr {
+  display: inline-block;
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+}
+span.save_widget {
+  margin-top: 6px;
+}
+span.save_widget span.filename {
+  height: 1em;
+  line-height: 1em;
+  padding: 3px;
+  margin-left: 16px;
+  border: none;
+  font-size: 146.5%;
+  border-radius: 2px;
+}
+span.save_widget span.filename:hover {
+  background-color: #e6e6e6;
+}
+span.checkpoint_status,
+span.autosave_status {
+  font-size: small;
+}
+@media (max-width: 767px) {
+  span.save_widget {
+    font-size: small;
+  }
+  span.checkpoint_status,
+  span.autosave_status {
+    display: none;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  span.checkpoint_status {
+    display: none;
+  }
+  span.autosave_status {
+    font-size: x-small;
+  }
+}
+.toolbar {
+  padding: 0px;
+  margin-left: -5px;
+  margin-top: 2px;
+  margin-bottom: 5px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+.toolbar select,
+.toolbar label {
+  width: auto;
+  vertical-align: middle;
+  margin-right: 2px;
+  margin-bottom: 0px;
+  display: inline;
+  font-size: 92%;
+  margin-left: 0.3em;
+  margin-right: 0.3em;
+  padding: 0px;
+  padding-top: 3px;
+}
+.toolbar .btn {
+  padding: 2px 8px;
+}
+.toolbar .btn-group {
+  margin-top: 0px;
+  margin-left: 5px;
+}
+#maintoolbar {
+  margin-bottom: -3px;
+  margin-top: -8px;
+  border: 0px;
+  min-height: 27px;
+  margin-left: 0px;
+  padding-top: 11px;
+  padding-bottom: 3px;
+}
+#maintoolbar .navbar-text {
+  float: none;
+  vertical-align: middle;
+  text-align: right;
+  margin-left: 5px;
+  margin-right: 0px;
+  margin-top: 0px;
+}
+.select-xs {
+  height: 24px;
+}
+.pulse,
+.dropdown-menu > li > a.pulse,
+li.pulse > a.dropdown-toggle,
+li.pulse.open > a.dropdown-toggle {
+  background-color: #F37626;
+  color: white;
+}
+/**
+ * Primary styles
+ *
+ * Author: Jupyter Development Team
+ */
+/** WARNING IF YOU ARE EDITTING THIS FILE, if this is a .css file, It has a lot
+ * of chance of beeing generated from the ../less/[samename].less file, you can
+ * try to get back the less file by reverting somme commit in history
+ **/
+/*
+ * We'll try to get something pretty, so we
+ * have some strange css to have the scroll bar on
+ * the left with fix button on the top right of the tooltip
+ */
+@-moz-keyframes fadeOut {
+  from {
+    opacity: 1;
+  }
+  to {
+    opacity: 0;
+  }
+}
+@-webkit-keyframes fadeOut {
+  from {
+    opacity: 1;
+  }
+  to {
+    opacity: 0;
+  }
+}
+@-moz-keyframes fadeIn {
+  from {
+    opacity: 0;
+  }
+  to {
+    opacity: 1;
+  }
+}
+@-webkit-keyframes fadeIn {
+  from {
+    opacity: 0;
+  }
+  to {
+    opacity: 1;
+  }
+}
+/*properties of tooltip after "expand"*/
+.bigtooltip {
+  overflow: auto;
+  height: 200px;
+  -webkit-transition-property: height;
+  -webkit-transition-duration: 500ms;
+  -moz-transition-property: height;
+  -moz-transition-duration: 500ms;
+  transition-property: height;
+  transition-duration: 500ms;
+}
+/*properties of tooltip before "expand"*/
+.smalltooltip {
+  -webkit-transition-property: height;
+  -webkit-transition-duration: 500ms;
+  -moz-transition-property: height;
+  -moz-transition-duration: 500ms;
+  transition-property: height;
+  transition-duration: 500ms;
+  text-overflow: ellipsis;
+  overflow: hidden;
+  height: 80px;
+}
+.tooltipbuttons {
+  position: absolute;
+  padding-right: 15px;
+  top: 0px;
+  right: 0px;
+}
+.tooltiptext {
+  /*avoid the button to overlap on some docstring*/
+  padding-right: 30px;
+}
+.ipython_tooltip {
+  max-width: 700px;
+  /*fade-in animation when inserted*/
+  -webkit-animation: fadeOut 400ms;
+  -moz-animation: fadeOut 400ms;
+  animation: fadeOut 400ms;
+  -webkit-animation: fadeIn 400ms;
+  -moz-animation: fadeIn 400ms;
+  animation: fadeIn 400ms;
+  vertical-align: middle;
+  background-color: #f7f7f7;
+  overflow: visible;
+  border: #ababab 1px solid;
+  outline: none;
+  padding: 3px;
+  margin: 0px;
+  padding-left: 7px;
+  font-family: monospace;
+  min-height: 50px;
+  -moz-box-shadow: 0px 6px 10px -1px #adadad;
+  -webkit-box-shadow: 0px 6px 10px -1px #adadad;
+  box-shadow: 0px 6px 10px -1px #adadad;
+  border-radius: 2px;
+  position: absolute;
+  z-index: 1000;
+}
+.ipython_tooltip a {
+  float: right;
+}
+.ipython_tooltip .tooltiptext pre {
+  border: 0;
+  border-radius: 0;
+  font-size: 100%;
+  background-color: #f7f7f7;
+}
+.pretooltiparrow {
+  left: 0px;
+  margin: 0px;
+  top: -16px;
+  width: 40px;
+  height: 16px;
+  overflow: hidden;
+  position: absolute;
+}
+.pretooltiparrow:before {
+  background-color: #f7f7f7;
+  border: 1px #ababab solid;
+  z-index: 11;
+  content: "";
+  position: absolute;
+  left: 15px;
+  top: 10px;
+  width: 25px;
+  height: 25px;
+  -webkit-transform: rotate(45deg);
+  -moz-transform: rotate(45deg);
+  -ms-transform: rotate(45deg);
+  -o-transform: rotate(45deg);
+}
+ul.typeahead-list i {
+  margin-left: -10px;
+  width: 18px;
+}
+ul.typeahead-list {
+  max-height: 80vh;
+  overflow: auto;
+}
+ul.typeahead-list > li > a {
+  /** Firefox bug **/
+  /* see https://github.com/jupyter/notebook/issues/559 */
+  white-space: normal;
+}
+.cmd-palette .modal-body {
+  padding: 7px;
+}
+.cmd-palette form {
+  background: white;
+}
+.cmd-palette input {
+  outline: none;
+}
+.no-shortcut {
+  display: none;
+}
+.command-shortcut:before {
+  content: "(command)";
+  padding-right: 3px;
+  color: #777777;
+}
+.edit-shortcut:before {
+  content: "(edit)";
+  padding-right: 3px;
+  color: #777777;
+}
+#find-and-replace #replace-preview .match,
+#find-and-replace #replace-preview .insert {
+  background-color: #BBDEFB;
+  border-color: #90CAF9;
+  border-style: solid;
+  border-width: 1px;
+  border-radius: 0px;
+}
+#find-and-replace #replace-preview .replace .match {
+  background-color: #FFCDD2;
+  border-color: #EF9A9A;
+  border-radius: 0px;
+}
+#find-and-replace #replace-preview .replace .insert {
+  background-color: #C8E6C9;
+  border-color: #A5D6A7;
+  border-radius: 0px;
+}
+#find-and-replace #replace-preview {
+  max-height: 60vh;
+  overflow: auto;
+}
+#find-and-replace #replace-preview pre {
+  padding: 5px 10px;
+}
+.terminal-app {
+  background: #EEE;
+}
+.terminal-app #header {
+  background: #fff;
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+}
+.terminal-app .terminal {
+  float: left;
+  font-family: monospace;
+  color: white;
+  background: black;
+  padding: 0.4em;
+  border-radius: 2px;
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4);
+}
+.terminal-app .terminal,
+.terminal-app .terminal dummy-screen {
+  line-height: 1em;
+  font-size: 14px;
+}
+.terminal-app .terminal-cursor {
+  color: black;
+  background: white;
+}
+.terminal-app #terminado-container {
+  margin-top: 20px;
+}
+/*# sourceMappingURL=style.min.css.map */
+    </style>
+<style type="text/css">
+    .highlight .hll { background-color: #ffffcc }
+.highlight  { background: #f8f8f8; }
+.highlight .c { color: #408080; font-style: italic } /* Comment */
+.highlight .err { border: 1px solid #FF0000 } /* Error */
+.highlight .k { color: #008000; font-weight: bold } /* Keyword */
+.highlight .o { color: #666666 } /* Operator */
+.highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
+.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
+.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
+.highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
+.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
+.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
+.highlight .gd { color: #A00000 } /* Generic.Deleted */
+.highlight .ge { font-style: italic } /* Generic.Emph */
+.highlight .gr { color: #FF0000 } /* Generic.Error */
+.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
+.highlight .gi { color: #00A000 } /* Generic.Inserted */
+.highlight .go { color: #888888 } /* Generic.Output */
+.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
+.highlight .gs { font-weight: bold } /* Generic.Strong */
+.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
+.highlight .gt { color: #0044DD } /* Generic.Traceback */
+.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
+.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
+.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
+.highlight .kp { color: #008000 } /* Keyword.Pseudo */
+.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
+.highlight .kt { color: #B00040 } /* Keyword.Type */
+.highlight .m { color: #666666 } /* Literal.Number */
+.highlight .s { color: #BA2121 } /* Literal.String */
+.highlight .na { color: #7D9029 } /* Name.Attribute */
+.highlight .nb { color: #008000 } /* Name.Builtin */
+.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
+.highlight .no { color: #880000 } /* Name.Constant */
+.highlight .nd { color: #AA22FF } /* Name.Decorator */
+.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
+.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
+.highlight .nf { color: #0000FF } /* Name.Function */
+.highlight .nl { color: #A0A000 } /* Name.Label */
+.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
+.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
+.highlight .nv { color: #19177C } /* Name.Variable */
+.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
+.highlight .w { color: #bbbbbb } /* Text.Whitespace */
+.highlight .mb { color: #666666 } /* Literal.Number.Bin */
+.highlight .mf { color: #666666 } /* Literal.Number.Float */
+.highlight .mh { color: #666666 } /* Literal.Number.Hex */
+.highlight .mi { color: #666666 } /* Literal.Number.Integer */
+.highlight .mo { color: #666666 } /* Literal.Number.Oct */
+.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
+.highlight .sc { color: #BA2121 } /* Literal.String.Char */
+.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
+.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
+.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
+.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
+.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
+.highlight .sx { color: #008000 } /* Literal.String.Other */
+.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
+.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
+.highlight .ss { color: #19177C } /* Literal.String.Symbol */
+.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
+.highlight .vc { color: #19177C } /* Name.Variable.Class */
+.highlight .vg { color: #19177C } /* Name.Variable.Global */
+.highlight .vi { color: #19177C } /* Name.Variable.Instance */
+.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
+    </style>
+<style type="text/css">
+    
+/* Temporary definitions which will become obsolete with Notebook release 5.0 */
+.ansi-black-fg { color: #3E424D; }
+.ansi-black-bg { background-color: #3E424D; }
+.ansi-black-intense-fg { color: #282C36; }
+.ansi-black-intense-bg { background-color: #282C36; }
+.ansi-red-fg { color: #E75C58; }
+.ansi-red-bg { background-color: #E75C58; }
+.ansi-red-intense-fg { color: #B22B31; }
+.ansi-red-intense-bg { background-color: #B22B31; }
+.ansi-green-fg { color: #00A250; }
+.ansi-green-bg { background-color: #00A250; }
+.ansi-green-intense-fg { color: #007427; }
+.ansi-green-intense-bg { background-color: #007427; }
+.ansi-yellow-fg { color: #DDB62B; }
+.ansi-yellow-bg { background-color: #DDB62B; }
+.ansi-yellow-intense-fg { color: #B27D12; }
+.ansi-yellow-intense-bg { background-color: #B27D12; }
+.ansi-blue-fg { color: #208FFB; }
+.ansi-blue-bg { background-color: #208FFB; }
+.ansi-blue-intense-fg { color: #0065CA; }
+.ansi-blue-intense-bg { background-color: #0065CA; }
+.ansi-magenta-fg { color: #D160C4; }
+.ansi-magenta-bg { background-color: #D160C4; }
+.ansi-magenta-intense-fg { color: #A03196; }
+.ansi-magenta-intense-bg { background-color: #A03196; }
+.ansi-cyan-fg { color: #60C6C8; }
+.ansi-cyan-bg { background-color: #60C6C8; }
+.ansi-cyan-intense-fg { color: #258F8F; }
+.ansi-cyan-intense-bg { background-color: #258F8F; }
+.ansi-white-fg { color: #C5C1B4; }
+.ansi-white-bg { background-color: #C5C1B4; }
+.ansi-white-intense-fg { color: #A1A6B2; }
+.ansi-white-intense-bg { background-color: #A1A6B2; }
+
+.ansi-bold { font-weight: bold; }
+
+    </style>
+
+
+<style type="text/css">
+/* Overrides of notebook CSS for static HTML export */
+body {
+  overflow: visible;
+  padding: 8px;
+}
+
+div#notebook {
+  overflow: visible;
+  border-top: none;
+}
+
+@media print {
+  div.cell {
+    display: block;
+    page-break-inside: avoid;
+  } 
+  div.output_wrapper { 
+    display: block;
+    page-break-inside: avoid; 
+  }
+  div.output { 
+    display: block;
+    page-break-inside: avoid; 
+  }
+}
+</style>
+
+<!-- Custom stylesheet, it must be in the same directory as the html file -->
+<link rel="stylesheet" href="custom.css">
+
+<!-- Loading mathjax macro -->
+<!-- Load mathjax -->
+    <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
+    <!-- MathJax configuration -->
+    <script type="text/x-mathjax-config">
+    MathJax.Hub.Config({
+        tex2jax: {
+            inlineMath: [ ['$','$'], ["\\(","\\)"] ],
+            displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
+            processEscapes: true,
+            processEnvironments: true
+        },
+        // Center justify equations in code and markdown cells. Elsewhere
+        // we use CSS to left justify single line equations in code cells.
+        displayAlign: 'center',
+        "HTML-CSS": {
+            styles: {'.MathJax_Display': {"margin": 0}},
+            linebreaks: { automatic: true }
+        }
+    });
+    </script>
+    <!-- End of mathjax configuration --></head>
+<body>
+  <div tabindex="-1" id="notebook" class="border-box-sizing">
+    <div class="container" id="notebook-container">
+
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h1 id="Identify-Fraud-from-Enron-Email-Dataset">Identify Fraud from Enron Email Dataset<a class="anchor-link" href="#Identify-Fraud-from-Enron-Email-Dataset">&#182;</a></h1><p>In 2000, Enron was one of the largest companies in the United States. By 2002, it had collapsed into bankruptcy due to widespread corporate fraud. In the resulting federal investigation, a significant amount of typically confidential information entered into the public record, including tens of thousands of emails and detailed financial data of top Enron executives. The Enron datasets comprising emails and financial data of Enron were made available to the public for research and analysis and can be downloaded from <a href="https://www.cs.cmu.edu/~./enron/">https://www.cs.cmu.edu/~./enron/</a>.</p>
+<p>The goal of this project is to use <em>machine learning</em> to build a POI (Person of Interest) identifier based on financial and email data made public. Here, 'person of interest' refers to a person who is charged by the law for committing a crime, in this case, the scandal at Enron.</p>
+<p>The overall work done for this project can be divided into four parts, a usual trend in Machine Learning:</p>
+<ol>
+<li><p><strong>Exploring the Enron Dataset:</strong> This involves data cleaning, outlier removal and analyzing.</p>
+</li>
+<li><p><strong>Feature Processing of the Enron Dataset:</strong> Includes creation, scaling, selection and transforming of features.</p>
+</li>
+<li><p><strong>Choosing the Algorithm(s):</strong> Multiple classification models are trained and tuned.</p>
+</li>
+<li><p><strong>Evaluation:</strong> Involves validation and overall performance check.</p>
+</li>
+</ol>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p><strong>Question 1: Summarize for us the goal of this project and how machine learning is useful in trying to accomplish it. As part of your answer, give some background on the dataset and how it can be used to answer the project question. Were there any outliers in the data when you got it, and how did you handle those?</strong></p>
+<p>The goal of the project was to identify Enron employees who may have committed fraud based on the public Enron financial and email dataset while exploring different machine learning algorithms and addressing various feature selection methods.</p>
+<p>The dataset had a total of 146 data points, and 18 of them were POIs in the original dataset. There are 20 features for each person in the dataset, 14 financial features, and 6 e-mail features. These features are analyzed and then fed into classification models. The classification models are then validated and compared to select the optimal classifier.</p>
+<p>Outliers were removed with the help of visualization of variables. This has been described in the section titled <a href='#outliers'>'Outlier Investigation & Analyzing the Features'.</a></p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[222]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">pickle</span>
+
+<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
+<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
+<span class="kn">from</span> <span class="nn">time</span> <span class="k">import</span> <span class="n">time</span>
+
+<span class="kn">from</span> <span class="nn">feature_format</span> <span class="k">import</span> <span class="n">featureFormat</span><span class="p">,</span> <span class="n">targetFeatureSplit</span>
+<span class="kn">from</span> <span class="nn">tester</span> <span class="k">import</span> <span class="n">dump_classifier_and_data</span>
+
+<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">accuracy_score</span><span class="p">,</span> <span class="n">precision_score</span><span class="p">,</span> <span class="n">recall_score</span><span class="p">,</span> <span class="n">f1_score</span>
+<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="k">import</span> <span class="n">GridSearchCV</span>
+
+<span class="kn">from</span> <span class="nn">matplotlib</span> <span class="k">import</span> <span class="n">pyplot</span> <span class="k">as</span> <span class="n">plt</span>
+<span class="kn">import</span> <span class="nn">seaborn</span> <span class="k">as</span> <span class="nn">sns</span>
+<span class="n">sns</span><span class="o">.</span><span class="n">set_style</span><span class="p">(</span><span class="s1">&#39;white&#39;</span><span class="p">)</span>
+
+<span class="kn">import</span> <span class="nn">warnings</span>
+<span class="n">warnings</span><span class="o">.</span><span class="n">filterwarnings</span><span class="p">(</span><span class="s1">&#39;ignore&#39;</span><span class="p">)</span>
+
+<span class="c1"># Load the dataset</span>
+<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s2">&quot;final_project_dataset.pkl&quot;</span><span class="p">,</span> <span class="s2">&quot;rb&quot;</span><span class="p">)</span> <span class="k">as</span> <span class="n">data_file</span><span class="p">:</span>
+    <span class="n">data_dict</span> <span class="o">=</span> <span class="n">pickle</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">data_file</span><span class="p">)</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h2 id="I.-Exploring-the-Enron-Dataset">I. Exploring the Enron Dataset<a class="anchor-link" href="#I.-Exploring-the-Enron-Dataset">&#182;</a></h2><ul>
+<li>The pickled Enron data is loaded as a <code>pandas</code> dataframe for easy anlysis of the dataset.</li>
+<li>The key i.e., the Enron employees name is used as the index of the pandas dataframe.</li>
+</ul>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[110]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Converting the given pickled Enron data to a pandas dataframe.</span>
+<span class="n">enron_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="o">.</span><span class="n">from_records</span><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">data_dict</span><span class="o">.</span><span class="n">values</span><span class="p">()))</span>
+
+<span class="c1"># Set the index of df to be the employees series:</span>
+<span class="n">employees</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">data_dict</span><span class="o">.</span><span class="n">keys</span><span class="p">()))</span>
+<span class="n">enron_df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="n">employees</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+<span class="n">enron_df</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[110]:</div>
+
+<div class="output_html rendered_html output_subarea output_execute_result">
+<div>
+<table border="1" class="dataframe">
+  <thead>
+    <tr style="text-align: right;">
+      <th></th>
+      <th>bonus</th>
+      <th>deferral_payments</th>
+      <th>deferred_income</th>
+      <th>director_fees</th>
+      <th>email_address</th>
+      <th>exercised_stock_options</th>
+      <th>expenses</th>
+      <th>from_messages</th>
+      <th>from_poi_to_this_person</th>
+      <th>from_this_person_to_poi</th>
+      <th>...</th>
+      <th>long_term_incentive</th>
+      <th>other</th>
+      <th>poi</th>
+      <th>restricted_stock</th>
+      <th>restricted_stock_deferred</th>
+      <th>salary</th>
+      <th>shared_receipt_with_poi</th>
+      <th>to_messages</th>
+      <th>total_payments</th>
+      <th>total_stock_value</th>
+    </tr>
+  </thead>
+  <tbody>
+    <tr>
+      <th>METTS MARK</th>
+      <td>600000</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>mark.metts@enron.com</td>
+      <td>NaN</td>
+      <td>94299</td>
+      <td>29</td>
+      <td>38</td>
+      <td>1</td>
+      <td>...</td>
+      <td>NaN</td>
+      <td>1740</td>
+      <td>False</td>
+      <td>585062</td>
+      <td>NaN</td>
+      <td>365788</td>
+      <td>702</td>
+      <td>807</td>
+      <td>1061827</td>
+      <td>585062</td>
+    </tr>
+    <tr>
+      <th>BAXTER JOHN C</th>
+      <td>1200000</td>
+      <td>1295738</td>
+      <td>-1386055</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>6680544</td>
+      <td>11200</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>...</td>
+      <td>1586055</td>
+      <td>2660303</td>
+      <td>False</td>
+      <td>3942714</td>
+      <td>NaN</td>
+      <td>267102</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>5634343</td>
+      <td>10623258</td>
+    </tr>
+    <tr>
+      <th>ELLIOTT STEVEN</th>
+      <td>350000</td>
+      <td>NaN</td>
+      <td>-400729</td>
+      <td>NaN</td>
+      <td>steven.elliott@enron.com</td>
+      <td>4890344</td>
+      <td>78552</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>...</td>
+      <td>NaN</td>
+      <td>12961</td>
+      <td>False</td>
+      <td>1788391</td>
+      <td>NaN</td>
+      <td>170941</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>211725</td>
+      <td>6678735</td>
+    </tr>
+    <tr>
+      <th>CORDES WILLIAM R</th>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>bill.cordes@enron.com</td>
+      <td>651850</td>
+      <td>NaN</td>
+      <td>12</td>
+      <td>10</td>
+      <td>0</td>
+      <td>...</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>False</td>
+      <td>386335</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>58</td>
+      <td>764</td>
+      <td>NaN</td>
+      <td>1038185</td>
+    </tr>
+    <tr>
+      <th>HANNON KEVIN P</th>
+      <td>1500000</td>
+      <td>NaN</td>
+      <td>-3117011</td>
+      <td>NaN</td>
+      <td>kevin.hannon@enron.com</td>
+      <td>5538001</td>
+      <td>34039</td>
+      <td>32</td>
+      <td>32</td>
+      <td>21</td>
+      <td>...</td>
+      <td>1617011</td>
+      <td>11350</td>
+      <td>True</td>
+      <td>853064</td>
+      <td>NaN</td>
+      <td>243293</td>
+      <td>1035</td>
+      <td>1045</td>
+      <td>288682</td>
+      <td>6391065</td>
+    </tr>
+  </tbody>
+</table>
+<p>5 rows × 21 columns</p>
+</div>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[111]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span> <span class="p">(</span><span class="s2">&quot;Size of the enron dataframe: &quot;</span><span class="p">,</span> <span class="n">enron_df</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
+<span class="nb">print</span> <span class="p">(</span><span class="s2">&quot;Number of data points (people) in the dataset: &quot;</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">enron_df</span><span class="p">))</span>
+<span class="nb">print</span> <span class="p">(</span><span class="s2">&quot;Number of Features in the Enron Dataset: &quot;</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">enron_df</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Size of the enron dataframe:  (146, 21)
+Number of data points (people) in the dataset:  146
+Number of Features in the Enron Dataset:  21
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[112]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Counting the number of POIs and non-POIs in the given dataset.</span>
+<span class="n">poi_count</span> <span class="o">=</span> <span class="n">enron_df</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">&#39;poi&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
+<span class="nb">print</span> <span class="p">(</span><span class="s2">&quot;Total number of POI&#39;s in the given dataset: &quot;</span><span class="p">,</span> <span class="n">poi_count</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
+<span class="nb">print</span> <span class="p">(</span><span class="s2">&quot;Total number of non-POI&#39;s in the given dataset: &quot;</span><span class="p">,</span> <span class="n">poi_count</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Total number of POI&#39;s in the given dataset:  18
+Total number of non-POI&#39;s in the given dataset:  128
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>On loading the data as a DataFrame, the data-types are in string/objects.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[113]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">enron_df</span><span class="o">.</span><span class="n">dtypes</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[113]:</div>
+
+
+<div class="output_text output_subarea output_execute_result">
+<pre>bonus                        object
+deferral_payments            object
+deferred_income              object
+director_fees                object
+email_address                object
+exercised_stock_options      object
+expenses                     object
+from_messages                object
+from_poi_to_this_person      object
+from_this_person_to_poi      object
+loan_advances                object
+long_term_incentive          object
+other                        object
+poi                            bool
+restricted_stock             object
+restricted_stock_deferred    object
+salary                       object
+shared_receipt_with_poi      object
+to_messages                  object
+total_payments               object
+total_stock_value            object
+dtype: object</pre>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[114]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Converting the datatypes in the given pandas dataframe </span>
+<span class="c1"># into floating points for analysis and replace NaN with zeros.</span>
+
+<span class="c1"># Coerce numeric values into floats or ints; also change NaN to zero.</span>
+<span class="n">enron_df_new</span> <span class="o">=</span> <span class="n">enron_df</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span> <span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_numeric</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">errors</span> <span class="o">=</span> <span class="s1">&#39;coerce&#39;</span><span class="p">))</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">)</span>
+<span class="n">enron_df_new</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[114]:</div>
+
+<div class="output_html rendered_html output_subarea output_execute_result">
+<div>
+<table border="1" class="dataframe">
+  <thead>
+    <tr style="text-align: right;">
+      <th></th>
+      <th>bonus</th>
+      <th>deferral_payments</th>
+      <th>deferred_income</th>
+      <th>director_fees</th>
+      <th>email_address</th>
+      <th>exercised_stock_options</th>
+      <th>expenses</th>
+      <th>from_messages</th>
+      <th>from_poi_to_this_person</th>
+      <th>from_this_person_to_poi</th>
+      <th>...</th>
+      <th>long_term_incentive</th>
+      <th>other</th>
+      <th>poi</th>
+      <th>restricted_stock</th>
+      <th>restricted_stock_deferred</th>
+      <th>salary</th>
+      <th>shared_receipt_with_poi</th>
+      <th>to_messages</th>
+      <th>total_payments</th>
+      <th>total_stock_value</th>
+    </tr>
+  </thead>
+  <tbody>
+    <tr>
+      <th>METTS MARK</th>
+      <td>600000.0</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>94299.0</td>
+      <td>29.0</td>
+      <td>38.0</td>
+      <td>1.0</td>
+      <td>...</td>
+      <td>NaN</td>
+      <td>1740.0</td>
+      <td>False</td>
+      <td>585062.0</td>
+      <td>NaN</td>
+      <td>365788.0</td>
+      <td>702.0</td>
+      <td>807.0</td>
+      <td>1061827.0</td>
+      <td>585062.0</td>
+    </tr>
+    <tr>
+      <th>BAXTER JOHN C</th>
+      <td>1200000.0</td>
+      <td>1295738.0</td>
+      <td>-1386055.0</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>6680544.0</td>
+      <td>11200.0</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>...</td>
+      <td>1586055.0</td>
+      <td>2660303.0</td>
+      <td>False</td>
+      <td>3942714.0</td>
+      <td>NaN</td>
+      <td>267102.0</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>5634343.0</td>
+      <td>10623258.0</td>
+    </tr>
+    <tr>
+      <th>ELLIOTT STEVEN</th>
+      <td>350000.0</td>
+      <td>NaN</td>
+      <td>-400729.0</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>4890344.0</td>
+      <td>78552.0</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>...</td>
+      <td>NaN</td>
+      <td>12961.0</td>
+      <td>False</td>
+      <td>1788391.0</td>
+      <td>NaN</td>
+      <td>170941.0</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>211725.0</td>
+      <td>6678735.0</td>
+    </tr>
+    <tr>
+      <th>CORDES WILLIAM R</th>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>651850.0</td>
+      <td>NaN</td>
+      <td>12.0</td>
+      <td>10.0</td>
+      <td>0.0</td>
+      <td>...</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>False</td>
+      <td>386335.0</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>58.0</td>
+      <td>764.0</td>
+      <td>NaN</td>
+      <td>1038185.0</td>
+    </tr>
+    <tr>
+      <th>HANNON KEVIN P</th>
+      <td>1500000.0</td>
+      <td>NaN</td>
+      <td>-3117011.0</td>
+      <td>NaN</td>
+      <td>NaN</td>
+      <td>5538001.0</td>
+      <td>34039.0</td>
+      <td>32.0</td>
+      <td>32.0</td>
+      <td>21.0</td>
+      <td>...</td>
+      <td>1617011.0</td>
+      <td>11350.0</td>
+      <td>True</td>
+      <td>853064.0</td>
+      <td>NaN</td>
+      <td>243293.0</td>
+      <td>1035.0</td>
+      <td>1045.0</td>
+      <td>288682.0</td>
+      <td>6391065.0</td>
+    </tr>
+  </tbody>
+</table>
+<p>5 rows × 21 columns</p>
+</div>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[115]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Dropping column &#39;email_address&#39; as it is not required in analysis.</span>
+<span class="n">enron_df_new</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="s1">&#39;email_address&#39;</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="n">inplace</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+
+<span class="c1"># Checking the changed shape of df.</span>
+<span class="n">enron_df_new</span><span class="o">.</span><span class="n">shape</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[115]:</div>
+
+
+<div class="output_text output_subarea output_execute_result">
+<pre>(146, 20)</pre>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h3 id="Outlier-Investigation-&amp;-Analyzing-the-Features-">Outlier Investigation &amp; Analyzing the Features <a id="outliers" /><a class="anchor-link" href="#Outlier-Investigation-&amp;-Analyzing-the-Features-">&#182;</a></h3><p>The features can be categorized as the following.</p>
+<p><strong>Financial Features (in US dollars):</strong><br>
+<code>salary
+deferral_payments
+total_payments
+loan_advances
+bonus
+restricted_stock_deferred
+deferred_income
+total_stock_value
+expenses
+exercised_stock_options
+other
+long_term_incentive
+restricted_stock
+director_fees</code></p>
+<p><strong>Email Features (count of emails):</strong><br>
+<code>to_messages
+email_address
+from_poi_to_this_person
+from_messages
+from_this_person_to_poi
+shared_receipt_with_poi</code></p>
+<p><strong>POI Labels (boolean):</strong><br>
+<code>poi</code></p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h4 id="Financial-Features:-Bonus-and-Salary">Financial Features: <code>Bonus</code> and <code>Salary</code><a class="anchor-link" href="#Financial-Features:-Bonus-and-Salary">&#182;</a></h4>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Drawing scatterplot of <strong>Bonus vs Salary</strong> of Enron employees.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[116]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;salary&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;bonus&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span> 
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;r&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;salary&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;bonus&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Not-POI&#39;</span><span class="p">)</span>
+    
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">&quot;Salary&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">&quot;Bonus&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Scatterplot of Salary vs Bonus w.r.t POI&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;upper left&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> 
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+
+
+<div class="output_png output_subarea ">
+<img src="
+AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcFmX+//E33JzFPJS5FlKEUamV4SnXyCOrqKiFBqi3
+ndzsZGma2pasmeEhNrW+pqZlRe6ieUip1H6gZpkaUmqUmuEhKSsqLeFWOdzX7w/We0UB0bzFgdfz
+H5i55p753PMYfXPNXDPjYYwxAgAAluFZ1QUAAICzQ3gDAGAxhDcAABZDeAMAYDGENwAAFkN4AwBg
+MYQ3qtzWrVtlt9sVHR2tXr16aciQIdq9e/c5r2/79u1KSEhwTd9333367bffzkepkqSXX35ZEyZM
+OONy57LdTz75RJ06dVJMTIyOHTtWqi07O1sPPPCAoqOjFR0drUGDBmnLli3nrd4LbenSpWrZsqX6
+9Omj3r17q0ePHho6dKh+/vnnqi7tvFm3bp1mzJhRZlvnzp3VrVs39enTR3379lXPnj2VmJgop9Pp
+WmblypXq37+/unfvrujoaD3yyCPatWuXq33p0qUaOnSo278HLj5eVV0AaraCggINHTpUr7/+upo1
+ayZJWr58uf7+978rPT1dNpvtrNf57bff6qeffnJNb9iw4bzVezbOZbvvv/+++vfvr4cffvi0tsce
+e0zDhw9XZGSkJCkjI0NDhw5Venq66tat+6frrQqtWrXSnDlzXNPjx4/XSy+9pIkTJ1ZhVefPl19+
+qd9//73c9qSkJN14442SSv4t2O12/fvf/9agQYP09ttva8mSJXrhhRfUpEkTSdJHH32k++67T/Pm
+zdMNN9xwQb4DLk6EN6rU0aNHdeTIETkcDte83r17KzAwUMXFxbLZbFq8eLHmz58vT09P1atXT1Om
+TFHDhg2VmJiobdu2KT8/X8YYTZw4UVdccYVeeuklHTlyRE899ZRrnXfffbdeffVVeXp6asKECTp4
+8KAKCwvVs2dPPfjgg8rJydHAgQMVGhqq77//XpMnT9YTTzyhNm3aaOfOnTLGKCEhQa1atSpV/+7d
+uzVhwgQdPnxYHh4euu+++9S3b1/Xtk9st1GjRq7PFBYWavLkydq4caNsNptuuukmPfXUU0pJSVF6
+erp8fX115MgRjRkzptS2cnNzS+2n1q1ba/r06a4/cGbPnq20tDQdP35cR48e1ZgxY1xBf8LatWs1
+Z84cFRQU6LffflPfvn01fPhwbd68Wc8//7wCAgLkcDjUrFkzNWjQQE888YQkacWKFVq9erVmzpzp
+Wtcnn3yiKVOmKDU1VZL0xx9/qEuXLkpLS9P777+vlJQUeXt7y9fXVxMmTHAFUHkKCwuVl5enxo0b
+V7ifAgMD1blzZ91xxx3auHGjDh48qKioKI0ePVqbN2/Wc889p/fee0+SSk1nZ2fr6aefVkFBgYwx
+6tevnwYOHFiqhkceeUQdO3ZU//79tXXrVsXGxiotLU2NGzfWrFmzdOTIEY0ePdq1/KnHTXJysi6/
+/HJJ0rZt25SSkqLi4mLVrl1bI0aMqPD7+/j4qGXLltqzZ48KCgo0bdo0LVq0SKGhoa5lOnTooL//
+/e+aNm2aXn311QrXh2rOAFXs9ddfNzfddJPp3LmzGTVqlHnnnXeMw+EwxhizY8cO07ZtW/PDDz8Y
+Y4yZP3++GTdunPn888/NsGHDTHFxsTHGmDlz5pihQ4caY4xZsmSJeeCBB1zrDwsLM7/++qsxxhi7
+3W7S09ONMcYcO3bM2O128/7775sDBw6YsLAwk5GRYYwxrukVK1YYY4xZt26dad++vSkoKDAvvfSS
+efbZZ01hYaHp0qWLWb16tTHGmB9//NFERESYzz///LTtnmzGjBnm0UcfNQUFBaa4uNiMHTvWjBs3
+zhhjzJgxY8y8efPK3E+pqammVatWpn379uaxxx4zycnJ5tChQ8YYY3JycozdbjdHjx41xhjz3nvv
+mV69ehljjKtep9NpBg0aZPbu3euq94YbbjC//vqr2bRpk7n++utNTk6OMcaYr7/+2rRv394UFhYa
+Y4wZMGCAWb9+fal6nE6n6dSpk9m+fbsxxpgFCxaYkSNHmqKiItOsWTPz008/GWOMWbZsmUlJSTnt
++yxZssSEh4eb3r17m+joaNOmTRsTERHhqqGi/dSpUyczefJk1/e48cYbzXfffWc2bdpkevbs6drG
+ydNPPfWUmTNnjjHGmJ9//tkMHz7cdfycsGzZMjNs2DDXfmvfvr2r9piYGLNt27ZSy5963JzqxL4v
+y8n77sT36N69u1m1apX58ssvTdu2bcv83M6dO014eLhrH558rKPmsFzPe9u2bUpKSlJycnK5y0ya
+NEmZmZny9PTUmDFj1LJlywtYIc7Wvffeq/79+ysjI0MZGRmaO3eu5s6dq8WLF2vjxo267bbbXD3X
+e+65x/W5OnXqKCUlRQcOHNDmzZtVq1atCrfjcDiUkZGh33//3XUd0uFwaOfOnbrpppvk5eWlFi1a
+lFp/dHS0pJIej81mK3W9cd++fTp+/Lj+9re/SZIaNmyov/3tb/r44491yy23lFvH+vXrNWLECHl7
+e0uS7Ha7HnnkkTPup169eikyMlKZmZnKyMjQkiVLNGvWLC1cuFBBQUGuXvD+/ftdZyRO5uHhodmz
+Z2vdunWunqgxRkePHpUkNWrUSFdeeaUk6YYbblBQUJDWrVunkJAQ/fzzz7rttttOW1+/fv20bNky
+3XjjjVq6dKmefPJJ2Ww2de/eXXFxcerYsaPat2/v2o+nOvm0udPp1FtvvaUhQ4bogw8+OON+6tKl
+i2u/X3rppRWenpakyMhIjRkzRtu3b1e7du30zDPPyNOz9LCfTp06adKkSSoqKtInn3yihx56SBs2
+bFDHjh3166+/uk5xn+zU4+ZsjBo1Sn5+fnI6nfL29lb//v3VrVs3ZWVlqaioqMzPFBQUyMPD45y2
+h+rDUgPW5s6dq2eeeUbHjx8vd5mdO3fqiy++0DvvvKOpU6fq+eefv4AV4mxlZmZq3rx5CgwMVKdO
+nTR69Gi9//778vT01IYNG2Sz2Ur9R3Xs2DFlZ2dr3bp1roE6Xbp0UXx8/Bm35XQ6ZYxRSkqKli9f
+ruXLl2vhwoWu9fj4+MjL639/z556vd3pdJaad/LAohOMMeX+p1ve55xOpwoLCyv8THZ2tpKSkuTr
+66u//vWvevzxx7Vs2TKFhYVp9erV+uqrrxQXF6e8vDy1b99eQ4YMOW0dDodDd9xxh7766is1bdpU
+o0ePlpeXl8x/X28QEBBQavmBAwdqyZIlWrx4se66664yAyMmJkYrV67Ujh07dOTIEbVt21ZSybXc
+2bNnKzg4WHPnztWjjz5a4feTJE9PT8XGxmrPnj369ddfz7iffH19Xb97eHjIGOP6ecLJy3fq1Emr
+V69WVFSUduzYoejoaH333XeltlGnTh01bdpUa9eu1ZEjR9SnTx9t2bJFaWlp6tq1a5n74NTj5mwk
+JSVp+fLlSk1N1dKlS3XfffdJkq699lpJ0o4dO077zObNmyv84xA1g6XCOzg4WC+//LJreteuXbLb
+7bLb7Ro2bJiOHDmiyy+/XH5+fiooKFBeXt45/6PChVG/fn3NmjWr1Kjp3NxcHT16VGFhYWrbtq02
+btzoGoGckpKiF154QRs2bFCnTp00YMAA3XjjjUpLS1NxcbGkktA9OUBPTAcGBqpFixaaP3++pJJr
+tPHx8UpPTy+ztt9++03r16+XJK1Zs0be3t4KCwtztYeEhMjb21sffvihJOmnn37S6tWr9de//rXM
+Ok6IiIhQSkqKCgsL5XQ6tWDBArVv377C/XTZZZdp0aJFWrVqlWve4cOH9csvv6hp06bKyMhQ8+bN
+de+996pNmzZKT0937Y8T9u/fr7y8PA0fPlydO3fWZ599poKCgjL/CJGkbt26aceOHfrwww8VExNT
+5jINGzbUzTffrISEBPXr18+13zp06KC6devqnnvu0fDhw0udsajI//t//09XXnml6tevf077qX79
++vrhhx/066+/yhijtLQ0V9vIkSP1wQcfqGfPnvrnP/+pwMBAHTx48LR1dO3aVS+++KLatWunwMBA
+hYSEaO7cuerWrVulvsPJyjsGzsTX11ejRo3S6NGjlZ2d7Zq/bt06vfbaa3r88cfPep2oXiyVbN26
+dVNOTo5rety4cUpMTFSTJk30zjvvaN68ebr//vvl6empqKgoHTlyRM8991wVVowzCQkJ0cyZMzVt
+2jT9+OOP8vX1Ve3atTVhwgRdc801kqQnn3zS1ZNs0KCBEhMTlZeXp1GjRik6Olo2m02tWrXShx9+
+KKfTqVtuuUXTp0/XI488opkzZyoyMlIDBgzQK6+8oqSkJD333HOKjo5WQUGBevXqpd69e5c6rk7w
+9fXV8uXLlZSUJD8/P82cObNUz9vb21uvvPKKJk6cqJdfflnFxcV65JFHdOutt0pSqe2eHPoPPfSQ
+pkyZor59+6qoqEg33XSTxo0bV+F+qlOnjt58803961//0tSpU+Xv7y8fHx/df//9ateuna699lp9
++OGH6tGjh7y9vdWuXTv9/vvvysvLc63juuuuU8eOHRUVFaVLLrlEwcHBatKkifbv3y8fH5/Ttunj
+46Nu3brpl19+Uf369cutrX///nr88cc1a9YsSSUB+tBDD+mee+6Rn5+fbDZbuaPHt2zZoj59+sjD
+w0NFRUWqW7euZs6cKU9Pz3PaT02aNFFcXJxiYmLUoEEDdezY0dX28MMP6+mnn9bChQtls9nUtWtX
+tWnT5rR1dO3aVc8995xGjRolSbrtttu0YMEChYeHSyr5I+2BBx4od8DY008/rebNmys+Pl7t2rXT
+sGHD5O3tfcbaTxUXF6fLLrtMzzzzjP744w8VFRUpJCREr7/+OiPNIQ9jrPVK0JycHD3xxBNatGiR
+WrZsqaZNm0oqOT129dVXq2nTptq+fbumTJmi/Px8DRgwQPPmzdNf/vKXKq4cVpKTk6Po6Gh98cUX
+VV1KlXE4HBo4cKDGjx+vm2++uarLAXASS/W8TxUSEqIpU6boiiuuUGZmpnJzc3Xs2DEFBATIZrOp
+Vq1a8vHxKXV7DYAz+/jjjzVy5EjFxMQQ3MBFyNLhPX78eI0ZM0ZFRUXy8PDQ888/r+DgYH3++eeK
+i4tTcXGxoqOjXadfgcoKCgqq0b3uiIgIffbZZ1VdBoByWO60OQAANZ2lRpsDAACLnDY/duyYsrKy
+1KBBg3N61jUAAFZTXFys3NxcNW/eXH5+fqXaLBHeWVlZpz2DGACAmmDBggWnvVfBEuHdoEEDSSVf
+gFu+AAA1wY8//qiBAwe6MvBklgjvE6fK//KXvygoKKiKqwEA4MIp63KxWwesbdu2TXa7/bT5a9as
+UUxMjGJjY7Vo0SJ3lgAAQLXjtp733LlztWLFCvn7+5eaX1hYqEmTJmnx4sXy9/dXfHy8OnfurMsu
+u8xdpQAAUK24red96ktETsjOzlZwcLDq1Knjevl8RkaGu8oAAKDacVt4d+vWrcw3euXl5al27dqu
+6Vq1apV6eQIAAKjYBX9IS2BgoPLz813T+fn5pcIcAABU7IKHd2hoqPbv36/Dhw+roKBAW7Zs4cXy
+AACchQt2q1hqaqocDodiY2M1duxY3X///TLGKCYmRg0bNrxQZUgOh3TwoNSokRQQ8KdXt3nzZg0f
+PlxNmjSRJB0/flzR0dGy2+1auXKl3n77bXl6eqqoqEixsbHq27evJMlut2v8+PEKDQ390zUAAGoW
+t4Z3UFCQ61aw6Oho1/zOnTurc+fO7tz06YqKpFGjpOXLpe++k4KDpT59pKQkqYxr82fj1ltv1bRp
+0yRJBQUF6t69uy699FItXLhQs2fPVu3atXXs2DE99thj8vX1VVRU1Pn4RgCAi8R57heeUc15Mcmo
+UdKMGdK+fZLTWfJzxoyS+edRXl6ePD09tWjRIo0aNcp1Pd/Pz09jxozRggULzuv2AABVp6hIGj5c
+atZMCgsr+Tl8eMl8d7LEE9b+NIdDevfdstuWL5cSE//Un0qbNm2S3W6Xh4eHvL29NW7cOE2ZMkXB
+wcGllmvcuLF++OGHc94OAODicqJfeMKJfqEkTZ/uvu3WjPA+eFA6cKDstgMHStr/xLXnk0+bn/DG
+G2/o+++/V506dVzz9u3bp0aNGp3zdgAAFw839wsrVDNOmzdqVHKNuyyNG5e0n2d2u11Tp0513cOe
+n5+vqVOn8nY0AKgmKtMvdJea0fMOCCgZnHbyuY0T+vRxy59GnTt3Vl5enoYMGSIPDw85nU7169dP
+PXr0OO/bAgBceCf6hfv2nd7mpn6hS80Ib6lkVLlUci7jwIGSPXtitPmf0LZtW7Vt27bMtt69e6t3
+795ltiUnJ/+p7QIAqlYV9Atdak54e3mVjB5ITLyw4/kBANWWm/qFZ1RzwvuEgIA/NTgNAIATqqpf
+WPPCGwCA8+xC9wtrxmhzAACqEcIbAACLIbwBALCYGhfeDoeUnV3y83zYvHmzWrZsqYMn3Y2flJSk
+pUuXlrn84cOHlZqaetr8nJwchYeHy263y263KzY2Vi+++KKrfdOmTRo8eLDsdrvi4uI0f/58GWMk
+SWPHjtX69evPzxcCAFz0akx4u/Ph8T4+PnrqqadcYVqRXbt2ac2aNWW2NWnSRMnJyUpOTtZ//vMf
+bd68WTt37tQ333yjKVOmKCkpScnJyXr77beVnZ2t11577c8XDwCwnBoT3u58qditt96qOnXqnPbG
+sNdff10xMTGKjY3VCy+8IEmaPXu2Nm3apIULF1a4zuPHj6ugoED+/v5KSUnR0KFDdfnll0uSvLy8
+NHbs2DOuAwBQPdWIW8UuxMPjx48fr/79+ysiIkJSybPMV65cqZSUFHl5eWnYsGFau3atHnzwQaWk
+pCg2Nva0dXz77bey2+2SJJvNpsGDB+uqq67SgQMH1K9fv1LLBgYG6ujRo3I6nX+ucACA5dSI8Hbz
+S8UkSfXq1dM//vEPjRkzRuHh4Tp+/LhuvvlmeXt7S5JatWql3bt36+abb3Z9ZujQoXI4HAoLC9O9
+997rOm1+qoYNG+r7779X06ZNXfPy8vLk4+MjT88ac/IEAPBfNeJ//gv1UrHOnTsrJCREy5Ytk6+v
+r7Zv366ioiIZY5SRkaGQkBB5enq6estz5sxRcnKyxo0bV+F64+PjNWvWLOXm5kqSCgsL9fzzzysu
+Lu78FA4AsJQaEd4nHh5flvP98Pinn35afn5+qlWrlqKiohQfH69+/frpyiuvVNeuXRUcHKxvvvlG
+b7zxRqXX2axZM40YMUIjRoxQfHy8BgwYoJCQEA0ZMuT8FQ4AsAwPU5kh0lUsJydHXbp0UXp6uoKC
+gs5pHUVFJYPTynp4vFeNuHgAALCSirKvxsQWLxUDAFQXNSa8T+ClYgAAq6sR17wBAKhOCG8AACyG
+8AYAwGIIbwAALIbwBgDAYghvAAAshvAGAMBiCG8AACyG8AYAwGIIbwAALIbwBgDAYghvAAAshvAG
+AMBiCG8AACyG8AYAwGIIbwAALIbwBgDAYghvAAAshvAGAMBiCG8AACyG8AYAwGIIbwAALIbwBgDA
+YghvAAAshvAGAMBiCG8AACzGbeHtdDqVkJCg2NhY2e127d+/v1T7ihUrdMcddygmJkb//ve/3VUG
+AADVjpe7VpyWlqaCggItXLhQW7du1eTJkzVr1ixX+9SpU/Xee+8pICBAPXv2VM+ePVWnTh13lQMA
+QLXhtvDOzMxURESEJKlFixbKysoq1X7dddfpyJEj8vLykjFGHh4e7ioFAIBqxW3hnZeXp8DAQNe0
+zWZTUVGRvLxKNnnttdcqJiZG/v7+ioyM1CWXXOKuUgAAqFbcds07MDBQ+fn5rmmn0+kK7p07d2rd
+unVKT0/XmjVr9Ntvv2nlypXuKgUAgGrFbeEdHh6u9evXS5K2bt2qsLAwV1vt2rXl5+cnX19f2Ww2
+1a9fX3/88Ye7SgEAoFpx22nzyMhIbdiwQXFxcTLGKDExUampqXI4HIqNjVVsbKwGDBggb29vBQcH
+64477nBXKQAAVCtuC29PT09NmDCh1LzQ0FDX7/Hx8YqPj3fX5gEAqLZ4SAsAABZDeAMAYDGENwAA
+FkN4AwBgMYQ3AAAWQ3gDAGAxhDcAABZDeAMAYDGENwAAFkN4AwBgMYQ3AAAWQ3gDAGAxhDcAABZD
+eAMAYDGENwAAFkN4AwBgMYQ3AAAWQ3gDAGAxhDcAABZDeAMAYDGENwAAFkN4AwBgMYQ3AAAWQ3gD
+AGAxhDcAABZDeAMAYDGENwAAFkN4AwBgMYQ3AAAWQ3gDAGAxhDcAABZDeAMAYDGENwAAFkN4AwBg
+MYQ3AAAWQ3gDAGAxhDcAABZDeAMAYDGENwAAFkN4AwBgMYQ3AAAWQ3gDAGAxhDcAABZDeAMAYDGE
+NwAAFkN4AwBgMYQ3AAAWQ3gDAGAxXu5asdPp1Pjx47Vr1y75+Pho4sSJuuqqq1zt27dv1+TJk2WM
+UYMGDfTCCy/I19fXXeUAAFBtuK3nnZaWpoKCAi1cuFAjR47U5MmTXW3GGI0bN06TJk3Sf/7zH0VE
+ROj77793VykAAFQrbut5Z2ZmKiIiQpLUokULZWVludr27t2runXr6o033tDu3bvVoUMHXXPNNe4q
+BQCAasVtPe+8vDwFBga6pm02m4qKiiRJhw4d0hdffKFBgwZp/vz52rRpkzZu3OiuUgAAqFbcFt6B
+gYHKz893TTudTnl5lXT069atq6uuukqhoaHy9vZWREREqZ45AAAon9vCOzw8XOvXr5ckbd26VWFh
+Ya62xo0bKz8/X/v375ckbdmyRddee627SgEAoFpx2zXvyMhIbdiwQXFxcTLGKDExUampqXI4HIqN
+jdXzzz+vkSNHyhijW265RR07dnRXKQAAVCtuC29PT09NmDCh1LzQ0FDX7+3atdPixYvdtXkAAKot
+HtICAIDFEN4AAFgM4Q0AgMUQ3gAAWAzhDQCAxRDeAABYDOENAIDFEN4AAFgM4Q0AgMUQ3gAAWAzh
+DQCAxRDeAABYDOENAIDFVCq8Dx8+rE8//VSSNGfOHD322GP69ttv3VoYAAAoW6XCe+TIkdqzZ48+
+/fRTrVq1Sp07d9Y///lPd9cGAADKUKnw/v333zVo0CClp6frjjvuUN++fXX06FF31wYAAMpQqfB2
+Op3KyspSWlqaOnXqpB07dqi4uNjdtQEAgDJ4VWahJ598UlOnTtW9996rxo0b66677tLYsWPdXRsA
+AChDpcK7Xbt2ateunWt60aJFbisIAABUrFLhff3118vDw6PUvMsvv1wfffSRW4oCAADlq1R479y5
+0/V7YWGh0tLStHXrVrcVBQAAynfWD2nx9vZWVFSUNm3a5I56AADAGVSq5/3uu++6fjfGaPfu3fL2
+9nZbUQAAoHyVCu/NmzeXmq5Xr56mTZvmloIAAEDFKhXekyZNcncdAACgkioV3h9//LGmT5+u33//
+XcYY1/z09HS3FQYAAMpWqfCeOHGixo4dq2uvvfa0W8YAAMCFVanwrlevnjp16uTuWgAAQCVUKrxb
+tmypSZMmKSIiQr6+vq75rVu3dlthAACgbJUK7+3bt0uSvv76a9c8Dw8PvfXWW+6pCgAAlKtS4Z2c
+nCxJysvLk9Pp1CWXXOLWogAAQPkqFd4HDhzQiBEjdODAARljdMUVV2j69Om6+uqr3VweAAA4VaUe
+j5qQkKAhQ4Zo8+bN+uyzz/TAAw9o3Lhx7q4NAACUoVLhfejQIXXv3t013aNHDx0+fNhtRQEAgPJV
+Krx9fHz01VdfuaazsrLk7+/vtqIAAED5KnXN+x//+IeGDRumunXrSpIOHz7Ms80BAKgiZ+x5Z2dn
+64orrtCqVavUtWtX1a5dW9HR0bruuusuRH0AAOAUFfa8Z8+erZSUFNlsNrVp00Y5OTmKjIzUZ599
+poSEBE2dOvVC1QkAAP6rwvBOTU3VypUr5XA41LVrV3366afy9/fXwIED1aNHjwtVIwAAOEmF4e3l
+5SV/f3/5+/urcePGrkFqNpuNAWsAAFSRCq95e3r+r9lms5Vq4+1iAABUjQp73vv27dPgwYNP+90Y
+o/3797u/OgAAcJoKw3vOnDkXqg4AAFBJFYZ3mzZtLlQdAACgkir1hDUAAHDxILwBALAYwhsAAIsh
+vAEAsBi3hbfT6VRCQoJiY2Nlt9vLvbVs3LhxSkpKclcZAABUO24L77S0NBUUFGjhwoUaOXKkJk+e
+fNoyKSkp+uabb9xVAgAA1ZLbwjszM1MRERGSpBYtWigrK6tU++eff65t27YpNjbWXSUAAFAtuS28
+8/LyFBgY6Jq22WwqKiqSJP3888+aOXOmEhIS3LV5AACqrQof0vJnBAYGKj8/3zXtdDrl5VWyuVWr
+VunQoUN64IEHlJubq2PHjumaa67RnXfe6a5yAACoNtwW3uHh4Vq7dq169OihrVu3KiwszNU2ePBg
+13PSly5dqj179hDcAABUktvCOzIyUhs2bFBcXJyMMUpMTFRqaqocDgfXuQEA+BPcFt6enp6aMGFC
+qXmhoaGnLUePGwCAs8NDWgAAsBjCGwAAiyG8AQCwGMIbAACLIbwBALAYwhsAAIshvAEAsBjCGwAA
+iyG8AQCwGMIbAACLIbwBALAYwhsAAIshvAEAsBjCGwAAiyG8AQCwGMIbAACLIbwBALAYwhsAAIsh
+vAEAsBjCGwAAiyG8AQCwGMIbAACLIbwBALAYwhsAAIshvAEAsBjCGwAAiyG8AQCwGMIbAACLIbwB
+ALAYwhsAAIshvAEAsBjCGwAAiyG8AQCwGMIbAACLIbwBALAYwhsAAIshvAEAsBjCGwAAiyG8AQCw
+GMIbAACLIbwBALAYwhsAAIshvAEAsBjCGwAAiyG8AQCwGMIbAACLIbwBALAYL3et2Ol0avz48dq1
+a5d8fHw0ceJEXXXVVa729957T2+++aZsNpvCwsI0fvx4eXrytwQAAGfitrRMS0tTQUGBFi5cqJEj
+R2ry5MlcfaTrAAAOOklEQVSutmPHjmn69Ol66623lJKSory8PK1du9ZdpQAAUK24LbwzMzMVEREh
+SWrRooWysrJcbT4+PkpJSZG/v78kqaioSL6+vu4qBQCAasVt4Z2Xl6fAwEDXtM1mU1FRUclGPT11
+2WWXSZKSk5PlcDjUvn17d5UCAEC14rZr3oGBgcrPz3dNO51OeXl5lZp+4YUXtHfvXr388svy8PBw
+VykAAFQrbut5h4eHa/369ZKkrVu3KiwsrFR7QkKCjh8/rldeecV1+hwAAJyZ23rekZGR2rBhg+Li
+4mSMUWJiolJTU+VwONS8eXMtXrxYrVq10t133y1JGjx4sCIjI91VDgAA1YbbwtvT01MTJkwoNS80
+NNT1+86dO921aQAAqjVurAYAwGIIbwAALIbwBgDAYghvAAAshvAGAMBiCG8AACyG8AYAwGIIbwAA
+LIbwBgDAYghvAAAshvAGAMBiCG8AACyG8AYAwGIIbwAALIbwBgDAYghvAAAshvAGAMBiCG8AACyG
+8AYAwGIIbwAALIbwBgDAYghvAAAshvAGAMBiCG8AACyG8AYAwGII7/9yOKTs7JKfAABczGp8eBcV
+ScOHS82aSWFhJT+HDy+ZDwDAxcirqguoaqNGSTNm/G96377/TU+fXiUlAQBQoRrd83Y4pHffLbtt
++fIKTqFzjh0AUIVqdHgfPCgdOFB224EDJe2lcI4dAHARqNGnzRs1koKDS06Vn6px45L2UjjHDgC4
+CNTonndAgNSnT9ltffqUtLuc8zl2AADOrxrd85akpKSSn8uXl5wqb9y4JLhPzHepzDn20FC31goA
+gER4y6vAoenDDirxmUY6+HuAGjU6pcd9QqNGJcm+f//pbUFBZZxjBwDAPWruafNTBp8FtG6m0JeH
+K8CnnMFnAQFSvXplt9WrV07iAwBw/tXcnvfZDj5zOKRDh8pe16FDJe0EOADgAqiZPe+TBp855K9s
+XSOH/Evayht8VtE175ycMu4rAwDAPWpmeB88qKLvftBwvahm+kph2qVm+krD9aKKvvuh7CA+cV9Z
+Wcq8rwwAAPeomeHdqJFGBc7SDI3QPoXIKS/tU4hmaIRG1Xql7CA+q/vKAABwnxp5zduhAL2rvmW2
+vWv6aMieAF1zTRl5XOn7ygAAcJ8a2fM+eFA6kF+/zLb9eZfqphuL1aypOf3Jp15eJYPZvvpK2rWr
+5Of06SXzAQC4QGpkeJdcvvYop9VDRjbt2++hGTNKBqWfJiCg5IEsnCoHAFSBGhneAQFSjx6VW7as
+wee8VAwAUJVqZHhL0r33SpI543Inv12Ml4oBAC4GNfZi7fQXiyXZzrjcyXeB8VIxAMDFoEb2vB0O
+ac27v1dq2T49ChUQwEvFAAAXjxoZ3gf3HNXBo+U8p/wkHirSqLicks9U4qViAABcCDUyvPds+K5S
+yxl56fruwRo+XGrQgAesAQAuDm4Lb6fTqYSEBMXGxsput2v/Ka/SXLNmjWJiYhQbG6tFixa5q4zT
+FBVJf3vwWknl3SpWWr7DphkzpIQEHrAGALg4uG3AWlpamgoKCrRw4UJt3bpVkydP1qxZsyRJhYWF
+mjRpkhYvXix/f3/Fx8erc+fOuuyyy9xVjsvAgdK5/M2yfLm0bdv/fucBawCAquK2nndmZqYiIiIk
+SS1atFBWVparLTs7W8HBwapTp458fHzUsmVLZWRkuKsUF4dDev/9c/vsgQNSbi4PWAMAVD23xU5e
+Xp4CAwNd0zabTUVFRfLy8lJeXp5q167taqtVq5by8vLcVYrLwYPnPir85OvaJx6wBgBAVXBbzzsw
+MFD5+fmuaafTKa//dlFPbcvPzy8V5u7SqJEUFHRun+W6NgDgYuG28A4PD9f69eslSVu3blVYWJir
+LTQ0VPv379fhw4dVUFCgLVu26JZbbnFXKS4BAdKdd55pqWLFx5eMLLfZpKuvlh5/nOvaAICLh9tO
+m0dGRmrDhg2Ki4uTMUaJiYlKTU2Vw+FQbGysxo4dq/vvv1/GGMXExKhhw4buKqWUpKSSEedz5pjT
+HmsaVvdHbTvQQH6BJafXDx4s6a3T4wYAXEw8jDFnfsB3FcvJyVGXLl2Unp6uoHM9730Kh6NkwNm3
+Xx+Tn+M3RfSsq8uCSWkAwMWhouyrseOkAwKk1q2l1q39JF1R1eUAAFBpNfIJawAAWBnhDQCAxRDe
+AABYDOENAIDFEN4AAFgM4Q0AgMUQ3gAAWIwl7vMuLi6WJP34449VXAkAABfGicw7kYEns0R45+bm
+SpIGlryMGwCAGiM3N1dXXXVVqXmWeDzqsWPHlJWVpQYNGshms1V1OQAAuF1xcbFyc3PVvHlz+fn5
+lWqzRHgDAID/YcAaAAAWQ3gDAGAxhDcAABZDeAMAYDHVOrydTqcSEhIUGxsru92u/fv3l2pfs2aN
+YmJiFBsbq0WLFlVRlRePM+2vN954Qz179pTdbpfdbteePXuqqNKLy7Zt22S320+bz/FVtvL2F8dX
+aYWFhXryySc1YMAA9evXT+np6aXaOb5Od6Z9Vq2OMVONrV692owZM8YYY8wXX3xhHnzwQVdbQUGB
+6dq1qzl8+LA5fvy4ufPOO01ubm5VlXpRqGh/GWPMyJEjzZdfflkVpV20Xn31VdOrVy/Tv3//UvM5
+vspW3v4yhuPrVIsXLzYTJ040xhhz6NAh06FDB1cbx1fZKtpnxlSvY6xa97wzMzMVEREhSWrRooWy
+srJcbdnZ2QoODladOnXk4+Ojli1bKiMjo6pKvShUtL8k6auvvtKrr76q+Ph4zZkzpypKvOgEBwfr
+5ZdfPm0+x1fZyttfEsfXqbp3767HH39ckmSMKfWMC46vslW0z6TqdYxV6/DOy8tTYGCga9pms6mo
+qMjVVrt2bVdbrVq1lJeXd8FrvJhUtL8kqWfPnho/frzefPNNZWZmau3atVVR5kWlW7du8vI6/UGF
+HF9lK29/SRxfp6pVq5YCAwOVl5enxx57TMOHD3e1cXyVraJ9JlWvY6xah3dgYKDy8/Nd006n0/Uf
+x6lt+fn5pf4x1EQV7S9jjO6++27Vr19fPj4+6tChg77++uuqKvWix/F1dji+ynbw4EENHjxYffr0
+UXR0tGs+x1f5yttn1e0Yq9bhHR4ervXr10uStm7dqrCwMFdbaGio9u/fr8OHD6ugoEBbtmzRLbfc
+UlWlXhQq2l95eXnq1auX8vPzZYzR5s2b1bx586oq9aLH8XV2OL5O98svv+i+++7Tk08+qX79+pVq
+4/gqW0X7rLodY5Z4Mcm5ioyM1IYNGxQXFydjjBITE5WamiqHw6HY2FiNHTtW999/v4wxiomJUcOG
+Dau65Cp1pv01YsQIDR48WD4+PmrXrp06dOhQ1SVfdDi+zg7HV/lmz56tP/74Q6+88opeeeUVSVL/
+/v119OhRjq9ynGmfVadjjGebAwBgMdX6tDkAANUR4Q0AgMUQ3gAAWAzhDQCAxRDeAAC4UXnP8z9h
+/fr1ruetDxo0SDfccIOys7MrXGe1vlUMwP+sWrVKr776qoqKimSMUZ8+fTRkyJByl7fb7Xr00UfV
+tm3bC1glUL3MnTtXK1askL+/f7nL3H777br99tslSfPmzVN4eLhCQ0MrXC/hDdQAP/30k6ZMmaKl
+S5eqXr16ys/Pl91uV0hIiLp06VLV5QHV1onn+Y8ePVqStGvXLk2cOFGSVLduXSUmJrqejvfjjz9q
++fLlWrJkyRnXS3gDNcChQ4dUWFioY8eOSSp5BvTkyZPl6+urlStXav78+Tp27JiOHz+uiRMnqnXr
+1q7PFhUVafz48dq9e7d++eUXhYSE6P/+7//0yy+/aMiQIapXr558fX1VUFCghx9+WLfddpuMMerW
+rZuSk5N5eAhqtG7duiknJ8c1PW7cOCUmJqpJkyZ65513NG/ePI0YMUKSNH/+fN1zzz3y8fE543oJ
+b6AGuP7669WlSxd17dpVN9xwg9q2bavo6Gg1btxYCQkJmj17turXr6/FixfrtddeKxXeX3zxhby9
+vbVw4UI5nU7dfffd+uijj9SsWTPt3btX8+bNU1BQkJYsWaIVK1botttu05YtWxQcHExwA6fIzs7W
+s88+K6nk/eNXX321pJJ3Saxbt84V5GdCeAM1xLPPPquHH35Yn3zyiT755BPdddddSkpK0syZM7Vm
+zRrt3btXn332mTw9S49jbd26terWrasFCxZoz5492rdvnxwOhyTp0ksvVVBQkCQpKipK06ZN09Gj
+R7Vs2TLdeeedF/w7Ahe7kJAQTZkyRVdccYUyMzOVm5srSfrmm28UEhIiPz+/Sq2H0eZADbBu3Tp9
+8MEHatiwoWJiYjRt2jQ988wzWrBggWJiYpSTk6PWrVuXOSI2PT1do0aNkp+fn+688061bt1aJ56q
+fPJ/NAEBAbr99tu1atUqbdq0SV27dr1g3w+wivHjx2vMmDGKj4/Xv/71L1133XWSpL1796px48aV
+Xg89b6AG8PPz03PPPaebbrpJQUFBMsbo22+/lY+Pjzw9PfXggw9Kkp555hkVFxeX+uzGjRsVFRWl
+mJgY/fTTT8rIyFC7du3K3E5MTIxGjBihTp06Veq6HVATBAUFadGiRZKk5s2bKzk5+bRloqKiFBUV
+Vel1Et5ADXDrrbfq0Ucf1YMPPqjCwkJJUkREhGbOnKmxY8cqKipKfn5+at26tX744YdSn+3fv79G
+jRqlVatWycfHRy1atCg1AOdkLVu2lIeHh2JiYtz+nYCajLeKATgvjDH65ptvNGbMGL377rtVXQ5Q
+rdHzBnBevPnmm5o3b55mzJhR1aUA1R49bwAALIbR5gAAWAzhDQCAxRDeAABYDOENAIDFEN4AAFgM
+4Q0AgMX8fx/uUB/rE3BwAAAAAElFTkSuQmCC
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>It can be noted from the above figure, one non-POI point has very high value of salary and bonus. Checking for the concerned point.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[117]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Finding the non-POI employee having maximum salary</span>
+<span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;salary&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">argmax</span><span class="p">()</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[117]:</div>
+
+
+<div class="output_text output_subarea output_execute_result">
+<pre>&#39;TOTAL&#39;</pre>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[118]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Deleting the row &#39;Total&#39; from the dataframe</span>
+<span class="n">enron_df_new</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="s1">&#39;TOTAL&#39;</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">inplace</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+
+<span class="c1"># Drawing scatterplot with the modified dataframe</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;salary&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;bonus&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span> 
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;r&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;salary&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;bonus&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Not-POI&#39;</span><span class="p">)</span>
+    
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">&quot;Salary&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">&quot;Bonus&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Scatterplot of Salary vs Bonus w.r.t POI&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;upper left&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> 
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+
+
+<div class="output_png output_subarea ">
+<img src="
+AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtcVVX+//HX4XBRLqbMZKMBeUm+M1aYyFhO6Gja2EXF
+TFNsaMqxMbqBE4baV80szQZJzUibLvP9MSHSWNm9vjKpQyg5fAdNymaiUUGtTCo5INezfn+c4Qh6
+uCkHEN7Px4PH8ay9ztpr78fx7M9et20xxhhERERETuPR3hUQERGRjklBgoiIiLikIEFERERcUpAg
+IiIiLilIEBEREZcUJIiIiIhLChKkS8jLyyMmJoaJEycyYcIEZs+ezb/+9a+zLm/v3r0sXrzY+X7W
+rFkUFxe3RlUBePrpp3n00UebzHc2+83KymLMmDHccsstlJeX19tWUFDA7373OyZOnMjEiRP59a9/
+zd///vdWq29be/XVVxk2bBhRUVFMmjSJG2+8kTlz5vDNN9+0d9VazbZt21izZo3Lbddeey3jx48n
+KiqKyZMnc9NNN7F8+XLsdrszz7vvvsu0adO4/vrrmThxIvfeey+ff/65c/urr77KnDlz3H4c0jF5
+tncFRNytsrKSOXPm8OKLL3LZZZcBsGXLFu666y4yMzOxWq0tLvOLL77g66+/dr7/6KOPWq2+LXE2
++3377beZNm0a99xzzxnbHnjgAeLj47nuuusA2L17N3PmzCEzM5OePXuec33bQ0REBBs2bHC+f+SR
+R1i7di2PPfZYO9aq9XzyySf88MMPDW5PSkriiiuuABz/F2JiYkhLS+PXv/41f/7zn9m8eTN/+MMf
+uPTSSwHYvn07s2bN4vnnn+dnP/tZmxyDdFwKEqTTO3nyJCUlJZSVlTnTJk2ahL+/PzU1NVitVv7y
+l7/w0ksv4eHhQa9evVi5ciUXXXQRy5cvZ8+ePZSWlmKM4bHHHqNv376sXbuWkpISFixY4CzzN7/5
+Dc899xweHh48+uijHD16lKqqKm666SbuvvtuioqKuO222xg4cCCHDx/miSee4Pe//z3Dhw9n//79
+GGNYvHgxERER9er/r3/9i0cffZTvv/8ei8XCrFmzmDx5snPftfvt06eP8zNVVVU88cQT7Ny5E6vV
+SlhYGAsWLCA9PZ3MzEx8fHwoKSkhMTGx3r6OHTtW7zz9/Oc/Z/Xq1c5Aav369WzdupWKigpOnjxJ
+YmKiM6Co9eGHH7JhwwYqKyspLi5m8uTJxMfHk5OTw+OPP46vry9lZWVcdtllXHjhhfz+978H4I03
+3uD999/nmWeecZaVlZXFypUrefPNNwE4ceIEY8eOZevWrbz99tukp6fj5eWFj48Pjz76qPNC15Cq
+qipsNhvBwcGNnid/f3+uvfZabr75Znbu3MnRo0e54YYbeOihh8jJyWHZsmW89dZbAPXeFxQU8PDD
+D1NZWYkxhqlTp3LbbbfVq8O9997L6NGjmTZtGnl5eUyfPp2tW7cSHBzMs88+S0lJCQ899JAz/+nf
+m9TUVHr37g3Anj17SE9Pp6amhoCAAObOndvo8Xt7ezNs2DC+/PJLKisreeqpp8jIyGDgwIHOPL/8
+5S+56667eOqpp3juuecaLU+6ACPSBbz44osmLCzMXHvttSYhIcG88sorpqyszBhjzGeffWauuuoq
+c+TIEWOMMS+99JJZtGiR+b//+z9z//33m5qaGmOMMRs2bDBz5swxxhizefNm87vf/c5ZfmhoqDl+
+/LgxxpiYmBiTmZlpjDGmvLzcxMTEmLffftsUFhaa0NBQs3v3bmOMcb5/4403jDHGbNu2zVxzzTWm
+srLSrF271ixdutRUVVWZsWPHmvfff98YY8xXX31lRo4caf7v//7vjP3WtWbNGnPfffeZyspKU1NT
+Y+bPn28WLVpkjDEmMTHRPP/88y7P05tvvmkiIiLMNddcYx544AGTmppqvvvuO2OMMUVFRSYmJsac
+PHnSGGPMW2+9ZSZMmGCMMc762u128+tf/9r8+9//dtb3Zz/7mTl+/LjZtWuX+elPf2qKioqMMcZ8
++umn5pprrjFVVVXGGGNmzpxpduzYUa8+drvdjBkzxuzdu9cYY8zLL79sHnzwQVNdXW0uu+wy8/XX
+XxtjjHnttddMenr6GcezefNmEx4ebiZNmmQmTpxohg8fbkaOHOmsQ2PnacyYMeaJJ55wHscVV1xh
+Dh06ZHbt2mVuuukm5z7qvl+wYIHZsGGDMcaYb775xsTHxzu/P7Vee+01c//99zvP2zXXXOOs+y23
+3GL27NlTL//p35vT1Z57V+qeu9rjuP766817771nPvnkE3PVVVe5/Nz+/ftNeHi48xzW/a5L16KW
+BOkS7rzzTqZNm8bu3bvZvXs3f/zjH/njH//IX/7yF3bu3ElkZKTzTvyOO+5wfu6CCy4gPT2dwsJC
+cnJy8PPza3Q/ZWVl7N69mx9++MHZT1xWVsb+/fsJCwvD09OTK6+8sl75EydOBBx3cFartV5/8IED
+B6ioqOBXv/oVABdddBG/+tWv+Nvf/sbQoUMbrMeOHTuYO3cuXl5eAMTExHDvvfc2eZ4mTJjAdddd
+R25uLrt372bz5s08++yzbNq0iaCgIOdd/cGDB50tLHVZLBbWr1/Ptm3bnHfWxhhOnjwJQJ8+fbj4
+4osB+NnPfkZQUBDbtm2jf//+fPPNN0RGRp5R3tSpU3nttde44oorePXVV5k3bx5Wq5Xrr7+eGTNm
+MHr0aK655hrneTxd3e4Gu93O//t//4/Zs2fzzjvvNHmexo4d6zzvP/rRjxpt1ge47rrrSExMZO/e
+vYwYMYL//u//xsOj/tCvMWPGsGLFCqqrq8nKyiI2NpaPPvqI0aNHc/z4cWfXQF2nf29aIiEhgW7d
+umG32/Hy8mLatGmMHz+effv2UV1d7fIzlZWVWCyWs9qfdC4auCidXm5uLs8//zz+/v6MGTOGhx56
+iLfffhsPDw8++ugjrFZrvR/E8vJyCgoK2LZtm3PA1tixY4mOjm5yX3a7HWMM6enpbNmyhS1btrBp
+0yZnOd7e3nh6norNTx8PYbfb66XVHWBWyxjT4I97Q5+z2+1UVVU1+pmCggKSkpLw8fHhF7/4BXFx
+cbz22muEhoby/vvvk5+fz4wZM7DZbFxzzTXMnj37jDLKysq4+eabyc/PZ/DgwTz00EN4enpi/vOI
+GF9f33r5b7vtNjZv3sxf/vIXbr31VpcXpltuuYV3332Xzz77jJKSEq666irA0de+fv16QkJC+OMf
+/8h9993X6PEBeHh4MH36dL788kuOHz/e5Hny8fFx/ttisWCMcb7Wqpt/zJgxvP/++9xwww189tln
+TJw4kUOHDtXbxwUXXMDgwYP58MMPKSkpISoqir///e9s3bqVcePGuTwHp39vWiIpKYktW7bw5ptv
+8uqrrzJr1iwABg0aBMBnn312xmdycnIaDUKl61CQIJ1eYGAgzz77bL1R+seOHePkyZOEhoZy1VVX
+sXPnTueI9/T0dP7whz/w0UcfMWbMGGbOnMkVV1zB1q1bqampARwX97oX6tr3/v7+XHnllbz00kuA
+ow89OjqazMxMl3UrLi5mx44dAPz1r3/Fy8uL0NBQ5/b+/fvj5eXFBx98AMDXX3/N+++/zy9+8QuX
+9ag1cuRI0tPTqaqqwm638/LLL3PNNdc0ep5+/OMfk5GRwXvvvedM+/777/n2228ZPHgwu3fv5vLL
+L+fOO+9k+PDhZGZmOs9HrYMHD2Kz2YiPj+faa6/l448/prKy0mWwAzB+/Hg+++wzPvjgA2655RaX
+eS666CKGDBnC4sWLmTp1qvO8/fKXv6Rnz57ccccdxMfH12uBacz//u//cvHFFxMYGHhW5ykwMJAj
+R45w/PhxjDFs3brVue3BBx/knXfe4aabbmLJkiX4+/tz9OjRM8oYN24cycnJjBgxAn9/f/r3788f
+//hHxo8f36xjqKuh70BTfHx8SEhI4KGHHqKgoMCZvm3bNl544QXi4uJaXKZ0PupukE6vf//+PPPM
+Mzz11FN89dVX+Pj4EBAQwKOPPsqAAQMAmDdvnvPO+MILL2T58uXYbDYSEhKYOHEiVquViIgIPvjg
+A+x2O0OHDmX16tXce++9PPPMM1x33XXMnDmTlJQUkpKSWLZsGRMnTqSyspIJEyYwadIkioqKzqib
+j48PW7ZsISkpiW7duvHMM8/Ua0nw8vIiJSWFxx57jKeffpqamhruvfderr76aoB6+60bXMTGxrJy
+5UomT55MdXU1YWFhLFq0qNHzdMEFF/A///M/rFq1iieffJLu3bvj7e3Nb3/7W0aMGMGgQYP44IMP
+uPHGG/Hy8mLEiBH88MMP2Gw2Zxn/9V//xejRo7nhhhvo0aMHISEhXHrppRw8eBBvb+8z9unt7c34
+8eP59ttvCQwMbLBu06ZNIy4ujmeffRZwXKhjY2O544476NatG1artcHZCn//+9+JiorCYrFQXV1N
+z549eeaZZ/Dw8Dir83TppZcyY8YMbrnlFi688EJGjx7t3HbPPffw8MMPs2nTJqxWK+PGjWP48OFn
+lDFu3DiWLVtGQkICAJGRkbz88suEh4cDjmDwd7/7XYMDBx9++GEuv/xyoqOjGTFiBPfffz9eXl5N
+1v10M2bM4Mc//jH//d//zYkTJ6iurqZ///68+OKLmtkgAFiM0aOiRdpDUVEREydO5B//+Ed7V6Xd
+lJWVcdttt/HII48wZMiQ9q6OiJxG3Q0i0i7+9re/MXr0aK6++moFCCIdlFoSRERExCW1JIiIiIhL
+ChJERETEJc1uqKO8vJx9+/Zx4YUXntV6/iIiIueTmpoajh07xuWXX063bt3O2K4goY59+/adsc66
+iIhIZ/fyyy+f8dwYUJBQz4UXXgg4TtZPfvKTdq6NiIiIe3311Vfcdtttzuvf6RQk1FHbxfCTn/yE
+oKCgdq6NiIhI22ioi10DF0VERMQlBQkiIiLikoIEERERcUlBgoiIiLikIEFERERcUpAgIiIiLmkK
+pLuUlcHRo9CnD/j6nlNROTk5xMfHc+mllwJQUVHBxIkTiYmJ4d133+XPf/4zHh4eVFdXM336dCZP
+ngxATEwMjzzyCAMHDjznwxERka5HQUJrq66GhATYsgUOHYKQEIiKgqQk8Dz703311Vfz1FNPAVBZ
+Wcn111/Pj370IzZt2sT69esJCAigvLycBx54AB8fH2644YbWOiIREemi1N3Q2hISYM0aOHAA7HbH
+65o1jvRWYrPZ8PDwICMjg4SEBAICAgDo1q0biYmJvPzyy622LxER6brUktCaysrg9dddb9uyBZYv
+P+uuh127dhETE4PFYsHLy4tFixaxcuVKQkJC6uULDg7myJEjZ7WPrqgVe4VERDodtwUJVVVVzJ8/
+n8OHD+Ph4cGyZcvw9PRk/vz5WCwWBg0axJIlS5x3xOnp6Xh6ehIbG8uYMWMoLy9n3rx5HD9+HD8/
+P1auXElgYCB5eXk8/vjjWK1WIiMjue+++wBYt24d27Ztw9PTk4ULFxIWFkZxcTEJCQmUl5fTu3dv
+VqxYQffu3d11yI6rTWGh622FhY7tZzk+oG53Q60//elPHD58mAsuuMCZduDAAfr06XNW++hK3NQr
+JCLSqbitu2H79u1UV1eTnp7Ovffey+rVq1mxYgXx8fGkpaVhjCEzM5Njx46RmppKeno6L7zwAsnJ
+yVRWVrJx40ZCQ0NJS0tj8uTJpKSkALBkyRJWrVrFxo0b2bNnD59++in5+fl8/PHHvPLKKyQnJ7N0
+6VIAUlJSmDBhAmlpaQwePJhNmza563Ad+vRxXG1cCQ52bG9FMTExPPnkk9hsNgBKS0t58skn9STL
+ZmiDXiERkfOe24KE/v37U1NTg91ux2az4enpSX5+PsOHDwdg1KhRZGdns3fvXoYOHYq3tzcBAQGE
+hISwf/9+cnNzGTlypDPvzp07sdlsVFZWEhISgsViITIykuzsbHJzc4mMjMRisdC3b19qamooLi4+
+o4zs7Gx3Ha6Dr6/jdtSVqKhWb8++9tprmTJlCrNnzyY6OppZs2Yxfvx4brzxxlbdT2fTVK9QWVnb
+1kdEpKNyW8Oqr68vhw8f5oYbbuC7775j/fr17N69G4vFAoCfnx8lJSXYbDbnwLvadJvNVi+9bl5/
+f/96eQsLC/Hx8aFnz5710k8vuzbN7ZKSHK9btji6GIKDT7Vjn6WrrrqKq666yuW2SZMmMWnSJJfb
+UlNTz3qfnZkbe4VERDoVtwUJf/rTn4iMjOTBBx/k6NGj/OY3v6Gqqsq5vbS0lB49euDv709paWm9
+9ICAgHrpjeXt0aMHXl5ejZbRrVs3Z1638/SE1asdgxQ1Iq5Dqu0VOnDgzG1u6BUSETlvua27oUeP
+Hs67+AsuuIDq6moGDx5MTk4OADt27CAiIoKwsDByc3OpqKigpKSEgoICQkNDCQ8PZ/v27c68w4YN
+w9/fHy8vLw4dOoQxhqysLCIiIggPDycrKwu73c6RI0ew2+0EBga6LKPN+Po6bkcVIHQ4bdwrJCJy
+3rIYY4w7Ci4tLWXhwoUcO3aMqqoqbr/9di6//HIWLVpEVVUVAwYM4LHHHsNqtZKRkcGmTZswxjBn
+zhzGjx/PyZMnSUxM5NixY3h5ebFq1SouvPBC8vLyWL58OTU1NURGRjJ37lwAnn76aXbs2IHdbmfB
+ggVERETw7bffkpiYSGlpKb169WLVqlX4NnIFKCoqYuzYsWRmZhIUFOSO0yIdRN3ZDaf3Cml2g4h0
+FU1d99wWJJyPFCR0PVonQUS6sqaue7pnki6ttldIRETOpGWZRURExCUFCW5SVgYFBa0z5z4nJ4dh
+w4Zx9OhRZ1pSUhKvvvqqy/zff/89b7755hnpRUVFhIeHExMTQ0xMDNOnTyc5Odm5fdeuXdx+++3E
+xMQwY8YMXnrpJWp7o+bPn8+OHTvO/WBEROS8oSChlVVXQ3w8XHYZhIY6XuPjHennwtvbmwULFtCc
+ISSff/45f/3rX11uu/TSS0lNTSU1NZWNGzeSk5PD/v37+ec//8nKlStJSkoiNTWVP//5zxQUFPDC
+Cy+cW8VFROS8pSChlblrud+rr76aCy644IwnPL744ovccsstTJ8+nT/84Q8ArF+/nl27djW5DHVF
+RQWVlZV0796d9PR05syZQ+/evQGcz9lw+1LWIiLSYWngYity40MgAXjkkUeYNm2ac6np0tJS3n33
+XefDse6//34+/PBD7r77btLT05k+ffoZZXzxxRfExMQAYLVauf3227nkkksoLCxk6tSp9fL6+/tz
+8uRJ7Hb72VdaRETOWwoSWpG7l/vt1asXCxcuJDExkfDwcCoqKhgyZAheXl4ARERE8K9//YshQ4Y4
+PzNnzhzKysoIDQ3lzjvvdHY3nO6iiy7i8OHDDB482Jlms9nw9vbGw0MNTiIiXZF+/VtRWzwE8tpr
+r6V///689tpr+Pj4sHfvXqqrqzHGsHv3bvr374+Hh4fz7n/Dhg2kpqayaNGiRsuNjo7m2Wef5dix
+Y4DjUd+PP/44M2bMOPdKi4jIeUlBQitqq+V+H374Ybp164afnx833HAD0dHRTJ06lYsvvphx48YR
+EhLCP//5T/70pz81u8zLLruMuXPnMnfuXKKjo5k5cyb9+/dn9uzZrVNpERE572jFxTpaY8VFLfcr
+IiLnC6242Mb0EEgREeksFCS4iZb7FRGR853GJIiIiIhLChJERETEJQUJIiIi4pKCBBEREXFJQYKI
+iIi4pCBBREREXFKQICIiIi4pSBARERGXFCSIiIiISwoSRERExCUFCSIiIuKSggQRERFxSUGCiIiI
+uKQgQUREpC2VlUFBgeO1g3Pbo6JfffVVXnvtNQAqKir47LPPSEtLY/ny5VgsFgYNGsSSJUvw8PAg
+IyOD9PR0PD09iY2NZcyYMZSXlzNv3jyOHz+On58fK1euJDAwkLy8PB5//HGsViuRkZHcd999AKxb
+t45t27bh6enJwoULCQsLo7i4mISEBMrLy+nduzcrVqyge/fu7jpkERGRhlVXQ0ICbNkChw5BSAhE
+RUFSEni67XJ8bkwbeOSRR0x6erqZM2eO2bVrlzHGmEWLFpkPPvjAfPPNN2bChAmmoqLCnDhxwvnv
+F1980axdu9YYY8xbb71lli1bZowxZtKkSebgwYPGbreb2bNnm/z8fLNv3z4TExNj7Ha7OXz4sJky
+ZYoxxphly5aZzZs3G2OM2bBhg3nppZcarWdhYaEJDQ01hYWFbjoTIiLSZcXFGQNn/sXFtVuVmrru
+ub274ZNPPuGLL75g+vTp5OfnM3z4cABGjRpFdnY2e/fuZejQoXh7exMQEEBISAj79+8nNzeXkSNH
+OvPu3LkTm81GZWUlISEhWCwWIiMjyc7OJjc3l8jISCwWC3379qWmpobi4uIzysjOznb34YqIiJyp
+rAxef931ti1bOmzXg9uDhA0bNnDvvfcCYIzBYrEA4OfnR0lJCTabjYCAAGd+Pz8/bDZbvfS6ef39
+/evlbSr99DJERETa3NGjUFjoelthoWN7B+TWIOHEiRP8+9//5uqrr3bszOPU7kpLS+nRowf+/v6U
+lpbWSw8ICKiX3ljelpYhIiLS5vr0cYxBcCU42LG9A3JrkLB7925GjBjhfD948GBycnIA2LFjBxER
+EYSFhZGbm0tFRQUlJSUUFBQQGhpKeHg427dvd+YdNmwY/v7+eHl5cejQIYwxZGVlERERQXh4OFlZ
+Wdjtdo4cOYLdbicwMNBlGSIiIm3O19cxSNGVqCjH9g7IrcMp//3vfxMUFOR8n5iYyKJFi0hOTmbA
+gAGMHz8eq9VKTEwMM2fOxBjD3Llz8fHxITo6msTERKKjo/Hy8mLVqlUALF26lISEBGpqaoiMjGTI
+kCEAREREMH36dOx2O4sXLwYgNjaWxMREMjIy6NWrl7MMERGRNpeU5HjdssXRxRAcfGp2QwdlMcaY
+9q5ER1FUVMTYsWPJzMysF9yIiIi0mrIyxxiEPn3avQWhqeteB52YKSIi0kn5+sLAge1di2bRiosi
+IiLikoIEERERcUlBgoiIiLikIEFERERcUpAgIiIiLilIEBEREZcUJIiIiIhLChJERETEJQUJIiIi
+4pKCBBEREXFJQYKIiIi4pCBBREREXFKQICIiIi4pSBARERGXFCSIiIiISwoSRERExCUFCSIiIuKS
+ggQRERFxSUGCiIiIuKQgQURERFxSkCAiIiIuKUgQERERlxQkiIiIiEsKEkRERMQlT3cWvmHDBv76
+179SVVVFdHQ0w4cPZ/78+VgsFgYNGsSSJUvw8PAgIyOD9PR0PD09iY2NZcyYMZSXlzNv3jyOHz+O
+n58fK1euJDAwkLy8PB5//HGsViuRkZHcd999AKxbt45t27bh6enJwoULCQsLo7i4mISEBMrLy+nd
+uzcrVqyge/fu7jxkERGRTsNtLQk5OTn84x//YOPGjaSmpvLVV1+xYsUK4uPjSUtLwxhDZmYmx44d
+IzU1lfT0dF544QWSk5OprKxk48aNhIaGkpaWxuTJk0lJSQFgyZIlrFq1io0bN7Jnzx4+/fRT8vPz
++fjjj3nllVdITk5m6dKlAKSkpDBhwgTS0tIYPHgwmzZtctfhioiIdDpuCxKysrIIDQ3l3nvv5e67
+72b06NHk5+czfPhwAEaNGkV2djZ79+5l6NCheHt7ExAQQEhICPv37yc3N5eRI0c68+7cuRObzUZl
+ZSUhISFYLBYiIyPJzs4mNzeXyMhILBYLffv2paamhuLi4jPKyM7OdtfhioiIdDpu62747rvvOHLk
+COvXr6eoqIjY2FiMMVgsFgD8/PwoKSnBZrMREBDg/Jyfnx82m61eet28/v7+9fIWFhbi4+NDz549
+66WfXnZtmoiIiDSP24KEnj17MmDAALy9vRkwYAA+Pj589dVXzu2lpaX06NEDf39/SktL66UHBATU
+S28sb48ePfDy8mq0jG7dujnzioiISPO4rbth2LBh/O1vf8MYw9dff83JkycZMWIEOTk5AOzYsYOI
+iAjCwsLIzc2loqKCkpISCgoKCA0NJTw8nO3btzvzDhs2DH9/f7y8vDh06BDGGLKysoiIiCA8PJys
+rCzsdjtHjhzBbrcTGBjosgwRERFpHre1JIwZM4bdu3czdepUjDEsXryYoKAgFi1aRHJyMgMGDGD8
++PFYrVZiYmKYOXMmxhjmzp2Lj48P0dHRJCYmEh0djZeXF6tWrQJg6dKlJCQkUFNTQ2RkJEOGDAEg
+IiKC6dOnY7fbWbx4MQCxsbEkJiaSkZFBr169nGWIiIhI0yzGGNPelegoioqKGDt2LJmZmQQFBbV3
+dURERNyqqeueFlMSERERlxQkiIiIiEsKEkRERMQlBQkiIiLikoIEERERcUlBgoiIyPmirAwKChyv
+bUBBgoiISEdXXQ3x8XDZZRAa6niNj3eku5FbHxUtIiIirSAhAdasOfX+wIFT71evdttu1ZIgIiLS
+kZWVweuvu962ZYtbux4UJIiIiHRkR49CYaHrbYWFju1uoiBBRESkI+vTB0JCXG8LDnZsdxMFCSIi
+Ih2Zry9ERbneFhXl2O4mGrgoIiLS0SUlOV63bHF0MQQHOwKE2nQ3UZAgIiLS0Xl6OmYxLF/uGIPQ
+p49bWxCcu3X7HkRERKR1+PrCwIFttjuNSRARERGXFCSIiIiISwoS5Oy18RriIiLSthQkSMu10xri
+IiLStjRwUVqundYQFxGRtqWWBGmZdlxDXERE2paCBGmZdlxDXERE2paCBGmZdlxDXERE2paCBGmZ
+dlxDXERE2pYGLkrLtdMa4iIi0rYUJEjLtdMa4iIi0rbcGiTcfPPN+Pv7AxAUFMTdd9/N/PnzsVgs
+DBo0iCVLluDh4UFGRgbp6el4enoSGxvLmDFjKC8vZ968eRw/fhw/Pz9WrlxJYGAgeXl5PP7441it
+ViIjI7nvvvsAWLduHdu2bcPT05OFCxcSFhZGcXExCQkJlJeX07t3b1asWEH37t3dechdSxuvIS4i
+Im3LbWPuR1ATAAAgAElEQVQSKioqMMaQmppKamoqK1asYMWKFcTHx5OWloYxhszMTI4dO0Zqairp
+6em88MILJCcnU1lZycaNGwkNDSUtLY3JkyeTkpICwJIlS1i1ahUbN25kz549fPrpp+Tn5/Pxxx/z
+yiuvkJyczNKlSwFISUlhwoQJpKWlMXjwYDZt2uSuwxUREel03BYk7N+/n5MnTzJr1ixuv/128vLy
+yM/PZ/jw4QCMGjWK7Oxs9u7dy9ChQ/H29iYgIICQkBD2799Pbm4uI0eOdObduXMnNpuNyspKQkJC
+sFgsREZGkp2dTW5uLpGRkVgsFvr27UtNTQ3FxcVnlJGdne2uwxUREel03Nbd0K1bN377298ybdo0
+Dhw4wF133YUxBovFAoCfnx8lJSXYbDYCAgKcn/Pz88Nms9VLr5u3tvuiNr2wsBAfHx969uxZL/30
+smvTREREpHncFiT079+fSy65BIvFQv/+/enZsyf5+fnO7aWlpfTo0QN/f39KS0vrpQcEBNRLbyxv
+jx498PLyarSMbt26OfOKiIhI87itu+Evf/kLTzzxBABff/01NpuNa665hpycHAB27NhBREQEYWFh
+5ObmUlFRQUlJCQUFBYSGhhIeHs727dudeYcNG4a/vz9eXl4cOnQIYwxZWVlEREQQHh5OVlYWdrud
+I0eOYLfbCQwMdFmGiIiINI/bWhKmTp3KggULiI6OxmKxsHz5cnr16sWiRYtITk5mwIABjB8/HqvV
+SkxMDDNnzsQYw9y5c/Hx8SE6OprExESio6Px8vJi1apVACxdupSEhARqamqIjIxkyJAhAERERDB9
++nTsdjuLFy8GIDY2lsTERDIyMujVq5ezDBEREWmaxRhj2rsSHUVRURFjx44lMzOToKCg9q6OiIiI
+WzV13dOyzCIiIuKSggQRERFxSUGCiIiIuKQgQURERFxSkCAiIiIuKUgQERERlxQkiIiIiEsKEkRE
+RMQlBQkiIiLikoIEERERcUlBgoiIiLikIEFERERcUpAgIiIiLilIEBEREZeaFSR8//33ZGdnA7Bh
+wwYeeOABvvjiC7dWTERERNpXs4KEBx98kC+//JLs7Gzee+89rr32WpYsWeLuuomIiEg7alaQ8MMP
+P/DrX/+azMxMbr75ZiZPnszJkyfdXTcRERFpR80KEux2O/v27WPr1q2MGTOGzz77jJqaGnfXTURE
+RNqRZ3MyzZs3jyeffJI777yT4OBgbr31VubPn+/uuomIiEg7alaQMGLECEaMGOF8n5GR4bYKScdV
+VgZHj0KfPuDr2961ERERd2tWkPDTn/4Ui8VSL613795s377dLZWSjqW6GhISYMsWOHQIQkIgKgqS
+ksCzWd8gERE5HzXrJ37//v3Of1dVVbF161by8vLcVinpWBISYM2aU+8PHDj1fvXqdqmSiIi0gRYv
+puTl5cUNN9zArl273FEf6WDKyuD1111v27LFsV1ERDqnZrUkvF7nKmGM4V//+hdeXl5uq5R0HEeP
+QmGh622FhY7tAwe2bZ1ERKRtNCtIyMnJqfe+V69ePPXUU26pkHQsffo4xiAcOHDmtuBgx3YREemc
+mhUkrFix4qwKP378OFOmTOHFF1/E09OT+fPnY7FYGDRoEEuWLMHDw4OMjAzS09Px9PQkNjaWMWPG
+UF5ezrx58zh+/Dh+fn6sXLmSwMBA8vLyePzxx7FarURGRnLfffcBsG7dOrZt24anpycLFy4kLCyM
+4uJiEhISKC8vp3fv3qxYsYLu3buf1XF0Zb6+jkGKdcck1IqK0iwHEZHOrFljEv72t79xyy23MG7c
+OMaOHev8a0xVVRWLFy+mW7dugCPQiI+PJy0tDWMMmZmZHDt2jNTUVNLT03nhhRdITk6msrKSjRs3
+EhoaSlpaGpMnTyYlJQWAJUuWsGrVKjZu3MiePXv49NNPyc/P5+OPP+aVV14hOTmZpUuXApCSksKE
+CRNIS0tj8ODBbNq06VzOU5eWlARxcdCvH1itjte4OEe6iIh0Xs1qSXjssceYP38+gwYNOmMqZENW
+rlzJjBkzeO655wDIz89n+PDhAIwaNYqPPvoIDw8Phg4dire3N97e3oSEhLB//35yc3OZPXu2M29K
+Sgo2m43KykpCQkIAiIyMJDs7G29vbyIjI7FYLPTt25eamhqKi4vJzc1lzpw5zjKSk5O54447WnRy
+xMHT0zGLYflyrZMgItKVNKsloVevXowZM4agoCAuvvhi519DXn31VQIDAxk5cqQzzRjjDDD8/Pwo
+KSnBZrMREBDgzOPn54fNZquXXjevv79/vbxNpZ9ehpwbX1/HIEUFCCIiXUOzWhKGDRvGihUrGDly
+JD4+Ps70n//85y7zb968GYvFws6dO/nss89ITEykuLjYub20tJQePXrg7+9PaWlpvfSAgIB66Y3l
+7dGjB15eXo2W0a1bN2deERERab5mtSTs3buXTz/9lA0bNrB27VrWrl3L008/3WD+l19+mT//+c+k
+pqbys5/9jJUrVzJq1CjnLIkdO3YQERFBWFgYubm5VFRUUFJSQkFBAaGhoYSHhztXc9yxYwfDhg3D
+398fLy8vDh06hDGGrKwsIiIiCA8PJysrC7vdzpEjR7Db7QQGBrosQ0RERJqvWS0JqampANhsNux2
++1ndlScmJrJo0SKSk5MZMGAA48ePx2q1EhMTw8yZMzHGMHfuXHx8fIiOjiYxMZHo6Gi8vLxYtWoV
+AEuXLiUhIYGamhoiIyMZMmQIABEREUyfPh273c7ixYsBiI2NJTExkYyMDHr16uUsQ0RERJrHYowx
+TWUqLCxk7ty5FBYWYoyhb9++rF69mn79+rVBFdtOUVERY8eOJTMzk6CgoPaujoiIiFs1dd1rVnfD
+4sWLmT17Njk5OXz88cf87ne/Y9GiRa1eWREREek4mhUkfPfdd1x//fXO9zfeeCPff/+92yolIiIi
+7a9ZQYK3tzf5+fnO9/v27dPqhSIiIp1cswYuLly4kPvvv5+ePXsC8P333+vZDSIiIp1cky0JBQUF
+9O3bl/fee49x48YREBDAxIkT+a//+q+2qJ+IiIi0k0ZbEtavX096ejpWq5Xhw4dTVFTEddddx8cf
+f8zixYt58skn26qeIiIi0sYaDRLefPNN3n33XcrKyhg3bhzZ2dl0796d2267jRtvvLGt6igiIiLt
+oNEgwdPTk+7du9O9e3eCg4OdgxWtVqsGLoqIiHRyjY5J8PA4tdlqtdbb1tynQYqIiMj5qdGWhAMH
+DnD77bef8W9jDAcPHnR/7URERKTdNBokbNiwoa3qISIiIh1Mo0HC8OHD26oeIiIi0sE0a8VFERER
+6XoUJIiIiIhLChJERETEJQUJIiIi4pKCBBEREXFJQYKIiIi4pCBBREREXFKQICIiIi4pSBARERGX
+FCSIiIiISwoSpEMqK4OCAseriIi0DwUJ0qFUV0N8PFx2GYSGOl7j4x3pIiLSthp9wJNIW0tIgDVr
+Tr0/cODU+9Wr26VKIiJdlloSpMMoK4PXX3e9bcuWdu566AL9H13gEEWkhdwWJNTU1LBgwQJmzJhB
+dHQ0//znPzl48CDR0dHMnDmTJUuWYLfbAcjIyGDKlCnceuutfPjhhwCUl5dz//33M3PmTO666y6K
+i4sByMvLY9q0acyYMYN169Y597du3TqmTp3KjBkz2Lt3LwDFxcXMmjWLmTNnEh8fz8mTJ911uNIK
+jh6FwkLX2woLHdvbXBfo/+gChygiZ8u4yf/+7/+a+fPnG2OM2bVrl7n77rvNnDlzzK5du4wxxixa
+tMh88MEH5ptvvjETJkwwFRUV5sSJE85/v/jii2bt2rXGGGPeeusts2zZMmOMMZMmTTIHDx40drvd
+zJ492+Tn55t9+/aZmJgYY7fbzeHDh82UKVOMMcYsW7bMbN682RhjzIYNG8xLL73UaJ0LCwtNaGio
+KSwsdMcpkSaUlhrTr58xcOZfv36O7W0uLs51heLi2qEy7tEFDlFEGtDUdc9tLQnjxo1j2bJlABw5
+coQePXqQn5/P8OHDARg1ahTZ2dns3buXoUOH4u3tTUBAACEhIezfv5/c3FxGjhzpzLtz505sNhuV
+lZWEhIRgsViIjIwkOzub3NxcIiMjsVgs9O3bl5qaGoqLi88oIzs7212HK63A1xeiolxvi4pybG9T
+Hbr/o3V0gUMUkXPg1jEJnp6eJCYmsmzZMiZOnIgxBovFAoCfnx8lJSXYbDYCAgKcn/Hz88Nms9VL
+r5vX39+/Xt6m0k8vQzq2pCSIi4N+/cBqdbzGxTnS21yH7P9oXV3gEEXkHLh94OLKlSt5//33WbRo
+ERUVFc700tJSevTogb+/P6WlpfXSAwIC6qU3lrelZUjH5unpmMWQnw+ff+54Xb3akd7m+vSBkBDX
+24KDHdvPc13gEEXkHLgtSHj99dfZsGEDAN27d8disXD55ZeTk5MDwI4dO4iIiCAsLIzc3FwqKioo
+KSmhoKCA0NBQwsPD2b59uzPvsGHD8Pf3x8vLi0OHDmGMISsri4iICMLDw8nKysJut3PkyBHsdjuB
+gYEuy5Dzg68vDBzYDl0Mp1eiQ/V/tL4ucIgicg7cdn/2q1/9igULFnDbbbdRXV3NwoULGThwIIsW
+LSI5OZkBAwYwfvx4rFYrMTExzJw5E2MMc+fOxcfHh+joaBITE4mOjsbLy4tVq1YBsHTpUhISEqip
+qSEyMpIhQ4YAEBERwfTp07Hb7SxevBiA2NhYEhMTycjIoFevXs4yRJqttp9jyxZH+3twsOPq2S79
+H+7RBQ5RRM6SxRhj2rsSHUVRURFjx44lMzOToKCg9q6OdCRlZY4O+j59Ou3tdRc4RBE5TVPXPa24
+KNIctf0fnVgXOEQRaSGtuCgiIiIuKUgQERERlxQkiIiIiEsKEkRaQA9BEpGuREGCSDPoIUgi0hVp
+doNIMyQkwJo1p94fOHDq/erV7VIlERG3U0uCSBP0ECQR6aoUJEin4a7xAnoIkoh0VQoS5Lzn7vEC
+egiSiHRVChLkvFc7XuDAAbDbT40XSEhonfL1ECQR6aoUJMh5ra3GCyQlQVwc9OsHVqvjNS5OD0ES
+kc5NsxvkvNac8QKt8TwCT0/HLIbly/UQJBHpOtSSIOe1th4vUPsQJAUIItIVKEiQ85rGC4iIuI+6
+G+S8VzsuYMsWRxdDcLAjQNB4ARGRc6MgQc57Gi8gIuIeChKk06gdLyAiIq1DYxJERETEJQUJIiIi
+4pKCBBEREXFJQYKIiIi4pCBBREREXFKQICIiIi4pSBARERGX3LJOQlVVFQsXLuTw4cNUVlYSGxvL
+pZdeyvz587FYLAwaNIglS5bg4eFBRkYG6enpeHp6Ehsby5gxYygvL2fevHkcP34cPz8/Vq5cSWBg
+IHl5eTz++ONYrVYiIyO57777AFi3bh3btm3D09OThQsXEhYWRnFxMQkJCZSXl9O7d29WrFhB9+7d
+3XG40kGUlWkxJRHpWM733yW3tCS88cYb9OzZk7S0NJ5//nmWLVvGihUriI+PJy0tDWMMmZmZHDt2
+jNTUVNLT03nhhRdITk6msrKSjRs3EhoaSlpaGpMnTyYlJQWAJUuWsGrVKjZu3MiePXv49NNPyc/P
+5+OPP+aVV14hOTmZpUuXApCSksKECRNIS0tj8ODBbNq0yR2HKh1AdTXEx8Nll0FoqOM1Pt6RLiLS
+HjrL75JbgoTrr7+euLg4AIwxWK1W8vPzGT58OACjRo0iOzubvXv3MnToULy9vQkICCAkJIT9+/eT
+m5vLyJEjnXl37tyJzWajsrKSkJAQLBYLkZGRZGdnk5ubS2RkJBaLhb59+1JTU0NxcfEZZWRnZ7vj
+UKUDSEiANWvgwAGw2x2va9Y40kVE2kNn+V1yS5Dg5+eHv78/NpuNBx54gPj4eIwxWCwW5/aSkhJs
+NhsBAQH1Pmez2eql183r7+9fL29T6aeXIZ1PWRm8/rrrbVu2OLaLiLSlzvS75LaBi0ePHuX2228n
+KiqKiRMn4uFxalelpaX06NEDf39/SktL66UHBATUS28sb0vLkM7n6FHHkx9dKSx0bBcRaUud6XfJ
+LUHCt99+y6xZs5g3bx5Tp04FYPDgweTk5ACwY8cOIiIiCAsLIzc3l4qKCkpKSigoKCA0NJTw8HC2
+b9/uzDts2DD8/f3x8vLi0KFDGGPIysoiIiKC8PBwsrKysNvtHDlyBLvdTmBgoMsypPPp0wdCQlxv
+Cw52bBcRaUud6XfJLbMb1q9fz4kTJ0hJSXEOOnz44Yd57LHHSE5OZsCAAYwfPx6r1UpMTAwzZ87E
+GMPcuXPx8fEhOjqaxMREoqOj8fLyYtWqVQAsXbqUhIQEampqiIyMZMiQIQBEREQwffp07HY7ixcv
+BiA2NpbExEQyMjLo1auXswzpXHx9ISrK0dd3uqio83M0sYic3zrT75LFGGPauxIdRVFREWPHjiUz
+M5OgoKD2ro40U3W1YzDQli2OprzgYMd/xKQk8NTD0EWkHZwvv0tNXfc6UFVFzo6nJ6xeDcuXn4fz
+kc/3SdQi4tJ5/btUh1ZclE7D1xcGDjxP/iN2lknUItKo8+p3yQW1JMhZ003wOaidRF2rdhI1OG4/
+REQ6ALUkSIvpJvgcdaZJ1CLSqaklQVpMN8HnqDmTqAcObNs6iYi4oJYEaRHdBLeCzjSJWkQ6NQUJ
+0iKdaSWxdlM7idqV820StYh0aupukBapvQk+cODMbboJboGkJMerq0nUIiIdhFoSpEXO6Sa4rAwK
+CtQnAacmUefnw+efQ34+ZctXU3DQU6dHRDoMBQnSYklJEBcH/fqB1ep4jYtr5CZY0yEa5utL9SUD
+iV/oq9MjIh2OuhukxVq8kpimQzRKp0dEOiq1JMhZa9ZKYpoO0SidHhHpyBQkiHtpOkSjdHpEpCNT
+kCDu1RprAnTiAY9aMkFEOjIFCeJe5zIdogsMeNSSCSLSkWngorjf2a4J0EVG9DV6evQULRFpR2pJ
+EPdzsSYAq1c70hvShUb0uTw9SdV4JnTuVhQR6fjUkiBto6V3xF3wIUi1s0UAiO8arSgi0rGpJUHc
+q4XjCpxjFC9oZERfnz5wwQVurHQ760KtKCLSsSlIEPeqHVdw4ADY7afuiBMS6mU7I5b4uS/xPV+i
+GuuZZRYVwc9/3nmb3zUvUkQ6CAUJ4j4tuCN2GUvkjSbhyq2OdZ8tlvqfbyDYaCtunZWpeZEi0kEo
+SBD3aeYdcaOxxPejKdu+u+ELYxs3v7fJrEzNixSRDkIDF8V9GnmudNnFgzh6si99ypoRS3xRysCv
+vmokg/sHMdaOu0xOhpSUU+luG0+oR0mLSAeglgRxHxd3xNVYiSeZy77LInRIdy67zHHhDQ52XURw
+MPQJu7Ddmt9PbznYsMF1vlZv0DibaaMiIq1MQYK412nPlU4I2MAa5nKg5EfOsQcpKdCrl+uPR0WB
+74/br/n99LESNTWu87ltPGGznqIlIuIeChLkrDVr8F6dO+KyvH/yeq87XWY7dgwmTYKgILBaHTHF
+PfdAbOx/yj8t2KBfP8d7Nza/NzZW4nRNNWicca468fMoRKTzcGuQsGfPHmJiYgA4ePAg0dHRzJw5
+kyVLlmC32wHIyMhgypQp3HrrrXz44YcAlJeXc//99zNz5kzuuusuiouLAcjLy2PatGnMmDGDdevW
+Ofezbt06pk6dyowZM9i7dy8AxcXFzJo1i5kzZxIfH8/JkyfdeahdylkN3vP15Wj3ARQWuf7KHT4M
+b7zhuBsfNAh+9St45x0YPPg/5Sd4Up3Uts3vjY2VOF1DDRpnnKvBhvih26geHKaVFEWk4zNu8txz
+z5kJEyaYadOmGWOMmTNnjtm1a5cxxphFixaZDz74wHzzzTdmwoQJpqKiwpw4ccL57xdffNGsXbvW
+GGPMW2+9ZZYtW2aMMWbSpEnm4MGDxm63m9mzZ5v8/Hyzb98+ExMTY+x2uzl8+LCZMmWKMcaYZcuW
+mc2bNxtjjNmwYYN56aWXmqxzYWGhCQ0NNYWFha19OjqVuDhj4My/uLjGP1daaky/fq4/25y/pspv
+bY3V12o1xsPDsT0uzpiqKtdlNHiuSG7fgxMRMU1f99zWkhASEsLTTz/tfJ+fn8/w4cMBGDVqFNnZ
+2ezdu5ehQ4fi7e1NQEAAISEh7N+/n9zcXEaOHOnMu3PnTmw2G5WVlYSEhGCxWIiMjCQ7O5vc3Fwi
+IyOxWCz07duXmpoaiouLzygjOzvbXYfapZzLYoCNzexrjtYaHNjclv7G6jtnDvzzn403aDR6roii
+jO51ErSSooh0PG4LEsaPH49nnV9OYwyW/yyI4+fnR0lJCTabjYCAAGcePz8/bDZbvfS6ef39/evl
+bSr99DLk3J3rYoB1hxacvj5SU851cODZdJM0NBRizZqmxxM2eq4I5ih1BjFoJUUR6YDabOCih8ep
+XZWWltKjRw/8/f0pLS2tlx4QEFAvvbG8LS1Dzl1zFwNs6G7d0xOWL4c334Tt2x0X3uY619mOzVwh
+2qmsDA4edNT3bIZCNHquKKQPdYICraQoIh1QmwUJgwcPJicnB4AdO3YQERFBWFgYubm5VFRUUFJS
+QkFBAaGhoYSHh7N9+3Zn3mHDhuHv74+XlxeHDh3CGENWVhYRERGEh4eTlZWF3W7nyJEj2O12AgMD
+XZYh566pxQC9vRu+W697Jz9kCNx+e8NTHxsq/2xnArakm8RVi8PChXDJJS3bf6Pnii34UmcwrVZS
+FJGOyN0DImoHLn755ZfmtttuM7feequZP3++qa6uNsYYs2nTJjNlyhRz8803m/fee88YY0xZWZm5
+//77zYwZM0xMTIz55ptvjDHG/OMf/zDTpk0zU6ZMMcnJyc79rF271kydOtVMmTLF7N692xhjzLFj
+x8ysWbPM9OnTzd13321KS0ubVV8NXGxaVZVjnF2/fo4BfM7Bez+Umrg7vmtw0GFDg/ga+/PwMCYk
+xJjf/MaYH35wDCb84gvHa2NOz/fFF46yGhqE+MUXpz57tgMzm3WuLrGbuCs/NFWXDDzt5DUw8rGV
+Nff8iUjX0NR1z61BwvlGQULzlZYa88knjr/SHxxXwtKQn5pL+NLlBfaSS4wJDm74Iu0qvU8fY2bM
+cAQJHh7GBAQ4/iyWhq+tdS/KdWcf/PBDwzMV+vU7ddEsLXXUtal8Z3O+6l2c2/hq3dB5aaPYREQ6
+qKaue1rjVVqkutrRh79lCxw65Ohzj+qZRVLeOo5yCYW4Xl+5qMgxDsCVhlYxPHoU0tNPva879rSh
+ZybUjjs4PZ/dDj17ut5P3Zb+5gzMPJvHRNQunNhwgns1dF6glZ85ISKdilZclBZp8JHO/IE+HCUE
+11fYoKCGn89wLuqOJ2hs3MH//A/k5Z2ZfuWV9Rdt7IxPaT6Xaasi0rUpSJBma2reP8BE3nC5fdIk
+uDmqgSaDc1B35uDRwmoKD7rex4kTrj///fdQWXnqfWd8SvO5TlsVka5LQYI0W/Pm/ZsGP5/EPOJ4
+in58CbROwFD37r7P2gWEcKhFn3d1kWyHx0S4VWdsHRGRtqEgQZqtqXn/F/A9b+D6NvzNN+xUvv4O
+q/k9u/k5F3OkVerkvLsvK8P37VeIwnVTR4C/6wERri6Sne0pzZ2xdURE2oaCBGk2X1+48UbX26Ku
+PMQPF1/e4MDFwiILR4scrQf/ph+Hadntq8UCPXpAQAB4eLi4u/9PM0fd1gorVfTjS+JYwx1TXPc3
+NHaRPP0pzefzgxs7W+uIiLSN8/TeSNpa7ayGt992vLdaHQMXQ0Jg8mRIShpN5ffvEnKl4cDhMz8f
+HGToVePL0KK/8wlhQPOXWgzgBDtmPEvo+gfB05OjRx13//Uu7v9p5vA8cIDV/J7lPMxR+tCHo/j2
+u4jqp+/Co5djoF5hoaMFISqqeRdJlzM6/vPZ86V1obZ1ZPlyXJ8/EREX1JIgzVI7q+HgQcf7mhrH
+6gE33XSqKd73x75ETfVy+fmoyR6MLX+LPIZRgxfQ/Ac3lNGdgI3P4bs44Yy7e6fT2tR9OclAvnSs
+ahgVhWcP37PuQmjpcs4dWYPnT0TEBQUJ0qDa5vVvv214VsM779RvfnfVrH3PPTB9OnzyXVADe2p4
+sCPUec5BU/P1mtGm3tKLpKYPikhXpiBBznD6swuuvPJUC8LpTp8dUHfQX36+YwzDO+/AL34BNTUN
+tR403qrgfM5BU/P13DDiUNMHRaQrO096VKUtnb4632EXYwxqBQW5nkLn6wvPPgspKWdfDytVzGE9
+ScxzJDR3vl6d1QzLys6tD752RseBA2du0/RBEens1JIg9TTWvO5KcbHjCYnV1fXL2LcPXn21eWV4
+NPAt/C3P83tWU4m3I6EF8/VcPcmx9mmULaHpgyLSlaklQepprHkdHC33dS+0JSWnWh2SkurPAmjo
+WQ2nMwbuuAO2bXPsOyjI0Ku0iPeLJ/C8/S5CrEeJuqKApCcim/2Fbc1nFdQOaTibmREiIucztSR0
+Ya7m/Te2YBI0fCe+ZYtjjGDdWQDNdckl8Mwzp4YS3HSThbxvgzloD8aOJwdqgh3Ph5jfvBChtQcb
+drbFlUREmktBQhfUVFP86NEtL/PQIccF+GzceOOpAYAXXNBwOc29wLtrsKGmD4pIV6N7oS6ooab4
+7dsdDzw6eBD8/KC0tPll9unTsouvxeJosejVy7FA07PPOi6+xjQcCDT3Uc0abCiunOsgVpGuSC0J
+XUxjTfF5eY4LqzEtCxDA0UffWDfF6fr0cbQa5OU5gpLafTbWUhAc7PhMU0sja7Ch1NVag1hFuiK1
+JHQxTQ1MbAkPj/pLFHt51W+haMyRI46/lujZE37+8+YtjazBhlKrNQexinQ1ChK6mMaa4lvikkvg
+rVdOMqD7UXwH/AQ8fc+4MAcFOe78jx07t0WHgoLgxz92tDrUauqHXs8qEGh6EOvy5fpeiDRG3Q1d
+TMkVIp0AAAxrSURBVGNN8S0xudc2Lr91ML5DBjnbbz2prrfa4k03wYkT5xYgXHwxfPQRfPed6+1N
+DWbUYMOuTStmipwbtSR0Qaff8fv6OtY7aExQkOMHNTgYonpuIylvHOB49PPpt/WtsdpiralToaqq
+6R/6pgYzStekQawi50YtCW3E1ZoE7VWPgwcdzaz5+Y4m/F69Gv9Mv37wj3/8Z42A3WWs/u4OPGsD
+hLr+c1vfklUbf/xj1+kBAaeezdTY2g36oZfGaBCryLlRkOBmHWVktat6LFzoGGxYVNT4Z6OiHBfz
+gQPB9wfX7bdldKfgkBdlX37V5ODIug9oLCx0PCUyKMiRfskljtUXi4rqPIJaP/RyDprxcFARaYgR
+p8LCQhMaGmoKCwtbrcy4OGMcE/zq/8XFtdouzqke99xjTL9+rrdZrY7tVVV1CiotrfeBKqwmjmTT
+jy+NB1WmX0iNueceYy65xHWZISHGfPKJoxhzWrFffHFmeq2qKscx9OvnqFe/fo739eom0oimvmMi
+XVFT1z21JLhRay8P7I56vPOOY8VDV+bMcSyXXG+K4Wm39Qn8gTXM5QD9HUsoH/IgJaXhLoybb4bL
+Lz/z7r+pAYZaGlnOlQaxirScfmLdqDkjq9tiwF1T9XjgAUe3Q7PXFPjPhrLX3uf1Q5NdZvnuO0c3
+wjvvtO46BXWeAi0iIm7WqYMEu93OI488wueff463tzePPfYYl/z/9u4/Jur6jwP4835wnHiQYOq+
+Tc9xK1bNmQHndDuopkVs6h932qx2tTUaiMz8gYMopsZlEjLnry2bqY3YhKU115JlOaMLsGRiw9XK
+Qv2CaIey5V0cd9y9vn98v1ySnwF+O+7geD7+ks/n/Tne79fUe9778773Z+7ciP3+8bKyeqR+zJlz
+j3sK/O9jfXdeH/79mB5QeJhTZyewcSNQVcV9CoiIJqqYvt3w5Zdfwufzoa6uDps2bcKOHTsi+vvH
+y4K70fbjXqdj/2WaAqNRpXhuMARxipeIaOKK6ZmE1tZWZGVlAQAWLFiA9vb2iPdhvGwPPBb9GAwf
+Slsx81sHREQTX0yHBLfbDYPBEPpZo9FgYGAA2giudhsv2wOPVT/GSwgiIqLwi+mQYDAY4LnjcYbB
+YDCiAeFO42XBXbj7MV5CEBERhV9Mr0lIT09HY2MjAKCtrQ1paWlR7lHs4toDIqLYE9MzCU8//TS+
+/fZbrF69GiKC7du3R7tLREREE0ZMhwS1Wo233nor2t0gIiKakGL6dgMRERH9/xgSiIiISBFDAhER
+ESliSCAiIiJFDAlERESkiCGBiIiIFDEkEBERkSKGBCIiIlIU05sp3atAIAAAuH79epR7QkRENPYG
+3+8G3//+jiHhDi6XCwDw4osvRrknREREkeNyuTB37ty7jqtERKLQn3HJ6/Wivb0dM2bMgEajiXZ3
+iIiIxlQgEIDL5cK8efOg1+vvOs+QQERERIq4cJGIiIgUMSQQERGRIoYEIiIiUsSQQERERIr4FchJ
+wu/3o6ysDF1dXfD5fFizZg0efPBBlJaWQqVS4aGHHsKWLVugVqtRX1+Po0ePQqvVYs2aNXjqqafg
+9XqxefNm3Lx5E1OnTkVlZSVSUlLQ1taGt99+GxqNBhaLBUVFRQCAffv24cyZM9BqtSgrK8P8+fOj
+XIF/5ubNm7BarTh06BC0Wi3rNgoHDhzA6dOn4ff78fzzz2PhwoWs2wj8fj9KS0vR1dUFtVqNiooK
+/n0bwYULF7Bz507U1NTgypUrEa3VrVu3UFxcDK/Xi5kzZ+Kdd97BlClTolyRMBOaFD7++GNxOBwi
+ItLb2ytPPPGE5OfnS0tLi4iIlJeXyxdffCG///67LFu2TPr7++WPP/4I/fnQoUOyZ88eERH57LPP
+pKKiQkREVqxYIVeuXJFgMCh5eXly8eJFaW9vF7vdLsFgULq6usRqtUZn0GHi8/mksLBQnnnmGbl0
+6RLrNgotLS2Sn58vgUBA3G637Nmzh3UbhVOnTsm6detERMTpdEpRURHrNoz3339fli1bJqtWrRIR
+iXitKioq5NixYyIicuDAATl8+HCEKzD2eLthknj22Wfx2muvAQBEBBqNBhcvXsTChQsBANnZ2Whq
+asIPP/yAxx9/HDqdDomJiTAajfjpp5/Q2tqKrKysUNvm5ma43W74fD4YjUaoVCpYLBY0NTWhtbUV
+FosFKpUKDzzwAAKBAG7duhW1sf9TlZWVWL16NWbOnAkArNsoOJ1OpKWlYe3atSgoKMCTTz7Juo1C
+amoqAoEAgsEg3G43tFot6zYMo9GIvXv3hn6OdK3+/hpNTU2RL8IYY0iYJKZOnQqDwQC3241169Zh
+/fr1EBGoVKrQ+du3b8PtdiMxMXHIdW63e8jxO9saDIYhbYc7PhEdP34cKSkpof8IALBuo9Db24v2
+9nbs3r0b27ZtQ3FxMes2CgkJCejq6kJubi7Ky8tht9tZt2Hk5ORAq/3rrnmka6X0GrGGaxImke7u
+bqxduxYvvPACli9fjqqqqtA5j8eDpKQkGAwGeDyeIccTExOHHB+ubVJSEuLi4hRfYyI6duwYVCoV
+mpub8eOPP6KkpGTIpy3WTdm0adNgMpmg0+lgMpkQHx8/5JkorJuyI0eOwGKxYNOmTeju7sbLL78M
+v98fOs+6DU+t/utzbyRqNdher9eH2sYaziRMEj09PXjllVewefNmrFy5EgDw6KOP4uzZswCAxsZG
+ZGZmYv78+WhtbUV/fz9u376NX3/9FWlpaUhPT8fXX38dapuRkQGDwYC4uDhcvXoVIgKn04nMzEyk
+p6fD6XQiGAzi2rVrCAaDSElJidrY/4na2lp89NFHqKmpwSOPPILKykpkZ2ezbiPIyMjAN998AxHB
+jRs30NfXh8WLF7NuI0hKSgq9Ud93330YGBjgv9N7EOlaKb1GrOG2zJOEw+HAyZMnYTKZQsfeeOMN
+OBwO+P1+mEwmOBwOaDQa1NfXo66uDiKC/Px85OTkoK+vDyUlJXC5XIiLi0N1dTVmzJiBtrY2bN++
+HYFAABaLBRs2bAAA7N27F42NjQgGg3j99deRmZkZraGHjd1ux9atW6FWq1FeXs66jeDdd9/F2bNn
+ISLYsGEDZs+ezbqNwOPxoKysDC6XC36/Hy+99BLmzZvHug2js7MTGzduRH19PTo6OiJaq56eHpSU
+lMDj8SA5ORnV1dVISEiIckXCiyGBiIiIFPF2AxERESliSCAiIiJFDAlERESkiCGBiIiIFDEkEBER
+kSKGBCIKq4aGBlitVqxYsQLLly/HwYMHh21vt9tD320novGFOy4SUdjcuHEDlZWVOH78OJKTk+Hx
+eGC325GamoolS5ZEu3tEdI8YEogobHp7e+H3++H1egH8dz/7HTt2ID4+HidPnsThw4fh9XrR398P
+h8MBs9kcunZgYABbt27FL7/8gp6eHqSmpmLfvn3o6elBXl4ekpOTER8fD5/Ph8LCQlgsFogIcnJy
+UFNTg1mzZkVr2EQxi7cbiChsHn74YSxZsgRLly7FypUrUVVVhWAwiDlz5uDo0aN47733cOLECbz6
+6qv44IMPhlx7/vx5xMXFoa6uDqdOnUJ/f39oy9uOjg5UVVXhyJEjsNlsOHHiBADg3LlzMBqNDAhE
+Y4QzCUQUVtu2bUNhYSGcTiecTieee+457Ny5E/v378fp06fR0dGB7777bsjDeADAbDZj2rRpqK2t
+xW+//YbLly/jzz//BABMnz4ds2fPBgDk5uZi165d6OvrwyeffAKr1RrxMRJNFpxJIKKwOXPmDD7/
+/HPMmjULNpsNu3btwptvvona2lrYbDZ0dnbCbDbDbrffde1XX32F4uJi6PV6WK1WmM1mDO4ar9fr
+Q+0SEhKQnZ2NhoYGtLS0YOnSpREbH9Fkw5BARGGj1+tRXV2Nzs5OAICI4NKlS9DpdFCr1SgoKMCi
+RYvQ2NiIQCAw5Nrm5mbk5ubCZrPh/vvvx/fff39Xm0GDASQrKws6nW7Mx0U0WfF2AxGFzaJFi1BU
+VISCggL4/X4AQFZWFvbv34/S0lLk5uZCr9fDbDbj2rVrQ65dtWoViouL0dDQAJ1OhwULFoTCxt9l
+ZGRApVLBZrON+ZiIJjM+BZKIJhQRwc8//4ySkhJ8+umn0e4OUUzjTAIRTSgffvghDh48iN27d0e7
+K0QxjzMJREREpIgLF4mIiEgRQwIREREpYkggIiIiRQwJREREpIghgYiIiBQxJBAREZGi/wDCHRxD
+/ul2TQAAAABJRU5ErkJggg==
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>From the above figure, it is observed that the data becomes more spread out and more comprehensible after the outlier removal. Its also observed <strong>that values of bonuses of POIs are higher than that of non-POIs</strong>.</p>
+<p>As the POI's were taking larger amounts of money as a bonus, in addition to their high salary, it can be stated that the ratio of bonus to the salary of the POI's will be higher as compared to that of non-POI's. Hence, <strong>a new feature called bonus-to-salary_ratio is created</strong> in the hope that it may aid in the POI identification in the later parts of this project. &lt;a id=#new_features_1&gt;&lt;/a&gt;</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[119]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;bonus-to-salary_ratio&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;bonus&#39;</span><span class="p">]</span><span class="o">/</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;salary&#39;</span><span class="p">]</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h4 id="Removing-Outlier:-'THE-TRAVEL-AGENCY-IN-THE-PARK.'">Removing Outlier: 'THE TRAVEL AGENCY IN THE PARK.'<a class="anchor-link" href="#Removing-Outlier:-'THE-TRAVEL-AGENCY-IN-THE-PARK.'">&#182;</a></h4><p>From the <em>enron61702insiderpay.pdf</em> provided by findlaw.com, a dataset was observed named 'THE TRAVEL AGENCY IN THE PARK' It is known that Enron had made up some transactions with bogus companies and people <a href="http://www.brighthub.com/office/finance/articles/101200.aspx">reference</a>. So on observing the features of this dataset, it can be considered as an outlier with very low values in all features except in <em>others</em> and <em>total-payments</em>. Hence, it is removed.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[120]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Features of the index &#39;THE TRAVEL AGENCY IN THE PARK&#39;</span>
+<span class="n">enron_df_new</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="s1">&#39;THE TRAVEL AGENCY IN THE PARK&#39;</span><span class="p">]</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[120]:</div>
+
+
+<div class="output_text output_subarea output_execute_result">
+<pre>bonus                           NaN
+deferral_payments               NaN
+deferred_income                 NaN
+director_fees                   NaN
+exercised_stock_options         NaN
+expenses                        NaN
+from_messages                   NaN
+from_poi_to_this_person         NaN
+from_this_person_to_poi         NaN
+loan_advances                   NaN
+long_term_incentive             NaN
+other                        362096
+poi                           False
+restricted_stock                NaN
+restricted_stock_deferred       NaN
+salary                          NaN
+shared_receipt_with_poi         NaN
+to_messages                     NaN
+total_payments               362096
+total_stock_value               NaN
+bonus-to-salary_ratio           NaN
+Name: THE TRAVEL AGENCY IN THE PARK, dtype: object</pre>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[121]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Deleting the row with index &#39;THE TRAVEL AGENCY IN THE PARK&#39;</span>
+<span class="n">enron_df_new</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="s1">&#39;THE TRAVEL AGENCY IN THE PARK&#39;</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">inplace</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h4 id="Financial-Features:-deferred_income,-deferred_payment-and-total_payment">Financial Features: <code>deferred_income</code>, <code>deferred_payment</code> and <code>total_payment</code><a class="anchor-link" href="#Financial-Features:-deferred_income,-deferred_payment-and-total_payment">&#182;</a></h4>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>According to <a href="http://www.businessdictionary.com/">http://www.businessdictionary.com/</a>,</p>
+<p>Deferred payment is "a loan arrangement in which the borrower is allowed to start making payments at some specified time in the future. Deferred payment arrangements are often used in retail settings where a person buys and receives an item with a commitment to begin making payments at a future date."</p>
+<p>Deferred income (also known as deferred revenue, unearned revenue, or unearned income) is, in accrual accounting, money received for goods or services which have not yet been delivered. According to the revenue recognition principle, it is recorded as a liability until delivery is made, at which time it is converted into revenue.</p>
+<p>As Enron scam involved a lot of undisclosed assets and cheating public by selling assets to shell companies at the end of each month and repurchasing them at the start of next month to hide the accounting losses, there are chances that a lot of deferred revenue by the company was used by the POIs.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[122]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;deferred_income&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">describe</span><span class="p">()</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[122]:</div>
+
+
+<div class="output_text output_subarea output_execute_result">
+<pre>count    4.800000e+01
+mean    -5.810498e+05
+std      9.420764e+05
+min     -3.504386e+06
+25%     -6.112092e+05
+50%     -1.519270e+05
+75%     -3.792600e+04
+max     -8.330000e+02
+Name: deferred_income, dtype: float64</pre>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>The <strong>deferred_income</strong> feature has mostly negative values as it is the money which has to be returned by the company.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[123]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Finding out the integer index locations of POIs and non-POIs.</span>
+<span class="n">poi_rs</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="n">non_poi_rs</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">])):</span>
+    <span class="k">if</span> <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">][</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">:</span>
+        <span class="n">poi_rs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
+    <span class="k">else</span><span class="p">:</span>
+        <span class="n">non_poi_rs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
+
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Length of po list: &quot;</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">poi_rs</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Length non-poi list: &quot;</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">non_poi_rs</span><span class="p">))</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Length of po list:  18
+Length non-poi list:  126
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Drawing a scatterplot of <strong>Eemployees with deferred income</strong></p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[124]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Since &#39;deferred_income&#39; is negative, for intuitive understanding,</span>
+<span class="c1"># a positive person of the variable is created for visualization.</span>
+<span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;deferred_income_p&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;deferred_income&#39;</span><span class="p">]</span> <span class="o">*</span> <span class="o">-</span><span class="mi">1</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">non_poi_rs</span><span class="p">,</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;deferred_income_p&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Not-POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">poi_rs</span><span class="p">,</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;deferred_income_p&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;r&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;POI&#39;</span><span class="p">)</span>
+    
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Employees&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;deferred_income&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Scatterplot of Employees with deferred income&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;upper right&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+
+
+<div class="output_png output_subarea ">
+<img src="
+AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXZAWSIMStUAgImnrFgkAUekmwiEC1QSiy
+JRgVxCIVJHiDgchSRDYFZA1CtXqlQgjQiv1ZK23K0hhAjAKXAFqpSFiUSAQzCdlmvr8/phkTGMJA
+MplMeD8fDx7DfM+ZM59zZk7OZ77bsRhjDCIiIiIX8PN2ACIiIlI/KUkQERERl5QkiIiIiEtKEkRE
+RMQlJQkiIiLikpIEERERcUlJgtRre/fuJSEhgf79+xMbG8vo0aP517/+ddXb279/P9OnT3c+HzVq
+FPn5+bURKgDLli3jhRdeuOx6V/O+mZmZ9OrVi4cffpji4uIqy+677z769evHgAEDqvz75JNPrug9
+LsXd/aqPnn/+ebKysgCYOnUqBw4cACAhIYG//vWvV7y92NhYdu/eXe06NpuNsWPH0q9fP/7whz9c
+edBX4YUXXmDZsmUXla9bt47Vq1fXSQzS8AR4OwCRSyktLWXMmDH8/ve/p0OHDgBs3ryZJ598koyM
+DPz9/a94m1988QXffPON8/mHH35Ya/Feiat53/fee48hQ4bwm9/8xuXyBQsW8NOf/rSmoTU4s2fP
+dv4/KyuLYcOGefw9v/nmGzIzM9m7d+9VfU9rU1xcnFffX3ybkgSpt86fP09BQQFFRUXOsoceeojQ
+0FBsNhv+/v5s3LiRN954Az8/P5o3b878+fO5+eabmTNnDvv27aOwsBBjDC+++CItW7Zk6dKlFBQU
+MGXKFOc2H3vsMVavXo2fnx8vvPACp06doqysjF/+8pc89dRTHD9+nBEjRtC+fXtOnDjBvHnzePbZ
+Z7nnnns4fPgwxhimT59OVFRUlfj/9a9/8cILL3D27FksFgujRo1i4MCBzveueN8WLVo4X1NWVsa8
+efPYuXMn/v7+dOzYkSlTppCWlkZGRgbBwcEUFBSQnJzs9nE8fvw4jz32GN27d2fv3r2Ul5fz3HPP
+sX79ev79739z5513smjRIk6ePElCQsJV79fUqVMJDw/n2WefBeDdd9/lgw8+YMWKFfzjH/9g5cqV
+lJWV0ahRI5KTk+ncuTMAK1euZMuWLdjtdn784x8zY8YMbr75ZrZs2cLKlSuxWCz4+/vz3HPPcffd
+dzvjsNls9OjRg/Xr19OmTRtWr17NunXr2Lp1KwAjR47k8ccf57XXXmPEiBEcOnSI06dPk5SUxEsv
+vQRARkYGr732GmfOnOFnP/sZL774In5+VStYv/jiC1JSUjh//jzt2rWr8n385JNPWLBgAefPn8di
+sTB+/HjuvvtuRo8eTXl5OYMGDWLZsmWUlZUxe/Zszp49i81mIyEhgcGDB7N7925mz55NkyZNKCoq
+YtKkSbz88svO5xs3biQzM9PlsbNarTz//PMcPnyYm266CX9/f7p27XrR579s2TK+++47pk+fzn33
+3cevfvUrdu7cyalTp3jggQd47rnnAFyeSy1atGD9+vWsWbMGPz8/brjhBqZNm8Ytt9zC5MmTCQ4O
+5v/+7//49ttveeCBBwgPD2fr1q3k5eXx4osv8rOf/YzS0lIWLFjAnj17sNls3HHHHUydOpXQ0FC3
+v8PiRUakHvv9739vOnbsaO677z6TlJRkNmzYYIqKiowxxhw6dMh069bNnDx50hhjzBtvvGGmTZtm
+PvnkEzN+/Hhjs9mMMcasWrXKjBkzxhhjzKZNm8yvf/1r5/YjIyPNmTNnjDHGJCQkmIyMDGOMMcXF
+xSYhIcG89957Jjc310RGRpo9e/YYY4zz+bvvvmuMMWbbtm2mR48eprS01CxdutTMnDnTlJWVmd69
+e5sPPvjAGGPM119/bWJiYswnn3xy0ftWtmTJEjNu3DhTWlpqbDabmTx5spk2bZoxxpjk5GTz2muv
+uTxOvXr1Mn379jUPPfSQ89/gwYOrxPv3v//dGGPM9OnTTa9evUxBQYEpLi42PXr0MNnZ2TXer4MH
+D5oePXqYsrIyY4wx8fHxZseOHebLL780sbGxJj8/3xhjzOeff2569OhhCgsLzZ/+9CeTmJjofE1a
+WpoZPXq0McaY3r17m08//dQYY8w///lPs2zZsov2e/LkyWbNmjXGGGMeeeQR06NHD/Pvf//bfP/9
+96Zbt26mpKTEPPLII+b99993Hqf9+/c71x87dqwpLy83RUVFpkePHs7PuLIBAwaY9PR0Y4wxH3/8
+sfnJT35idu3aZc6ePWv69u1rcnNznceiZ8+e5sSJEyY3N9fcddddxhhjysrKzIMPPmgOHDhgjDHm
++++/Nw888ID59NNPza5du8ztt99ujh8/bowxFz2v7tjNnj3bPPfcc8Zut5szZ86Ynj17mqVLl14U
+f8VnV7H/8+bNc8b705/+1Bw7duyS51JWVpa5//77nd/VTZs2mQceeMDY7XaTnJxshgwZYkpLS83p
+06dNZGSkeeutt4wxxrz55ptm5MiRxhhjli1bZubNm2fsdrsxxpiFCxeaGTNmXBSn1E+qSZB6beTI
+kQwZMoQ9e/awZ88efve73/G73/2OjRs3snPnTqKjo52/xB9//HHn66677jrS0tLIzc1l9+7dhISE
+VPs+RUVF7Nmzh3PnzrFkyRJn2eHDh+nYsSMBAQHcddddVbbfv39/AO699178/f357LPPnMuPHj1K
+SUkJffv2BeDmm2+mb9++/POf/3T+gnZlx44dTJw4kcDAQMDRbv7000+7dayqa24IDAzkvvvuAyAi
+IoLOnTs7f8nddNNNnDt3jptuuqlG+/XMM8/QqlUrtm3bxi233MLp06eJjo5m7dq1nD59usrnY7FY
+OHbsGFu3buX//u//ePjhhwGw2+2cP38egF/+8peMGzeOe++9lx49evDkk09etF99+vQhLS2NgQMH
+cvr0aWJjY8nKyuK6664jJiaGoKCgao/Zgw8+iL+/P40bN6Zt27acOXOmyvLvvvuOzz77jIEDBwLQ
+tWtXbrvtNsDRXyYvL6/K52OxWPjss8+c61Qcs2PHjpGSkuIsKy4u5uDBg7Rv354WLVrw4x//2Lms
+8vMPP/zwksdu586dpKSkYLFYCA8Pp0+fPtXua4XevXsDjs/u+uuv59y5c+zZs8flufTSSy/x4IMP
+Eh4eDsCgQYOYPXs2x48fB6BXr14EBgZy44030qRJE2JiYgDHd+zs2bMAbNu2jYKCAme/kLKyMq6/
+/nq3YhXvU5Ig9VZ2djaffvopo0ePplevXvTq1Ytnn32W/v378+GHH+Lv74/FYnGuX1xczIkTJ8jN
+zWX27NmMHDmS3r17065dO959991q38tut2OMIS0tjcaNGwOQn59PcHAw3333HUFBQQQE/HC6XNjO
+bLfbq5TZ7faL3sMYQ3l5+WXjuPB5WVlZta9xR2BgYJVjVZGEXKim+zVixAg2bdpE27ZtGTp0KBaL
+Bbvdzs9+9jMWL17sfM2pU6e46aabsNvtjB49mvj4eMDRD+XcuXMATJw4kcGDB5OZmckf//hHVq9e
+zR//+McqzQE9evRg6tSpbN++nW7duvHf//3frFu3jsaNG/Pggw9e9rhU/kwtFgvmglvZVByzyuUV
+r7HZbLRv354NGzY4l33zzTeEh4dX6fdis9lo2rQpmzdvdpZ9++23hIWFsXfvXpo0aVLlPSs/r+7Y
+XRiXu30fgoODL9rnS51LFx6Pives+LwvTMIqH8/K+5CSksK9994LQGFhISUlJW7FKt6n0Q1Sb4WH
+h7Ny5Uo+/vhjZ1leXh7nz58nMjKSbt26sXPnTk6fPg1AWloaL7/8Mh9++CG9evUiPj6en/70p/z9
+73/HZrMBjj+klS/UFc9DQ0O56667eOONNwD4/vvviYuLIyMjw2Vs+fn57NixA4B//OMfBAYGEhkZ
+6Vx+yy23EBgYyJYtWwDHxeODDz7gv//7v13GUSEmJoa0tDTKysqw2+28/fbb9OjR46qP4ZWq6X71
+69ePQ4cOsWXLFmftQPfu3fnwww85cuQIANu3b+ehhx6ipKSE6OhoNm7ciNVqBWDJkiU899xzlJeX
+c99991FUVERcXBwzZszgyJEjFx2z4OBg7r77bpYvX06PHj2455572Lt3Lx9//LHzV21llzrul9Ks
+WTM6dOjgTARycnL4/PPPAbjrrrv46quv2LNnDwCHDh2iX79+zu9j5WMWHBzsTBJOnTpFbGysc5RF
+dao7djExMWzcuBG73c65c+cu+V11x6XOpejoaP7yl784R+Js2rSJZs2a0aZNG7e3HR0dzdtvv01p
+aSl2u51p06axaNGiq45V6pZqEqTeuuWWW1ixYgWvvPIKX3/9NcHBwYSFhfHCCy/Qrl07ACZNmsTo
+0aMBuPHGG5kzZw5Wq5WkpCT69++Pv78/UVFRzo5xnTt3ZvHixTz99NOsWLGCPn36EB8fT2pqKgsW
+LGDWrFn079+f0tJSYmNjeeihh5xVq5VV/NFfsGABjRo1YsWKFVV+yQUGBpKamsqLL77IsmXLsNls
+PP3003Tv3h2gyvtWvgiPHTuW+fPnM3DgQMrLy+nYsSPTpk1z63glJSXRqFGjKmWPPPIIP/vZz9w+
+5jXdr6CgIPr168e3337rrKK+7bbbeOGFF3j22WcxxhAQEMDKlStp0qQJQ4YM4ZtvvnHWOrRo0YJ5
+8+YREBBASkoKSUlJBAQEYLFYmDNnjsvmgz59+rBlyxa6d+9Oo0aNuP3227nuuuuq/GKucP/99zNx
+4kRefPFFt4/JokWLnJ1HIyIinN+98PBwli5dyksvvURJSQnGGF566SV+/OMfV/nOBAUFkZqayuzZ
+s3nttdcoLy9nwoQJdO3a9bJDKas7duPHj2fGjBnODoOVv0dX6ic/+YnLc+nmm2/m8ccf57HHHsNu
+txMeHs6qVasu6txZnd/85jfMnz+fX/3qV9hsNv7rv/6LyZMnX3WsUrcsxlV9kohc0vHjx+nfvz+f
+fvqpt0OpVbWxX0VFRYwYMYLf/va3dOrUqRajExFvUHODiNSKf/7zn/z85z+ne/fuShBEGgjVJIiI
+iIhLqkkQERERl5QkiIiIiEsa3VBJcXExBw4c4MYbb/T6fOsiIiKeZrPZyMvL484777xodBQoSaji
+wIEDjBgxwtthiIiI1Km33377ovu0gJKEKm688UbAcbB+9KMfeTkaERERz/r6668ZMWKE8/p3ISUJ
+lVQ0MfzoRz+iVatWXo5GRESkblyqiV0dF0VERMQlJQkiIiLikpIEERERcUlJgoiIiLikJEFERERc
+UpIgIiIiLilJEBGRa1pRERw54nisDbt376Zr166cOnXKWbZgwQL++Mc/ulz/7Nmz/PnPf76o/Pjx
+43Tp0oWEhAQSEhIYNmwYixYtci7ftWsXjz76KAkJCQwfPpw33niDins2Tp48mR07dtR4X5QkiIjI
+Nam8HBIToUMHiIx0PCYmOsprKigoiClTpuDOjZY/++wz/vGPf7hcduutt7JmzRrWrFnDunXr2L17
+N4cPH+bzzz9n/vz5LFiwgDVr1vCHP/yBI0eO8Prrr9c8+EqUJIiIyDUpKQmWLIGjR8FudzwuWeIo
+r6nu3btz3XXX8fbbb1cp//3vf8/DDz/MsGHDePnllwF49dVX2bVrF+vXr692myUlJZSWltK4cWPS
+0tIYM2YMN910EwABAQFMnjz5stu4UppxUURErjlFRfDOO66Xbd4Mc+ZAkyY1e4/f/va3DBkyhJiY
+GAAKCwt5//33SUtLIyAggPHjx7N161aeeuop0tLSGDZs2EXb+OKLL0hISAAcsyI++uijtGnThtzc
+XAYPHlxl3dDQUM6fP4/dbq9Z4JUoSRARqYmiIjh1Clq0qPlVRerMqVOQm+t6WW6uY3n79jV7j+bN
+m5OSkkJycjJdunShpKSETp06ERgYCEBUVBT/+te/6NSpk/M1Y8aMoaioiMjISEaOHOlsbrjQzTff
+zIkTJ7jjjjucZVarlaCgIPz8aq+RwGPNDTabjSlTpjB8+HDi4uL4/PPPOXjwIDExMc5OGH/5y18A
+SE9PZ9CgQQwdOpStW7cCjts2jx8/nvj4eJ588kny8/MB2Lt3L0OGDGH48OEsX77c+X7Lly9n8ODB
+DB8+nP379wOQn5/PqFGjiI+PJzExkfPnz3tqd0XkWuPJBm3xuBYtICLC9bLWrR3La8N9993HLbfc
+wp/+9CeCg4PZv38/5eXlGGPYs2cPt9xyC35+fs5f/6tWrWLNmjVMmzat2u3GxcWxcuVK8vLyACgr
+K2P27NkMHz68dgL/D4/VJFRc7NPS0ti9ezevvPIK9913HyNHjmTUqFHO9fLy8lizZg2bNm2ipKSE
++Ph4evTowbp164iMjGT8+PG89957pKamMnXqVGbMmMGyZcto3bo1v/71rzl48CDGGD766CM2bNjA
+qVOnGD9+PJs2bSI1NZXY2FgGDRrE6tWrWb9+PY8//rindllEriUVDdoVKhq0ARYv9kpI4r4mTWDA
+gKofYYUBA2q3Uuj5559n165dhISE8MADDxAXF4fdbqdr167cf//9nD59ms8//5w333zT7WtUhw4d
+mDhxIhMnTsRms1FeXk6fPn0YPXp07QWOB5OE+++/n5///OcAnDx5kqZNm3LgwAG+/PJLMjIyaNOm
+DSkpKezfv5/OnTsTFBREUFAQERERHD58mOzsbOfO9uzZk9TUVKxWK6WlpUT8J/2Ljo4mKyuLoKAg
+oqOjsVgstGzZEpvNRn5+PtnZ2YwZM8a5jUWLFilJEJGaq4sGbfG4BQscj5s3O5oYWrd2JAgV5Ver
+W7dudOvWzfk8NDTU+cMZYOTIkVXWv/nmm3n//fcv2k6rVq1IT0+/5PvExMQ4+ztcaN68eVcatkse
+7ZMQEBBAcnIyf/vb31i6dCnffPMNQ4YM4c4772TlypWsWLGC22+/nbCwMOdrQkJCsFqtWK1WZ3lI
+SAgFBQVYrVZCQ0OrrJubm0twcDDNmjWrUl6x/oXbEBGpsbpo0BaPCwhwVPrMmaNuJZfi8SGQ8+fP
+54MPPmDatGlER0dz5513AtCnTx8OHjxIaGgohYWFzvULCwsJCwurUl5YWEjTpk1drnup8kttQ0Sk
+xuqqQVvqRJMmjpxOCcLFPJYkvPPOO6xatQqAxo0bY7FYGDdunLNT4c6dO+nQoQMdO3YkOzubkpIS
+CgoKOHLkCJGRkXTp0oXt27cDsGPHDrp27UpoaCiBgYEcO3YMYwyZmZlERUXRpUsXMjMzsdvtnDx5
+ErvdTnh4uMttiIjUWEWDtiu13aAt4kUea27o27cvU6ZMYcSIEZSXl5OSkkKLFi2YNWsWgYGB3HDD
+DcyaNYvQ0FASEhKIj4/HGMPEiRMJDg4mLi6O5ORk4uLiCAwMZOHChQDMnDmTpKQkbDYb0dHRzqEj
+UVFRDBs2DLvdzvTp0wEYO3YsycnJpKen07x5c+c2RERqzFMN2iL1iMW4M2fkNeL48eP07t2bjIwM
+WrVq5e1wRMQXaJ4E8WGXu+5pMiURkZqoaNAWaYCUJIiIyDWnSgUQtVsbtHv3bhITE7n11lsBxz0X
++vfvT0JCAu+//z5/+MMf8PPzo7y8nGHDhjFw4EAAEhIS+O1vf0v7epR0KkkQEZFrRnm5Yx6szZvh
+xFflrAxNYiCbCS88hiUi4od+JQE1uzx2796dV155BYDS0lJ+8YtfcP3117N+/XpeffVVwsLCKC4u
+5plnniE4OJgHHnigNnav1ukukCIics2ofOfH+SaJJwqWcH3BUSy1fRvISqxWK35+fqSnp5OUlOSc
+v6dRo0YkJydfdKfI+kQ1CSIick2oPFFmY4oYiOdmzdy1axcJCQlYLBYCAwOZNm0a8+fPd84YXKF1
+69acPHnyqt/H05QkiIjINaHyRJktOEVrPDdrZuXmhgpvvvkmJ06c4LrrrnOWHT16lBb1ePItNTeI
+iMg1ofJEmadoQS51O2tmQkICL730ElarFXDMBPzSSy8xYsSIWn+v2qKaBBERuSZUvvPjeZrwDgOY
+SB3cBvI/7rvvPqxWK6NHj8ZisWC32xk8eDAPPvhgrb9XbVGSICIi14zKE2VOPraApiEwwLKZ6wtz
+sdTSrJkX3gWysoceeoiHHnrI5bI1a9bU6H09QUmCiIhcM6re+TGAFi0W0wTdBvJSlCSIiMg1p+pE
+mZo181LUcVFERERcUpIgIiIiLilJEBEREZeUJIiIiIhLShJERETEJSUJIiIi4pKSBBEREXFJSYKI
+iIi4pCRBREREXFKS4G1FRXDkiONRRESkHlGS4C3l5ZCYCB06QGSk4zEx0VEuIiJSD+jeDd6SlOS4
+X2mFo0d/eL54sVdCEhERqUw1Cd5QVATvvON62ebNanoQEa9RC6hUpiTBG06dgtxc18tycx3LRUTq
+kFpAxRU1N3hDixYQEeFoYrhQ69aO5SIidUgtoOKKahK8oUkTGDDA9bIBAxzLRUTqiFpA5VJUk+At
+CxY4HjdvdjQxtG7tSBAqykVE6og7LaDt29dtTFI/KEnwloAARx3enDmOM7BFC9UgiIhXqAVULkXN
+Dd7WpIkjRVeCICJeohZQuRSP1STYbDamTp3Kl19+icViYebMmQQHBzN58mQsFgu33XYbM2bMwM/P
+j/T0dNLS0ggICGDs2LH06tWL4uJiJk2axJkzZwgJCWH+/PmEh4ezd+9eZs+ejb+/P9HR0YwbNw6A
+5cuXs23bNgICAkhJSaFjx47k5+eTlJREcXExN910E3PnzqVx48ae2mUREZ+lFlBxxWM1CVu3bgUg
+LS2NxMREXnnlFebOnUtiYiJr167FGENGRgZ5eXmsWbOGtLQ0Xn/9dRYtWkRpaSnr1q0jMjKStWvX
+MnDgQFJTUwGYMWMGCxcuZN26dezbt4+DBw+Sk5PDRx99xIYNG1i0aBEzZ84EIDU1ldjYWNauXcsd
+d9zB+vXrPbW7IiI+raIFNCcHPvvM8bh4saNcrl0eSxLuv/9+Zs2aBcDJkydp2rQpOTk53HPPPQD0
+7NmTrKws9u/fT+fOnQkKCiIsLIyIiAgOHz5MdnY2MTExznV37tyJ1WqltLSUiIgILBYL0dHRZGVl
+kZ2dTXR0NBaLhZYtW2Kz2cjPz79oG1lZWZ7aXRGRBkEtoFKZR/skBAQEkJyczKxZs+jfvz/GGCwW
+CwAhISEUFBRgtVoJCwtzviYkJASr1VqlvPK6oaGhVda9XPmF2xARERH3eLzj4vz58/nggw+YNm0a
+JSUlzvLCwkKaNm1KaGgohYWFVcrDwsKqlFe37pVuQ0RERNzjsSThnXfeYdWqVQA0btwYi8XCnXfe
+ye7duwHYsWMHUVFRdOzYkezsbEpKSigoKODIkSNERkbSpUsXtm/f7ly3a9euhIaGEhgYyLFjxzDG
+kJmZSVRUFF26dCEzMxO73c7Jkyex2+2Eh4e73IaIiIi4x2NdUvr27cuUKVMYMWIE5eXlpKSk0L59
+e6ZNm8aiRYto164d/fr1w9/fn4SEBOLj4zHGMHHiRIKDg4mLiyM5OZm4uDgCAwNZuHAhADNnziQp
+KQmbzUZ0dDSdOnUCICoqimHDhmG325k+fToAY8eOJTk5mfT0dJo3b+7choiIiFyexRhjvB1EfXH8
++HF69+5NRkYGrVq18nY4IiIiHnW5654mUxIRERGXlCSIiIiIS0oSRERExCUlCSIiIuKSkgQRERFx
+SUmCiIiIuKQkQURERFxSkiAiIiIuKUkQERERl5QkiIiIiEtKEkRERMQlJQkiIiLikpIEERERcUlJ
+goiIiLikJEFERERcUpIgIiIiLilJEBEREZeUJIiIiIhLShJERETEJSUJIiIi4pKSBBEREXFJSYKI
+iIi4pCRBREREXFKSICIiIi4pSRARERGXlCSIiIiIS0oSRERExCUlCSIiIuKSkgQRERFxSUmCiIiI
+uBTgiY2WlZWRkpLCiRMnKC0tZezYsbRo0YIxY8bQtm1bAOLi4njwwQdJT08nLS2NgIAAxo4dS69e
+vSguLmbSpEmcOXOGkJAQ5s+fT3h4OHv37mX27Nn4+/sTHR3NuHHjAFi+fDnbtm0jICCAlJQUOnbs
+SH5+PklJSRQXF3PTTTcxd+5cGjdu7IndFRERaZA8kiS8++67NGvWjJdffpmzZ88ycOBAnn76aUaO
+HMmoUaOc6+Xl5bFmzRo2bdpESUkJ8fHx9OjRg3Xr1hEZGcn48eN57733SE1NZerUqcyYMYNly5bR
+unVrfv3rX3Pw4EGMMXz00Uds2LCBU6dOMX78eDZt2kRqaiqxsbEMGjSI1atXs379eh5//HFP7K6I
+iEiD5JHmhl/84hdMmDABAGMM/v7+HDhwgG3btjFixAhSUlKwWq3s37+fzp07ExQURFhYGBERERw+
+fJjs7GxiYmIA6NmzJzt37sRqtVJaWkpERAQWi4Xo6GiysrLIzs4mOjoai8VCy5Ytsdls5OfnX7SN
+rKwsT+yqiIhIg+WRmoSQkBAArFYrzzzzDImJiZSWljJkyBDuvPNOVq5cyYoVK7j99tsJCwur8jqr
+1YrVanWWh4SEUFBQgNVqJTQ0tMq6ubm5BAcH06xZsyrlFetfuA0RERFxn8c6Lp46dYpHH32UAQMG
+0L9/f/r06cOdd94JQJ8+fTh48CChoaEUFhY6X1NYWEhYWFiV8sLCQpo2bepy3UuVX2obIiIi4j6P
+JAnffvsto0aNYtKkSQwePBiAJ554gv379wOwc+dOOnToQMeOHcnOzqakpISCggKOHDlCZGQkXbp0
+Yfv27QDs2LGDrl27EhoaSmBgIMeOHcMYQ2ZmJlFRUXTp0oXMzEzsdjsnT57EbrcTHh7uchsiIiLi
+Po80N7z66qt8//33pKamkpqaCsDkyZOZM2cOgYGB3HDDDcyaNYvQ0FASEhKIj4/HGMPEiRMJDg4m
+Li6O5ORk4uLiCAwMZOHChQDMnDmTpKQkbDYb0dHRdOrUCYCoqCiGDRuG3W5n+vTpAIwdO5bk5GTS
+09Np3rxES895AAAgAElEQVS5cxsiIiLiHosxxng7iPri+PHj9O7dm4yMDFq1auXtcERERDzqctc9
+TaYkIiIiLilJEBEREZeUJIiIiIhLShJE5NpSVARHjjgeRaRaShJE5NpQXg6JidChA0RGOh4TEx3l
+IuKSR4ZAiojUO0lJsGTJD8+PHv3h+eLFXglJpL5TTYKINHxFRfDOO66Xbd6spgeRS1CSICIN36lT
+kJvrellurmO5iFxESYKINHwtWkBEhOtlrVs7lovIRZQkiEjD16QJDBjgetmAAY7lInIRdVwUkWvD
+ggWOx82bHU0MrVs7EoSKchG5iJIEEbk2BAQ4RjHMmePog9CihWoQRC7D7eaG7Oxs1q1bR2lpKXv2
+7PFkTCIintOkCbRvrwRBxA1uJQn/+7//y+LFi3nzzTcpLCxk+vTpvP76656OTURERLzIrSThT3/6
+E6+//jqNGzemefPmbNy4kU2bNnk6NhEREfEit5IEPz8/goKCnM+Dg4Px9/f3WFAiIiLifW51XLzn
+nnuYP38+58+f5+9//zvr16+ne/funo5NREREvMitmoTnnnuONm3a8JOf/IR33nmHe++9l+TkZE/H
+JiIiIl7kVk2Cn58fsbGx9OzZ01l2+vRpWrZs6bHARERExLvcShLmz59Peno6zZo1A8AYg8ViISMj
+w6PBiYiIiPe4lSRkZGSwY8cOQkJCPB2PiIiI1BNu9Un4yU9+QmlpqadjERERkXrErZqEAQMG0Ldv
+XyIjI6sMfXzrrbc8FpiIiIh4l1tJwpw5c3j++efVUVFEROQa4laSEBYWxsCBAz0di4iIiNQjbiUJ
+Xbt2Zfz48fTs2ZPAwEBnuRIHERGRhsutJOH8+fOEhobyySefVClXkiAiItJwuZUkzJ07l7KyMr78
+8ktsNhu33XYbAQFuvVRERER8lFtX+gMHDvDMM8/QrFkz7HY73377LStWrKBTp06ejk9ERES8xK0k
+4cUXX+SVV15xJgV79+5l1qxZbNy40aPBiYiIiPe4lSQUFRVVqTW46667KCkpueT6ZWVlpKSkcOLE
+CUpLSxk7diy33norkydPxmKxcNtttzFjxgz8/PxIT08nLS2NgIAAxo4dS69evSguLmbSpEmcOXOG
+kJAQ5s+fT3h4OHv37mX27Nn4+/sTHR3NuHHjAFi+fDnbtm0jICCAlJQUOnbsSH5+PklJSRQXF3PT
+TTcxd+5cGjduXMPDJSIicu1wa8bF6667jr///e/O53/729+c93Fw5d1336VZs2asXbuW1157jVmz
+ZjF37lwSExNZu3YtxhgyMjLIy8tjzZo1pKWl8frrr7No0SJKS0tZt24dkZGRrF27loEDB5KamgrA
+jBkzWLhwIevWrWPfvn0cPHiQnJwcPvroIzZs2MCiRYuYOXMmAKmpqcTGxrJ27VruuOMO1q9fX5Pj
+JCIics1xK0mYNWsWq1atolu3bnTr1o1Vq1Y5L8au/OIXv2DChAmA42ZQ/v7+5OTkcM899wDQs2dP
+srKy2L9/P507dyYoKIiwsDAiIiI4fPgw2dnZxMTEONfduXMnVquV0tJSIiIisFgsREdHk5WVRXZ2
+NtHR0VgsFlq2bInNZiM/P/+ibWRlZdXoQImIiFxr3GpuaNu2LStXrqRJkybY7XbOnDlDmzZtLrl+
+xY2grFYrzzzzDImJicyfPx+LxeJcXlBQgNVqJSwsrMrrrFZrlfLK64aGhlZZNzc3l+Dg4Cq1Gq62
+XVEmIiIi7nOrJuGtt97iySefpEmTJpw7d46nnnrqstX3p06d4tFHH2XAgAH0798fP78f3qqwsJCm
+TZsSGhpKYWFhlfKwsLAq5dWte6XbEBEREfe5lSSkp6fz9ttvA/DjH/+YP/7xj/zhD3+45Prffvst
+o0aNYtKkSQwePBiAO+64g927dwOwY8cOoqKi6NixI9nZ2ZSUlFBQUMCRI0eIjIykS5cubN++3blu
+165dCQ0NJTAwkGPHjmGMITMzk6ioKLp06UJmZiZ2u52TJ09it9sJDw93uQ0RERFxn1vNDWVlZQQF
+BTmfV56a2ZVXX32V77//ntTUVGenw+eff54XX3yRRYsW0a5dO/r164e/vz8JCQnEx8djjGHixIkE
+BwcTFxdHcnIycXFxBAYGsnDhQgBmzpxJUlISNpuN6Oho54iLqKgohg0bht1uZ/r06QCMHTuW5ORk
+0tPTad68uXMbIiIi4h6LMcZcbqWXX36ZvXv38sADDwCwZcsWOnfuzMSJEz0eYF06fvw4vXv3JiMj
+g1atWnk7HBEREY+63HXPrZqESZMm8de//pU9e/YQEBDAo48+yv3331/rwYqIiEj94fYNGNq3b88N
+N9xARcXDnj17uPvuuz0WmIiIiHiXW0nCzJkz2bp1K61bt3aWWSwW3nrrLY8FJiIiIt7lVpLw4Ycf
+8te//pVGjRp5Oh4RERGpJ9waAtm6dWvc6N8oIiIiDYhbNQnXXXcdv/zlL51TKFeYO3euxwITERER
+73IrSYiJiXHeB0FERESuDdUmCXl5edx4441069atruIRERGReqLaJGHq1KmsWrWKRx55BIvFgjGm
+ymNGRkZdxSkiIiJ1rNokYdWqVQD84x//uOQ669evZ9iwYbUblYiIiHidW6MbqpOWllYbcYiIiEg9
+U+MkQUMjRUREGqYaJwkWi6U24hAREZF6psZJgoiIiDRMShJERETEpRonCWFhYbURh4iIiNQz1Q6B
+XL58ebUvHjdunO4EKSIi0kC5VZOwf/9+tmzZgp+fH0FBQWzfvp0vvvjC07GJiIiIF1VbkzBu3DgA
+hg8fzvr162ncuDEAjz32GI8++qjnoxMRERGvcasm4bvvvqsy1LGsrIyzZ896LCgRERHxPrfuAjlk
+yBAefvhhevbsiTGGrVu38thjj3k6NhEREfEit5KE0aNH0717dz766CMsFgtLlizh9ttv93RsIiIi
+4kVuD4H88ssvOXfuHMOGDePw4cOejElERETqAbeShAULFrB9+3a2bNmC3W5n06ZNzJs3z9OxiYiI
+iBe5lSRkZmby8ssvExwcTGhoKG+88QY7duzwdGwiIiLiRW4lCX5+jtUqRjiUlpY6y0RERKRhcqvj
+4i9+8QsSExM5d+4cb775Ju+++y6xsbGejk1ERES8yK0k4YknniArK4uWLVty6tQpxo8fT69evTwd
+m4iIiHiRW0nC4MGD+dOf/kRMTIyn4xEREZF6wq2OBddffz0ff/wxpaWlV7Txffv2kZCQAMDBgweJ
+iYkhISGBhIQE/vKXvwCQnp7OoEGDGDp0KFu3bgWguLiY8ePHEx8fz5NPPkl+fj4Ae/fuZciQIQwf
+PrzKzaeWL1/O4MGDGT58OPv37wcgPz+fUaNGER8fT2JiIufPn7+i2EVERK51btUk5OTk8MgjjwCO
+zovGGCwWC4cOHbrka373u9/x7rvvOu/3kJOTw8iRIxk1apRznby8PNasWcOmTZsoKSkhPj6eHj16
+sG7dOiIjIxk/fjzvvfceqampTJ06lRkzZrBs2TJat27Nr3/9aw4ePIgxho8++ogNGzY4m0I2bdpE
+amoqsbGxDBo0iNWrV7N+/Xoef/zxGhwqERGRa4tbNQlvvPEGhw8f5vDhwxw6dMj5WJ2IiAiWLVvm
+fH7gwAG2bdvGiBEjSElJwWq1sn//fjp37kxQUBBhYWFERERw+PBhsrOznU0bPXv2ZOfOnVitVkpL
+S4mIiMBisRAdHU1WVhbZ2dlER0djsVho2bIlNpuN/Pz8i7aRlZV1tcdIRETkmuRWkjBx4sQr3nC/
+fv0ICPihoqJjx44899xzvP3227Ru3ZoVK1ZgtVoJCwtzrhMSEoLVaq1SHhISQkFBAVarldDQ0Crr
+Xq78wm2IiIiI+9xqbrj11ltZvnw5nTp1olGjRs7yu+++2+036tOnD02bNnX+f9asWURFRVFYWOhc
+p7CwkLCwMEJDQ53lhYWFNG3atEpZ5fLAwMBqt9GoUSPnuiIiIuI+t2oSzp49y+7du1m9ejVLly5l
+6dKlVZoS3PHEE084OxXu3LmTDh060LFjR7KzsykpKaGgoIAjR44QGRlJly5d2L59OwA7duyga9eu
+hIaGEhgYyLFjxzDGkJmZSVRUFF26dCEzMxO73c7Jkyex2+2Eh4e73IaIiIi4z62ahDVr1tT4jX77
+298ya9YsAgMDueGGG5g1axahoaEkJCQQHx+PMYaJEycSHBxMXFwcycnJxMXFERgYyMKFCwGYOXMm
+SUlJ2Gw2oqOj6dSpEwBRUVEMGzYMu93O9OnTARg7dizJycmkp6fTvHlz5zZERETEPRZjjLncSidO
+nGDq1KmcOHGCt99+m//5n/9hzpw5tGrVqi5irDPHjx+nd+/eZGRkNLh9ExERudDlrntuNTdMnz6d
+J554giZNmnDDDTcQGxtLcnJyrQfb0BQVwZEjjkcR8VE6keUa5laS8N133xEdHQ045kkYOnQoVqvV
+o4H5svJySEyEDh0gMtLxmJjoKBcRH6ETWcS9PgmNGjXi66+/dt4F8uOPPyYoKMijgfmypCRYsuSH
+50eP/vB88WKvhCQiV0onsoh7NQlTpkxhzJgxHD16lAEDBpCUlMTUqVM9HZtPKiqCd95xvWzzZtVY
+ivgEncgiwGVqEl5++WUmTZrEd999x8aNGzl69Cg2m4127dqpJuESTp2C3FzXy3JzHcvbt6/bmETk
+CulEFgEuU5Pw/vvvk5WVxezZs9m3bx9nz56loKCAffv2sWfPnrqK0ae0aAEREa6XtW7tWC4i9ZxO
+ZBHgMjUJTz31FKtWreL06dMsqdw2h6MD41tvveXR4HxRkyYwYEDVpswKAwY4lotIPacTWQS4TJIw
+dOhQhg4dyooVK3j66afrKiaft2CB43HzZkfNZOvWjr8rFeUi4gN0Iou413HxySef5NVXXyU5ORmr
+1cry5cspLS31dGw+KyDA0fk5Jwc++8zxuHixo1xEfIRO5AZHU15cObeShBdeeIGioiJycnLw9/fn
+2LFjPP/8856Ozec1aeLo26SaSREfphPZ52nKi6vnVpKQk5PDs88+S0BAAI0bN2b+/PkcOnTI07GJ
+iIjUWMWUF0ePgt3+w5QXSUnejqz+cytJsFgslJaWOidT+u6775z/FxERqa805UXNuJUkPProo4wc
+OZK8vDxmz57Nww8/zGOPPebp2ERERGrEnSkv5NKq7YHzTqX065e//CXGGGw2GyNHjiRAnXdERKSe
+q5jy4ujRi5dpyovLq/ZKv3v3bgCOHTvGsWPHuPfee/Hz8yMzM5Nbb72VgQMH1kmQIiIiV0NTXtRM
+tUnC3LlzAUhISGDz5s2Eh4cDcO7cOc2bICIiPkFTXlw9t9oMTp8+TbNmzZzPGzduTF5enseCEhER
+qS0VU17MmePog9CihWoQ3OVWkvDzn/+ckSNH0rdvX+x2O3/961954IEHPB2biIhIramY8kLc51aS
+MGXKFD744AM++ugjLBYLo0aNonfv3p6OTURERLzI7SEK/fr1o1+/fp6MRUREROoRt+ZJEBERkWuP
+kgQRERFxSUmCiIiIuKQkQURERFxSkiAiIiIuKUkQERERl5QkiIiIiEtKEkRERMQlJQkiIiLikpIE
+ERERccmjScK+fftISEgA4KuvviIuLo74+HhmzJiB3W4HID09nUGDBjF06FC2bt0KQHFxMePHjyc+
+Pp4nn3yS/Px8APbu3cuQIUMYPnw4y5cvd77P8uXLGTx4MMOHD2f//v0A5OfnM2rUKOLj40lMTOT8
++fOe3FUREZEGx2NJwu9+9zumTp1KSUkJAHPnziUxMZG1a9dijCEjI4O8vDzWrFlDWloar7/+OosW
+LaK0tJR169YRGRnJ2rVrGThwIKmpqQDMmDGDhQsXsm7dOvbt28fBgwfJycnho48+YsOGDSxatIiZ
+M2cCkJqaSmxsLGvXruWOO+5g/fr1ntpVERGRBsljSUJERATLli1zPs/JyeGee+4BoGfPnmRlZbF/
+/346d+5MUFAQYWFhREREcPjwYbKzs4mJiXGuu3PnTqxWK6WlpURERGCxWIiOjiYrK4vs7Gyio6Ox
+WCy0bNkSm81Gfn7+RdvIysry1K6KiIg0SB5LEvr160dAwA83mTTGYLFYAAgJCaGgoACr1UpYWJhz
+nZCQEKxWa5XyyuuGhoZWWfdy5RduQ0RERNxXZx0X/fx+eKvCwkKaNm1KaGgohYWFVcrDwsKqlFe3
+7pVuw9cVFcGRI45HERERT6uzJOGOO+5g9+7dAOzYsYOoqCg6duxIdnY2JSUlFBQUcOTIESIjI+nS
+pQvbt293rtu1a1dCQ0MJDAzk2LFjGGPIzMwkKiqKLl26kJmZid1u5+TJk9jtdsLDw11uw1eVl0Ni
+InToAJGRjsfEREe5iIiIpwRcfpXakZyczLRp01i0aBHt2rWjX79++Pv7k5CQQHx8PMYYJk6cSHBw
+MHFxcSQnJxMXF0dgYCALFy4EYObMmSQlJWGz2YiOjqZTp04AREVFMWzYMOx2O9OnTwdg7NixJCcn
+k56eTvPmzZ3b8EVJSbBkyQ/Pjx794fnixV4JSURErgEWY4zxdhD1xfHjx+nduzcZGRm0atXK2+EA
+jqaFO+6Ar766eFnbtpCTA02a1HlYIiLSAFzuuqfJlOq5U6cgN9f1stxcx3IRERFPUJJQz7VoARER
+rpe1bu1YLiIi4glKEuq5Jk1gwADXywYMUFODiIh4Tp11XJSrt2CB43HzZkcTQ+vWjgSholxERMQT
+lCT4gIAAxyiGOXMcfRBatFANgoiIeJ6SBB/SpAm0b+/tKERE5FqhPgkiIiLikpIEERERcUlJgkgt
+0b01RKShUZIgUkO6t4aINFTquChSQ7q3hog0VKpJEKmBoiJ45x3XyzZvVtODiPg2JQkiNaB7a4hI
+Q6YkQS6iDnju0701RKQhU5IgTuqAd+V0bw0RqYn6/qNMHRfFSR3wro7urSEiV6q83PE3d/NmOHbM
+USNZ8XcjoB5dmVWTIIA64NVExb01cnLgs88cj4sX168TXUTql4ofZUePgt3+w4+ypCRvR1aVkgQB
+1AGvNlTcW0NNDCJSHV/6UaYkQQB1wBMRqSu+9KNMSYIA6oAnIlJXfOlHmZIEcVqwACZMgLZtwd/f
+8ThhgjrgiYjUJl/6UaauVeJU0QFvzhxHdVeLFvXryyoi0lD4yqgoJQlykYoOeCIi4hm+8qNMzQ0i
+IteI+j5xT0N2qWNf30dFKUkQEWngNJuq9/j6sVdzg4hIA6fZVL3H14+9ahJERBowX5q4p6FpCMde
+SYKISAPmSxP3NDQN4dgrSRARacB8aeKehqYhHHslCSIiDZgvTdzT0DSEY1/nHRd/9atfERoaCkCr
+Vq146qmnmDx5MhaLhdtuu40ZM2bg5+dHeno6aWlpBAQEMHbsWHr16kVxcTGTJk3izJkzhISEMH/+
+fMLDw9m7dy+zZ8/G39+f6Ohoxo0bB8Dy5cvZtm0bAQEBpKSk0LFjx7reXXFTUVH9Hiss4st8ZeKe
+hsjnj72pQ8XFxWbAgAFVysaMGWN27dpljDFm2rRpZsuWLeb06dMmNjbWlJSUmO+//975/9///vdm
+6dKlxhhj/t//+39m1qxZxhhjHnroIfPVV18Zu91uRo8ebXJycsyBAwdMQkKCsdvt5sSJE2bQoEGX
+jS83N9dERkaa3NzcWt5zuZSyMmMmTDCmbVtj/PwcjxMmOMpFpHYVFhrzxReOR6lb9fXYX+66V6c1
+CYcPH+b8+fOMGjWK8vJynn32WXJycrjnnnsA6NmzJx9++CF+fn507tyZoKAggoKCiIiI4PDhw2Rn
+ZzN69GjnuqmpqVitVkpLS4n4T8NPdHQ0WVlZBAUFER0djcVioWXLlthsNvLz8wkPD6/LXZbL8PXh
+QSK+RLOpeo+vHvs6TRIaNWrEE088wZAhQzh69ChPPvkkxhgsFgsAISEhFBQUYLVaCQsLc74uJCQE
+q9VapbzyuhXNFxXlubm5BAcH06xZsyrlBQUFShLqkcsND5ozR00PIiLeVKdJwi233EKbNm2wWCzc
+csstNGvWjJycHOfywsJCmjZtSmhoKIWFhVXKw8LCqpRXt27Tpk0JDAx0uQ2pP9wZHuSLmbeISENR
+p6MbNm7cyLx58wD45ptvsFqt9OjRg927dwOwY8cOoqKi6NixI9nZ2ZSUlFBQUMCRI0eIjIykS5cu
+bN++3blu165dCQ0NJTAwkGPHjmGMITMzk6ioKLp06UJmZiZ2u52TJ09it9tVi1DPNIThQSIiDVmd
+1iQMHjyYKVOmEBcXh8ViYc6cOTRv3pxp06axaNEi2rVrR79+/fD39ychIYH4+HiMMUycOJHg4GDi
+4uJITk4mLi6OwMBAFi5cCMDMmTNJSkrCZrMRHR1Np06dAIiKimLYsGHY7XamT59el7sqbqgYHlS5
+T0IFXxkeJCLSkFmMMcbbQdQXx48fp3fv3mRkZNCqVata3baG+LlWXu7ovOhqeFCA7iwiIuJRl7vu
+aTIlD/P1O4B5WsU91XNy4LPPHI+LFytBEBGpD/Sn2MM0xM89vjo8SESkIVNNggc1hDuAiYjItUtJ
+ggc1hDuAiYjItUtJggdpiJ+IiPgyJQke1BDuACYiItcudVz0MJ+/A5hIZRrLK+JVdX0KqibBwzTE
+TxoEjeUV8SpvnYK6VNURDfETn+ahsbyqmBBxj7eG06smQUSq54GxvD5fMVFUBEeOaByz1AlvDqdX
+kiAi1fPAWN6KX0VHj4Ld/sOvoqSkGkXqeT6f3Ygv8uZweiUJIlK9Wh7L69OTjPlsdiM+p1JtlTeH
+0ytJEJHq1fJYXp+dZMynsxvxGS5qq5qkJPKr/q5rqzw9nF4dF0Xk8mpxLG/Fr6KjRy9eVq8nGXMn
+u1HvZKmpS/RQfHk82CcsrvPh9KpJEJHLq8WxvD47yZimUL0qvtrH0ytxV1Nb5f/nzSyeU1Tnw+mV
+JIiI+yrG8tbwSr5gAUyYAG3bgr+/43HChHo+yZjPZjfe4at9PL0atxu1VbV0CrpNzQ0iUucqKibm
+zPGxeRI0harbvDWuv6a8Gnc9bItTTYKIeE1d/yqqMU2h6pYr7eNZX5okvN43tR7WVilJEIf6cpaK
++AKfy27qlrsjWOpbk0S9GHlTz9rilCRc6+rbWSoiPs/dPp71bdqJetE3tZ7VVilJuNbVt7NURJx8
+qYKvcqzu1Jp7vWrfhdqq7a+Vz62e1FYpSbiW1cez9FJqcNb50h9aubZc6rvpSxV8l4p13rzqa83r
+RdW+CzWp7felz81tRpxyc3NNZGSkyc3N9XYodeOLL4zx8zMGLv7n7+9YfpUKCx0vLyysYYxlZcZM
+mGBM27aOWNu2dTwvK/PkS0U86nLfzQkTXJ+WEyZ4N25XLhfrpf4WFBY69tvVa9u2rYW/HTV0NX/D
+fOlzq3C5656ShEquuSTBA2dprV+Ya3DW+eIJ60tqLRG8BlX33SwsNKZNm/p78aysprE2pHPUlz63
+yi533VNzw7XMA8NtarWLQw2aQ3ypJcXXNMgq1Tp0ue/mv/9dP6vhXalpk0E968hfI/W1+aSmlCRc
+62rxLK31C3MNzrqGesJeSl32u1Bf15q53HcT6kEPezfVdDRAPevIXyP1YmSEByhJ8FG1dlGoxbO0
+ti7Mzn277urPuoZ6wl6oLn7VV/6uqYbm6lQ+hpf7brZrV+/m07mk2qqMrCcd+WukHs6DVCuUJPgY
+j10UauEsremF+aJ9u7sJ25pd3VnnSyfslSZ8ldf35K96V9+13/zm2qqhqSlXxzAlBfr3d71+xXez
+PlbDX5gsVvy/PsbqLQ3yWNRxH4l6zRc6Lnqzo487HdVqEp+r1/pTZrbe9Z+ekP7+Vz264QpfWmuq
+O2ZX2snzwvUjIowJC/NcR6lLfZaefM+G5lLHcPx4976b9aFzaOXvncXi+PzDwi7+ztaHWOsLXzoW
+Gt1wBep7kuCt3rNXcjG72gvzZfct7+rPOm+csJc7ZoWFxjz++BUkVIWF5oXHvjCNKXT5mloewVrt
+53GpJOFyiWCtfA4+9NfXnfPVF3bnUomOr49GEIdrOkmw2Wxm2rRpZujQoeaRRx4xR48erXb9+p4k
+eHBag2pdTe3Alf7x89a+ecrlfkFGRFz6D26VhO8/2YYtoq0pw8/8m7ZmEROMP2XV/tGuadJY3efh
+5+dIcNxNBGtlWKwPTnrREL7T1SU6qkVqGK7pJOGDDz4wycnJxhhjPv30U/PUU09Vu359TxK8MflI
+XdVe1PeJVa7E1fwKv+QF5BLZxiImePSXnTufh7uJYK00kfnggPqG8J2uLtHxxaRHLnZNz5OQnZ1N
+TEwMAHfddRcHDhzwckQ1443OeHU1lNCXOhpeTnXHrKDg8q93dvKsZijBADbTGEdPx7AwaNOmdjtK
+ufN5uNPXtVZGQ/jokIqG8J2urjNyZQ1pxJBU5YOjUd1ntVoJDQ11Pvf396e8vJwAXxyE+x8Vf/w3
+b3ZciFq3dvzB8VTv2Yo/EkePXrystv8w1PW+eUp1x8wdzgvIkUtnG63JpQWn+DftGTUK5sxxJCct
+WtTexac2Pg93ksz27etiI97h69/pikRnyZLq1/OVpEeuQh3XbNSpOXPmmPfee8/5PCYmptr163tz
+Q2V12eGprmt6faEz1+Vc6cgAcDRRVGlmr6a++ghtze0RhXXSLF+Tz6NWqtwbQL29L3+nL+wOEhZm
+TNOm3hsxJLXrmm5u6NKlCzt27ABg7969REZGejmi2lOXk4/U9djfhjCxyqWO2eOPu17/scfg4MEL
+5rGqpr46/PEBZB9qUiez09Xk86iVKvcGUG/vy9/pyvOtff45fP21o/LG12dIFPc06I+2T58+fPjh
+hwwfPhxjDHPmzPF2SD6p4o+EJ6q0G6pLHbPycvDzc1397PIP7SXqq5stWOAzZ2+tVLn7er19A1CR
+6EI9fVsAAApySURBVFSopy08Usssxhjj7SDqi+PHj9O7d28yMjJo1aqVt8ORBqyo6AoTrit+Qf1T
+K7vQAI6DSH1yueuej/wWEWlYLvxVVvsvqH9qZRcawHEQ8SUNuk+CiIiIXD0lCSIiIuKSkgQRERFx
+SUmCiIiIuKQkQURERFxSkiAiIiIuKUkQERERl5QkiIiIiEtKEkRERMQlJQkiIiLikqZlrsRmswHw
+9ddfezkSERERz6u43lVc/y6kJKGSvLw8AEaMGOHlSEREROpOXl4ebdq0uahcd4GspLi4mAMHDnDj
+jTfi7+/v7XBEREQ8ymazkZeXx5133kmjRo0uWq4kQURERFxSx0URERFxSUmCiIiIuKQkQURERFxS
+kiAiIiIuKUmoIbvdzvTp0xk2bBgJCQl89dVX3g6pVpSVlTFp0iTi4+MZPHgwGRkZfPXVV8TFxREf
+H8+MGTOw2+3eDrPWnDlzhnvvvZcjR4402P1ctWoVw4YNY9CgQWzYsKHB7WdZWRn/8z//w/Dhw4mP
+j2+Qn+W+fftISEgAuOS+paenM2jQIIYOHcrWrVu9Ge5VqbyPhw4dIj4+noSEBJ544gm+/fZbwPf3
+EaruZ4U///nPDBs2zPm8XuynkRr54IMPTHJysjHGmE8//dQ89dRTXo6odmzcuNG8+OKLxhhjvvvu
+O3PvvfeaMWPGmF27dhljjJk2bZrZsmWLN0OsNaWlpeY3v/mN6du3r/niiy8a5H7u2rXLjBkzxths
+NmO1Ws3SpUsb3H7+7W9/M88884wxxpjMzEwzbty4BrWPq1evNrGxsWbIkCHGGONy306fPm1iY2NN
+SUmJ+f77753/9xUX7uOIESPMwYMHjTHGrFu3zsyZM8fn99GYi/fTGGNycnLMo48+6iyrL/upmoQa
+ys7OJiYmBv5/e3cf0lTfx3H8bQstNSvBogeF7EIyQ6x0KoopWFr0gCYms9EIoqC0osRy2RMVqWhE
+kdI/FmqBpCKiRFRET2pa9KCVWH9EhfaAlW6VzXnuP6JzZffuuO60pru+LxDc+Z2N7+cw53e/c7Yf
+EBQUREtLi50rGhrx8fFs3rwZAEVR0Gg0tLa2otVqAYiKiuLmzZv2LHHI5OTkkJKSwqRJkwAcMuf1
+69fx8/Nj48aNbNiwgejoaIfLOWPGDKxWK/39/ZhMJkaPHu1QGX18fDh27Jh621a2+/fvM3fuXJyd
+nRk3bhw+Pj48fvzYXiX/337MWFBQgL+/P/D18/wuLi4jPiP8d853795RUFBAVlaWum245JQmYZBM
+JhPu7u7qbY1GQ19fnx0rGhpubm64u7tjMplIT09ny5YtKIqCk5OTOt7T02PnKgevsrIST09PtdED
+HDLnu3fvaGlp4ejRo+zbt4/t27c7XE5XV1devnzJ4sWLyc7ORq/XO1TGuLg4Ro/++0tybWUzmUyM
+GzdO3cfNzQ2TyfTHa/1VP2b81rjfuXOH0tJSDAbDiM8IA3NarVaMRiM7d+7Ezc1N3We45JSvZR4k
+d3d3zGazeru/v3/Ak3wk6+joYOPGjeh0OpYtW0ZeXp46Zjab8fDwsGN1Q6OiogInJyfq6+t59OgR
+mZmZdHV1qeOOknPChAn4+vri7OyMr68vLi4uA9YocYScp06dIjIykm3bttHR0cGaNWuwWCzquCNk
+/N6oUX+/x/uW7cfXI7PZPOAfzUhUV1dHYWEhJ0+exNPT0+Eytra28uzZM/bu3Utvby9Pnjzh4MGD
+hIWFDYucMpMwSPPmzePq1asA3L17Fz8/PztXNDTevn3L2rVrycjIICkpCYDZs2fT2NgIwNWrVwkO
+DrZniUOirKyM0tJSSkpK8Pf3Jycnh6ioKIfLOX/+fK5du4aiKLx69YpPnz4RHh7uUDk9PDzUF9Hx
+48fT19fnkM/Zb2xlCwwM5Pbt2/T29tLT08PTp09H9GtSdXW1+vfp7e0N4HAZAwMDqa2tpaSkhIKC
+Av766y+MRuOwyekYb3ntaOHChdy4cYOUlBQUReHQoUP2LmlIFBUV0d3dzYkTJzhx4gQARqORAwcO
+UFBQgK+vL3FxcXau8vfIzMwkOzvboXLGxMTQ1NREUlISiqKwe/dupk+f7lA5DQYDWVlZ6HQ6LBYL
+W7duZc6cOQ6V8Xu2nqcajQa9Xo9Op0NRFLZu3YqLi4u9S/0lVquVgwcPMmXKFNLS0gAICQkhPT3d
+YTL+jJeX17DIKWs3CCGEEMImOd0ghBBCCJukSRBCCCGETdIkCCGEEMImaRKEEEIIYZM0CUIIIYSw
+ST4CKYT4n168eEF8fDwzZ84csD05OZnU1NRfftwdO3ag1WpJTEwcbIlCiN9ImgQhxE9NmjSJ6upq
+e5chhLADaRKEEL8kIiKCmJgYmpub8fLyQqfTUVJSQmdnJ4cPH0ar1aLX6/H19eX+/fv09vaSlZVF
+ZGTkgMepqKiguLgYJycnAgICyM7Opq6ujoaGBvLz8wE4fvw4zs7OpKamsn//ftrb27Faraxbt46l
+S5ditVrJzc3l1q1bWK1WEhMTMRgMdHZ2sn37dj5+/MioUaPYtWsXQUFB9jhcQoxIck2CEOKnXr9+
+zYoVKwb8tLW18fbtW6Kjozl//jwAFy9e5MyZM6SlpXH69Gn1/l++fKGqqor8/Hx27NjBly9f1LG2
+tjaKioooKSmhpqaGsWPHcvz4cZYsWUJ9fT1msxlFUaipqWHFihUUFhYSEBBAZWUlZWVlFBUV8fz5
+c8rLywGoqqri3LlzXLp0iebmZs6dO0d0dDSVlZVkZGRw+/btP3vwhBjhZCZBCPFTPzvdEBUVBcC0
+adOYP38+AFOnTqW7u1vdJzk5GQB/f3+8vLxoa2tTx5qamoiJiWHixIkArFq1ip07d5KZmcmCBQu4
+cOEC3t7eeHt7M3nyZG7evMnnz5+pqKgA4OPHj7S3t6sLdDU0NKjb29raCA8PJy0tjUePHrFgwQJW
+r149xEdHCMcmTYIQ4pc5Ozurv2s0Gpv7fL/9x1VS+/v7B+yrKIq61PrKlSspLCxk+vTp6gWO/f39
+5OXlERAQAHxdiGz8+PFUVFSQkZHBokWLAOjq6sLV1ZUxY8ZQW1vLlStXqKuro6qqiuLi4iFILsS/
+g5xuEEL8VnV1dQA8ePCA7u7uASvZabVaLl++zPv37wEoLy8nNDQUgODgYDo7O2lsbCQ2NhaAsLAw
+zp49C3w9DbJ8+XI6OjoICwujvLwci8WC2WxGp9Nx7949cnNzqa6uJiEhgd27d/Pw4cM/GV2IEU9m
+EoQQP/XtmoTvhYSE/OP7P3/+nISEBACOHDkyYGZh1qxZrF+/Hr1ej8ViISAggH379qnjsbGxfPjw
+QZ2x2LRpE3v37lUvVszIyMDHx4eUlBSePXtGQkICfX19JCYmEhoaio+PD9u2baOqqgqNRsOePXsG
+cyiE+NeRVSCFEL+NXq9n06ZN6uzAP6UoChaLBYPBgNFoVE8vCCH+LDndIIQYdt68eUNERARBQUHS
+IAhhRzKTIIQQQgibZCZBCCGEEDZJkyCEEEIIm6RJEEIIIYRN0iQIIYQQwiZpEoQQQghhkzQJQggh
+hLDpP3E8YAUiqNyHAAAAAElFTkSuQmCC
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>The above scatterplot is not much helpful in either detecting outliers or finding patterns as some POIs as well as non-POIs have high values of deferred income. Although, a very trend does suggest POIs to have higher deferred income.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Creating a scatterplot of <strong><code>total_payments</code> vs <code>deferral_payments</code> w.r.t <code>POI</code></strong>.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[125]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Scatterplot of total_payments vs deferral_payments w.r.t POI</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;total_payments&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;deferral_payments&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Not-POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;total_payments&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;deferral_payments&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;r&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Total_payments&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;deferral_payments&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Scatterplot of total_payments vs deferral_payments w.r.t POI&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;upper right&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> 
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+
+
+<div class="output_png output_subarea ">
+<img src="
+AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xtc1FXi//HXcFUYvLVlmtKqyba2YSFqJVpIZZbmJU3B
+qHR1zazEFhczkTSvqaRFVNu37CcbIJZpl+2ykeYqRkapSdlu7lcBxcuGKRdhhDm/P+bLJDniVA6g
+vp+Ph49xzuczn8+ZzyDz9pzzOcdijDGIiIiI/IRXY1dAREREmiaFBBEREXFJIUFERERcUkgQERER
+lxQSRERExCWFBBEREXFJIUEA2LZtG7GxsQwePJhBgwYxfvx4/v3vf//i4+3YsYNZs2Y5n48bN46S
+kpKzUVUAnn32WebMmXPG/X7JeTdt2kRkZCR33XUXlZWVdbbNnDmTnTt3nvEY7uxXVFTEtdde+7Pq
+1tSd7c/55/jqq6/o37//Gff75ptvuPnmmxk2bBhFRUUeqcvvfve7RrsOnuDuz72npKSk8NFHH51S
+XlRUxO9//3uGDBni/HPnnXfy+uuvO/eprq7m+eef5/bbb+eOO+7gjjvuYPbs2fzwww/OfaZPn87L
+L7/cIO/lXKOQINhsNiZOnMj06dN5++23eeeddxg8eDATJkygpqbmFx3zu+++4+DBg87nmzdvPlvV
+/Vl+yXnfffddRo4cyRtvvEGzZs3qbMvJycGdqUXc3e9801if88+RnZ1N7969efPNN+nQoUNjV+ec
+0Ng/z7m5uVRXV7vc1qxZM9atW+f889JLL7Fo0SJ27doFwKOPPsp3331Heno67777LmvXrqV9+/aM
+GjWKsrKyhnwb5ySfxq6ANL7jx49TWlpKRUWFs+zOO+/EarVSU1ODt7c3r7/+OitWrMDLy4vWrVuz
+aNEi2rZty/z589m+fTvl5eUYY5g7dy7t27fnmWeeobS0lMcee8x5zPvuu4+//vWveHl5MWfOHIqL
+izlx4gR33HEHDzzwAEVFRYwZM4YuXbqwb98+Fi5cyKOPPkqvXr3YtWsXxhhmzZpFeHh4nfr/+9//
+Zs6cOfzwww9YLBbGjRvH0KFDneeuPW+7du2crzlx4gQLFy5ky5YteHt7ExoaymOPPUZmZibZ2dn4
++/tTWlpKQkKC8zVPP/00hw4dIj4+nqeeeoq2bdvyxBNPsG/fPowxDB06lPHjx5+ynzGGxYsXY7PZ
+OHz4MDfccAPz5893+/Pp378/N998M59//jmlpaWMHTuWmJgY7Ha7y+vfrVs3+vXrR1ZWFp06dQJg
+7NixjBkzho8++gh/f3+++uor/vvf/zJw4EDatGnD+vXrOXz4MHPnzuX666/HZrOxZMkStm7dSk1N
+Dd26dWPmzJlYrVb69+/PsGHD2LJlC8XFxQwcOJC//OUvp1zv9evXk5mZia+vL/7+/syZM4crrrjC
++b7sdjuRkZGkpKRw9dVXAzB16lR69uxJ7969efzxx7HZbBhjGDFiBGPGjDnl2qSnp/P//t//w2q1
+EhISUmfb888/z4cffojdbueyyy4jKSmJ3NxcMjIyqKmpobKykqVLl7J69WoyMjKw2+20atWKxMRE
+unTpwvTp0/nhhx8oLCzkpptu4vvvv6/zfMSIEcyZM4eKigoOHTrElVdeybJly/D393frc42NjaVL
+ly7s3LmTI0eOMGTIEB555BEAXnjhBT766COqqqo4fvw4CQkJ3Hzzzdx2220kJiYSEREBOP6H37Vr
+V44dO0ZBQQGFhYUcOnSI0NBQ+vTpw9q1aykqKmLatGkMGjTotNelbdu2xMbGcs011/DFF19QXFxM
+jx49WLRoEcuXL6/z83zw4EGef/55LBYL3t7e/OUvf6Fnz57O91VTU0OfPn1YtWoVl19+OX/961/J
+yMhg/fr1zp/F+++/nxtvvNH5mjVr1vD6669z/PhxrFYraWlpzm2vvfYaO3fu5KmnnsLb25tbbrml
+3uvatm1bLr/8cvbs2cPx48fZtm0bH3/8MT4+jq87X19fJkyYwBdffEFmZibjx4936/O6YBkRY8wr
+r7xiQkNDTf/+/U18fLxZvXq1qaioMMYY880335jevXub/fv3G2OMWbFihUlMTDRffPGFefjhh01N
+TY0xxpgXX3zRTJw40RhjzBtvvGH+9Kc/OY8fEhJivv/+e2OMMbGxsSY7O9sYY0xlZaWJjY017777
+riksLDQhISFm69atxhjjfP7WW28ZY4zZsGGD6dOnj7HZbOaZZ54xs2fPNidOnDBRUVHmgw8+MMYY
+c+DAAdO3b1/zxRdfnHLeky1fvtw89NBDxmazmZqaGjN9+nSTmJhojDEmISHB/M///I/L6xQZGWl2
+7NhhjDFmzJgx5pVXXjHGGHPs2DEzePBg884775yy39SpU82nn35qjDGmrKzM9O7d23z11VemsLDQ
+XHPNNWf8bCIjI01iYqKx2+2muLjY9O7d2+zatave6z937lyzaNEiY4wxe/fuNTfeeKOprq42CQkJ
+ZuTIkcZms5lDhw6ZkJAQs3LlSmOMMa+++qoZO3asMcaYZ5991ixcuNDY7XZjjDFLly41SUlJzvos
+XLjQeb2vvvpqU1BQUOd6V1dXm6uuusocPHjQGGPMm2++aTIzM11+DrNnzzbGGPPDDz+YXr16mWPH
+jpnHHnvMvPjii8YYYw4dOmTi4uKc77PW119/ba6//npz6NAhY4wxiYmJJjIy0nm+uLg4c+LECWOM
+MZmZmWb8+PHGGOP82THGmNzcXBMTE+P8Wf/nP/9pBg4caIxx/Bzcd999zvP99PnChQvN2rVrjTHG
+2Gw2M2jQIPP+++/XuQ71ueeee8yECROMzWYzR48eNQMGDDAff/yxKSoqMrGxseb48ePGGGPeeecd
+M2jQIGOM49/eI488YowxprS01Fx33XXm6NGj5plnnjGRkZHm2LFj5vjx46Znz55mwYIFxhhj/vGP
+f5hbb731jNflnnvuMY888oipqakxpaWlJiIiwmzZssUYU/fnOSoqynz55ZfO6/Xss8+e8t6mT59u
+0tLSnMft06eP+c9//mOOHTtmevfubaqqqurs/8Ybb5iePXua0tLS016r995775RyV/+GvvjiC9Oz
+Z0+zf/9+8/LLL5uHH37Y5TFXrlxpHnjgAWNM/f/mL3RqSRDAke5HjhzJ1q1b2bp1Ky+99BIvvfQS
+r7/+Olu2bCEiIsL5P/H777/f+bqWLVuSmZlJYWEhubm5BAYG1nueiooKtm7dytGjR1m+fLmzbNeu
+XYSGhuLj48M111xT5/iDBw8G4MYbb8Tb25tvv/3WuX3Pnj1UVVVx6623Ao7/Rdx6663885//rLe/
+f+PGjUydOhVfX1/A8b+6yZMnu329Kioq+OKLL3jllVcACAoKYvjw4WzcuJE77rijzr4LFy5k48aN
+vPDCC/znP/+hsrKSiooKWrVq5fb5YmJisFgsXHrppfTt25fNmzczbty4017/mJgY7rnnHqZOncqq
+VasYMWIE3t7eAERGRuLr68vFF19MQEAAffv2BSA4ONjZT7thwwZKS0vJyckBHC0vF110kbM+UVFR
+gON6X3TRRRw9epSOHTs6t3t7e3PbbbcxevRobrrpJvr06eP8HE921113MWLECKZPn84777xDZGQk
+QUFB3HLLLSQkJLBjxw6uv/56Zs6ciZdX3d7RLVu20KdPHy6++GIARo0axaZNmwBYv349X331FXfd
+dRfgaLU4fvz4KeffsGEDe/fuZfTo0c6yo0ePOq9Djx496ux/8vNp06axefNmXnrpJfbs2cOhQ4fq
+tMa5Y9SoUfj6+uLr68ttt93mHA+zaNEi3n77bfbu3etsKQIYPnw4zz33HCUlJbz//vvcdNNNtGjR
+AoAbbriBoKAgAC655BKXn+uZrktkZCReXl5YrVYuv/xyjh49ekqd77jjDh566CFuvPFG+vTpw4QJ
+E07Z55ZbbiEzM5OhQ4dy6NAhBg0aRE5ODi1btqRv3774+fmd8prf/e53WK3Wn3X9ACorKxkyZAjg
+aMVo3bo1ixcvdv6+Ol03hc1mw2Kx/OzzXWgUEoS8vDy+/PJLxo8fT2RkJJGRkTz66KMMHjyYzZs3
+4+3tXecfU2VlJfv27aOwsJB58+YxduxYoqKi6Ny5M2+99Va957Lb7RhjyMzMpHnz5gCUlJTg7+/P
+kSNH8PPzczYLAs4vtpNff3KZ3W4/5RzGmNP+Yjjd6+x2OydOnKj3Na7ex0/LXJ13zJgxXHnllfTt
+25eBAweyffv2n92/e/I1sdvteHl5sWHDhtNe/06dOvG73/2O7Oxs3n77bVavXu18/U9/QZ987JPP
+MWPGDGeTcHl5OVVVVc7tJzepWywWl+9nyZIl/Otf/yInJ8cZOJ9//vk6+1x22WV069aNDRs2sGbN
+GmbMmAE4vqw++OADcnJy2LJlC8899xyZmZkEBwef9rw//bkYP348MTExgOMLwdUXnt1uZ8iQIUyb
+Ns35/NChQ7Rs2RKAgICAOvuf/PzRRx+lpqaGgQMHctNNN1FcXPyrPldjDF5eXuTn5/Pggw9y//33
+06dPH3r27Mns2bMBaNGiBbfddhtvvfUWb7/9NklJSc7Xu/u51nddTh6Dc7rPderUqYwYMYJNmzax
+Zs0a/vrXv7JmzZo6Ia5Pnz7MnDmTTz75hN69e3PDDTeQkZFB8+bNuf32211ei59ea3fVjklwJSws
+jFdeeYXjx487f9/Uys3NrdNNIq5p4KLQpk0bnn/+eT7//HNn2eHDhzl+/DghISH07t2bLVu2cOjQ
+IQAyMzNZvHgxmzdvJjIykpiYGK6++mo++ugj50BHb2/vOl+Ytc+tVivXXHMNK1asAODYsWNER0eT
+nZ3tsm4lJSVs3LgRgI8//hhfX986fc+dOnXC19eXDz/8EICDBw/ywQcfcMMNN7isR62+ffuSmZnJ
+iRMnsNvtvPbaa/Tp0+eM1+rk99G9e3dee+01AEpLS1m7du0p5z169Cg7d+4kPj6eW2+9lYMHD1JQ
+UOAy3NRn7dq1AOzfv5/NmzfTr1+/eq8/OFoTnnrqKbp3707btm1/1vkiIiJ47bXXsNls2O12EhMT
+SU5OPuPrat93SUkJN954I61ateL+++8nLi6uTgvQye6++25eeuklKisrnf9T//Of/8zf//537rjj
+DpKSkrBarRQXF9d53Q033MDmzZs5cOAAAG+++Wad+r/++uvOgWnLly/nL3/5yynn7tOnD++++67z
+ZzsjI4P77rvPjSvkuAtm8uTJ3H777VgsFrZv3/6zB/q+9dZb2O12jh49ynvvvUf//v3ZunUrf/jD
+Hxg7diy9evUiOzu7znHHjBnDypUrMcYQGhr6s87n7nX5qdrPtbq6mv79+1NRUUF0dDRJSUns3r37
+lH9j/v7+9OzZk5SUFPr06UOvXr3Ytm0bn3/+ubOF4+c43b/jM7nmmmvo1asX06dPd4ahmpoann/+
+efbs2VOnBUlcU0uC0KlTJ5577jmefvppDhw4gL+/P0FBQcyZM4fOnTsDjqbV2gE+F198MfPnz6es
+rIz4+HgGDx6Mt7c34eHhzgFR1157LcuWLWPy5Mk899xz3HLLLcTExJCamsqSJUt48sknGTx4MDab
+jUGDBnHnnXe6vB3N39+fdevWsWTJEpo1a8Zzzz1X53+Mvr6+pKamMnfuXJ599llqamqYPHky1113
+HUCd854cLiZNmsSiRYsYOnQo1dXVhIaGkpiYeMZrdfPNNzN16lTmzp3LkiVLmDNnDmvWrMFmszF4
+8GCGDx9+yn5/+tOfGDZsGK1ataJ169aEhYWxd+/eOs3zZ1JUVMTw4cOprKxk5syZdO7cmdGjR5/2
++nt5eREZGcnMmTN/0S/CBx98kEWLFjFs2DBqamr4/e9/z/Tp08/4upOv96RJk7j//vtp1qwZ3t7e
+zJ071+Vr+vfvz+zZs+s0Wz/44IM8/vjjrFq1Cm9vb26++WZ69epV53W/+93vmDZtGvfddx+BgYF1
+vjBHjhzJwYMHufvuu7FYLLRr146FCxeecu6+ffsyYcIExo0bh8ViwWq1kpKS4lYz9NSpU5k8eTIt
+W7akefPm9OzZk4KCgjO+7mSVlZWMGDGC8vJyYmJiuP766+natSsffvght99+O76+vlx//fUcPXqU
+srIyrFYrV155JS1btvxFn6u71+WnTv55njFjBvHx8fj4+GCxWJg/f77L7oNbbrmFDz/8kOuuu45m
+zZo5613bCpWdnU1mZiYvvfSSy3MOGTKEuXPncvXVVzu7YE6cOMGwYcN+1ntevHgxK1as4J577gEc
+rSe9e/cmMzPT2T0jp2cxP7d9TKSBFBUVMXjwYL788svGrkqj6t+/P8uXL3feAeCuL774gsTERN55
+5x31vTZBsbGxjBkzhttuu+1nva6goIDY2Fjef//9U5rQRc42tSSINLK33nrrtBO5uBrs546EhAQ+
+++wzFi1apIDQSD799FMWLFjgclvv3r1/0TGXL19OVlYWjz/+uAKCNAi1JIiIiIhLGrgoIiIiLikk
+iIiIiEsak3CSyspKdu7cycUXX3zK/fkiIiLnm5qaGg4fPswf/vCHU9aqAYWEOnbu3OlyfngREZHz
+2WuvvXbKujigkFBH7fSur732Gpdeemkj10ZERMSzDhw4wJgxY5zffz+lkHCS2i6GSy+9VEvIiojI
+BeN0XewauCgiIiIuKSSIiIiISwoJIiIi4pJCgoiIiLikkCAiIiIuKSSIiIiISwoJ0mAqKmD3bsej
+iEhTcbZ/N+Xm5tKjRw+Ki4udZUuWLGHNmjUu9//hhx94++23TykvKioiLCyM2NhYYmNjGTVqFMnJ
+yc7tn376Kffeey+xsbGMHj2aFStWULtm4/Tp09m4ceOvfi8KCeJx1dUQFwdXXQUhIY7HuDhHuYhI
+Y/Hk7yY/Pz8ee+wx3Flo+dtvv+Xjjz92ue2KK64gLS2NtLQ0MjIyyM3NZdeuXfzrX/9i0aJFLFmy
+hLS0NP72t7+xe/fu0y47/0spJIjHxcfD8uWwZw/Y7Y7H5csd5SIijcWTv5uuu+46WrZsyWuvvVan
+/JVXXuGuu+5i1KhRLF68GIAXXniBTz/9lFWrVtV7zKqqKmw2G82bNyczM5OJEydyySWXAODj48P0
+6dPPeIyfSyFBPKqiAtaudb1t3Tp1PYhI42iI301PPPEEr776Knv37gWgvLyc9957j8zMTDIzM9m7
+dy/r16/ngQce4LrrrmPUqFGnHOO7775zdjdMmjSJe++9l8svv5zCwkKCg4Pr7Gu1Wjl+/Dh2u/3X
+V/7/aFpm8ajiYigsdL2tsNCxvUuXhq2TiEhD/G5q3bo1M2bMICEhgbCwMKqqqujevTu+vr4AhIeH
+8+9//5vu3bs7XzNx4kQqKioICQlh7Nixzu6Gn2rbti379u2jW7duzrKysjL8/Pzw8jp7//9XS4J4
+VLt28JOw69Sxo2O7iEhDa6jfTf3796dTp068+eab+Pv7s2PHDqqrqzHGsHXrVjp16oSXl5fzf/8v
+vvgiaWlpJCYm1nvc6Ohonn/+eQ4fPgzAiRMnmDdvHqNHjz47Ff8/CgniUQEBMGSI621Dhji2i4g0
+tIb83fT444/TrFkzAgMDGThwINHR0YwYMYLLLruMm2++meDgYP71r3/x6quvun3Mq666iqlTpzJ1
+6lSio6OJiYmhU6dOjB8//uxVHLAYd4ZeXiCKioqIiooiOztbq0CeRdXVjoFA69Y5mvE6dnT8I1yy
+BHzU4SUijUS/m878vXeBXAZpTD4+sGwZzJ/v6Odr104tCCLS+PS76cwUEqTBBARokKKIND363XR6
+GpMgIiIiLikkiIiIiEsKCSIiIuKSQoKIiIi4pIGLIiJyYauoOKu3N+Tm5hIXF8cVV1wBONZcGDx4
+MLGxsbz33nv87W9/w8vLi+rqakaNGsXQoUMBiI2N5YknnqBLExpFqZAgIiIXppMnSigocEzBeJYm
+Srjuuut4+umnAbDZbNx2221cdNFFrFq1ihdeeIGgoCAqKyt55JFH8Pf3Z+DAgWfjHZ116m4QEZEL
+UwMtUVtWVoaXlxdZWVnEx8cTFBQEQLNmzUhISDhlpcimRC0JIiJy4TnTMpDz5/+qrodPP/2U2NhY
+LBYLvr6+JCYmsmjRolNWbuzYsSP79+//xefxNIUEERG58Hh4GciTuxtqvfrqq+zbt4+WLVs6y/bs
+2UO7JrzSnUe7G1588UVGjRrF8OHDWb16NXv37nUuRJGUlORc9SorK4vhw4dz9913s379egAqKyt5
++OGHiYmJYcKECZSUlACwbds2Ro4cyejRo0lJSXGeKyUlhREjRjB69Gh27NgBQElJCePGjSMmJoa4
+uDiOHz/uybcrIiLnikZYojY2NpannnqKsrIyAMrLy3nqqacYM2bMWT/X2eKxkJCbm8uXX35JRkYG
+aWlpHDhwgAULFhAXF0d6ejrGGLKzszl8+DBpaWlkZmby8ssvk5ycjM1mIyMjg5CQENLT0xk6dCip
+qakAJCUlsXTpUjIyMti+fTtff/01+fn5fPbZZ6xevZrk5GRmz54NQGpqKoMGDSI9PZ1u3bqxatUq
+T71dERE5lzTCErX9+/dn+PDhjB8/nujoaMaNG8eAAQO4/fbbz/q5zhaPdTds2rSJkJAQJk+eTFlZ
+GX/5y1/IysqiV69eAPTr14/Nmzfj5eXFtddei5+fH35+fgQHB7Nr1y7y8vKcS17269eP1NRUysrK
+sNlszj6diIgIcnJy8PPzIyIiAovFQvv27ampqaGkpIS8vDwmTpzoPEZycjL333+/p96yiIicS5Ys
+cTy6WgbyV+jduze9e/d2ue3OO+/kzjvvdLktLS3tV53XEzwWEo4cOcL+/ft54YUXKCoqYtKkSRhj
+sFgsAAQGBlJaWkpZWZlzpGdteVlZWZ3yk/e1Wq119i0sLMTf359WrVrVKf/psWvLREREAC0D6QaP
+hYRWrVrRuXNn/Pz86Ny5M/7+/hw4cMC5vby8nBYtWmC1WikvL69THhQUVKe8vn1btGiBr69vvcdo
+1qyZc18REZE6tAzkaXlsTEKPHj345z//iTGGgwcPcvz4ca6//npyc3MB2LhxI+Hh4YSGhpKXl0dV
+VRWlpaXs3r2bkJAQwsLC+OSTT5z79ujRA6vViq+vLwUFBRhj2LRpE+Hh4YSFhbFp0ybsdjv79+/H
+brfTpk0bl8cQERER93isJSEyMpKtW7cyYsQIjDHMmjWLDh06kJiYSHJyMp07d2bAgAF4e3sTGxtL
+TEwMxhimTp2Kv78/0dHRJCQkEB0dja+vL0uXLgVg9uzZxMfHU1NTQ0REBN27dwcgPDycUaNGYbfb
+mTVrFgCTJk0iISGBrKwsWrdu7TyGiIiInJnFGGMauxJNRVFREVFRUWRnZ9OhQ4fGro6IiIhHnel7
+T9Myi4iIiEsKCSIiIuKSQoKIiIi4pJAgIiIiLikkiIiIiEsKCSIiIuKSQoKIiIi4pJAgIiIiLikk
+iIiIiEsKCSIiIuKSQoKIiIi4pJAgIiIiLikkiIiIiEsKCSIiIuKSQoKIiIi4pJAgIiIiLikkiIiI
+iEsKCSIiIuKSQoKIiIi4pJAgIiIiLikkiIiIiEsKCSIiIuKSQoKIiIi4pJAgIiIiLikkiIiIiEsK
+CSIiIuKSQoKIiIi4pJAgIiIiLikkiIiIiEsKCSIiIuKSQoKIiIi4pJAgIiIiLikkiIiIiEsKCSIi
+IuKSjycPPmzYMKxWKwAdOnTggQceYPr06VgsFrp27UpSUhJeXl5kZWWRmZmJj48PkyZNIjIyksrK
+SqZNm8b3339PYGAgixYtok2bNmzbto158+bh7e1NREQEDz30EAApKSls2LABHx8fZsyYQWhoKCUl
+JcTHx1NZWckll1zCggULaN68uSffsoiIyHnDYy0JVVVVGGNIS0sjLS2NBQsWsGDBAuLi4khPT8cY
+Q3Z2NocPHyYtLY3MzExefvllkpOTsdlsZGRkEBISQnp6OkOHDiU1NRWApKQkli5dSkZGBtu3b+fr
+r78mPz+fzz77jNWrV5OcnMzs2bMBSE1NZdCgQaSnp9OtWzdWrVrlqbcrIiJy3vFYSNi1axfHjx9n
+3Lhx3HvvvWzbto38/Hx69eoFQL9+/cjJyWHHjh1ce+21+Pn5ERQURHBwMLt27SIvL4++ffs6992y
+ZQtlZWXYbDaCg4OxWCxERESQk5NDXl4eERERWCwW2rdvT01NDSUlJaccIycnx1NvV0RE5Lzjse6G
+Zs2a8cc//pGRI0eyZ88eJkyYgDEGi8UCQGBgIKWlpZSVlREUFOR8XWBgIGVlZXXKT963tvuitryw
+sBB/f39atWpVp/ynx64tExEREfd4LCR06tSJyy+/HIvFQqdOnWjVqhX5+fnO7eXl5bRo0QKr1Up5
+eXmd8qCgoDrl9e3bokULfH196z1Gs2bNnPuKiIiIezzW3fD666+zcOFCAA4ePEhZWRl9+vQhNzcX
+gI0bNxIeHk5oaCh5eXlUVVVRWlrK7t27CQkJISwsjE8++cS5b48ePbBarfj6+lJQUIAxhk2bNhEe
+Hk5YWBibNm3Cbrezf/9+7HY7bdq0cXkMERERcY/HWhJGjBjBY489RnR0NBaLhfnz59O6dWsSExNJ
+Tk6mc+fODBgwAG9vb2JjY4mJicEYw9SpU/H39yc6OpqEhASio6Px9fVl6dKlAMyePZv4+HhqamqI
+iIige/fuAISHhzNq1CjsdjuzZs0CYNKkSSQkJJCVlUXr1q2dxxAREZEzsxhjTGNXoqkoKioiKiqK
+7OxsOnTo0NjVERER8agzfe9pMiURERFxSSFBREREXFJIEBEREZcUEkRERMQlhQQRERFxSSFBRERE
+XFJIEBEREZcUEkRERMQlhQQRERFxSSFBREREXFJIEBEREZcUEkRERMQlhQQRERFxSSFBREREXFJI
+EBEREZcUEkRERMQlhQQRERFxSSFBREREXFJIEBEREZcUEkRERMQlhQQRERFxSSFBREREXFJIEBER
+EZcUEkS0bpYjAAAgAElEQVRERMQlhQQRERFxSSFBREREXFJIEBEREZd+UUgoKys72/UQERGRJsat
+kLB+/XoWL15MeXk5AwcOJCoqitdee83TdRMREZFG5FZISElJYfjw4fz9738nNDSUjz/+mDfeeMPT
+dRMREZFG5HZ3Q5cuXdiwYQP9+/cnMDCQEydOeLJeIiIi0sjcCgm/+c1vePLJJ9m5cyd9+/Zl4cKF
+tG/f3tN1ExERkUbkVkhYunQpV199NStXriQgIICOHTuSnJzs6bqJiIhII3IrJDz22GMMHTqUyy+/
+HIAxY8bw4IMPnvF133//PTfeeCO7d+9m7969REdHExMTQ1JSEna7HYCsrCyGDx/O3Xffzfr16wGo
+rKzk4YcfJiYmhgkTJlBSUgLAtm3bGDlyJKNHjyYlJcV5npSUFEaMGMHo0aPZsWMHACUlJYwbN46Y
+mBji4uI4fvz4z7gsIiIiUm9ImDx5MlFRUWzYsIGoqCjnn5tuuomqqqp6D3zixAlmzZpFs2bNAFiw
+YAFxcXGkp6djjCE7O5vDhw+TlpZGZmYmL7/8MsnJydhsNjIyMggJCSE9PZ2hQ4eSmpoKQFJSEkuX
+LiUjI4Pt27fz9ddfk5+fz2effcbq1atJTk5m9uzZAKSmpjJo0CDS09Pp1q0bq1atOhvXS0RE5ILh
+U9/GRYsW8cMPPzBv3jxmzpz544t8fLjooovqPfCiRYsYPXo0f/3rXwHIz8+nV69eAPTr14/Nmzfj
+5eXFtddei5+fH35+fgQHB7Nr1y7y8vIYP368c9/U1FTKysqw2WwEBwcDEBERQU5ODn5+fkRERGCx
+WGjfvj01NTWUlJSQl5fHxIkTncdITk7m/vvv/2VXSURE5AJUb0uC1WqlQ4cOPP/881RUVFBcXMz+
+/fspKCjgyy+/PO3r1qxZQ5s2bejbt6+zzBiDxWIBIDAwkNLSUsrKyggKCnLuExgYSFlZWZ3yk/e1
+Wq119j1T+U+PISIiIu6rtyWh1pw5c/j444/p2LGjs8xisbBy5UqX+7/xxhtYLBa2bNnCN998Q0JC
+gnNcAUB5eTktWrTAarVSXl5epzwoKKhOeX37tmjRAl9f33qP0axZM+e+IiIi4j63QsKmTZt4//33
+neMLzuTk2RhjY2N54oknWLx4Mbm5ufTu3ZuNGzdy3XXXERoayrJly6iqqsJms7F7925CQkIICwvj
+k08+ITQ0lI0bN9KjRw+sViu+vr4UFBTQsWNHNm3axEMPPYS3tzeLFy/mj3/8IwcOHMBut9OmTRvn
+MYYPH+48hoiIiLjPrZDQsWNHjDG/6kQJCQkkJiaSnJxM586dGTBgAN7e3sTGxhITE4MxhqlTp+Lv
+7090dDQJCQlER0fj6+vL0qVLAZg9ezbx8fHU1NQQERFB9+7dAQgPD2fUqFHY7XZmzZoFwKRJk0hI
+SCArK4vWrVs7jyEiIiLusRg3vv0fffRRtm3b5hxkWGvBggUerVxDKyoqIioqiuzsbDp06NDY1RER
+EfGoM33vudWS0Ldv3zqDEEVEROT851ZIGDZsGEVFRXz33XdERERQXFxcZxCjiIiInH/cmnHx73//
+O5MmTWLevHkcPXqU0aNHs27dOk/XTURERBqRWyHhpZdeIiMjg8DAQC666CLefPNN5yRJIiIicn5y
+KyR4eXnVmbDokksuwcvL7VWmRURE5Bzk1piErl278re//Y3q6mq++eYb0tPTufLKKz1dNxEREWlE
+bjUHzJo1i4MHD+Lv78+MGTOwWq0kJSV5um4iIiLSiNxqSQgICODPf/4zf/7znz1dHxEREWki3AoJ
+r776Kqmpqc5FkmoXa/rmm288WjkRERFpPG6FhJUrV7J27Vrat2/v6fqIiIhIE+HWmIQuXbrwm9/8
+xtN1ERERkSbErZaE2NhYBg8eTPfu3fH29naWn29rN4iIiMiP3AoJ8+bNY/DgwVx22WWero+IiIg0
+EW6FBD8/Px566CFP10VERESaELdCwg033MDChQvp168fvr6+zvKePXt6rGIiIiLSuNwKCV9//TUA
++fn5zjKLxcLKlSs9UysRERFpdG6FhGnTphEaGurpuoiIiEgT4lZIWLJkCUeOHGHIkCEMGTKEiy++
+2NP1EhERkUbm9mRK+/btY926dfzxj3+kXbt2DBs2jKioqDpjFEREROT84fZ6z5dddhlDhw5l0KBB
+/Pvf/2blypUMGjSIf/zjH56sn4iIiDQSt1oSVq9ezbp16zh8+DBDhw4lPT2dSy+9lIMHDzJs2DBu
+ueUWT9dTREREGphbIWHr1q08/PDD9O7du05527ZttWS0iIjIecqtkPDUU0/x9ddf8/nnn2OMoaam
+hqKiIkaMGMGAAQM8XUcRERFpBG6FhISEBL788kuOHj1K586d2bVrF2FhYYwYMcLT9RMREZFG4tbA
+xa1bt/Luu+8yYMAAnnzySbKysrDZbJ6um4iIiDQit0LCJZdcgq+vL126dOHbb7+la9eulJeXe7pu
+IiIi0ojc6m5o27YtL774Itdffz2LFy8GoKKiwqMVExERkcblVkvCvHnz6NChA6GhoQwYMIB33nmH
+J554wsNVExERkcbkVkuC1Wqlc+fOrFixAm9vb+Lj4+nSpYun63bBqaiA4mJo1w4CAhq7NiIicqFz
+qyXh5ZdfZsqUKRw8eJCioiImTZrEG2+84em6XTCqqyEuDq66CkJCHI9xcY5yERGRxuJWS0JWVhZr
+1qzBarUCMHnyZKKjo7nrrrs8WrkLRXw8LF/+4/M9e358vmxZo1RJRETEvZaEli1b4uPzY54ICAgg
+MDDQY5W6kFRUwNq1rretW+fYLiIi0hjcakno2LEjo0aN4o477sDHx4d//OMfWK1WUlJSAHjooYc8
+WsnzWXExFBa63lZY6Niu4R8iItIY3AoJnTp1olOnTthsNmw2G3369PF0vS4Y7dpBcLCji+GnOnZ0
+bBcREWkMboWE+loKJk6c6LK8pqaGmTNn8r//+79YLBZmz56Nv78/06dPx2Kx0LVrV5KSkvDy8iIr
+K4vMzEx8fHyYNGkSkZGRVFZWMm3aNL7//nsCAwNZtGgRbdq0Ydu2bcybNw9vb28iIiKcdUtJSWHD
+hg34+PgwY8YMQkNDKSkpIT4+nsrKSi655BIWLFhA8+bNf8Fl8pyAABgypO6YhFpDhuguBxERaTxu
+jUmoz6FDh1yWr1+/HoDMzEzi4uJ4+umnWbBgAXFxcaSnp2OMITs7m8OHD5OWlkZmZiYvv/wyycnJ
+2Gw2MjIyCAkJIT09naFDh5KamgpAUlISS5cuJSMjg+3bt/P111+Tn5/PZ599xurVq0lOTmb27NkA
+pKamMmjQINLT0+nWrRurVq36tW/XIxYuhGuuAW9vx3Nvb8fzhQsbt14iInJh+9Uh4XRuvvlmnnzy
+SQD2799PixYtyM/Pp1evXgD069ePnJwcduzYwbXXXoufnx9BQUEEBweza9cu8vLy6Nu3r3PfLVu2
+UFZWhs1mIzg4GIvFQkREBDk5OeTl5REREYHFYqF9+/bU1NRQUlJyyjFycnI89XZ/lenTYds2qKlx
+PK+pcTyfPr1x6yUiIhc2j4UEAB8fHxISEnjyyScZPHgwxhgsFgsAgYGBlJaWUlZWRlBQkPM1gYGB
+lJWV1Sk/ed/a2zDdLf/pMZoa3d0gIiJNlUdDAsCiRYv44IMPSExMpKqqylleXl5OixYtsFqtdRaL
+Ki8vJygoqE55ffv+3GM0Ne7c3VBRAbt3KzCIiEjD+tUhwRjjsnzt2rW8+OKLADRv3hyLxcIf/vAH
+cnNzAdi4cSPh4eGEhoaSl5dHVVUVpaWl7N69m5CQEMLCwvjkk0+c+/bo0QOr1Yqvry8FBQUYY9i0
+aRPh4eGEhYWxadMm7HY7+/fvx26306ZNG5fHaGpq725wpUMHSE7WTIwiItI43Lq7oT5Dhw51WX7r
+rbfy2GOPMWbMGKqrq5kxYwZdunQhMTGR5ORkOnfuzIABA/D29iY2NpaYmBiMMUydOhV/f3+io6NJ
+SEggOjoaX19fli5dCsDs2bOJj4+npqaGiIgIunfvDkB4eDijRo3Cbrcza9YsACZNmkRCQgJZWVm0
+bt3aeYympL67G1q3hv8brwloJkYREWlYFnO6pgCgf//+zjEEJ6sdW5Cdne3RyjW0oqIioqKiyM7O
+pkOHDg123upqx9TM69Y5uhg6doTbb4d334W9e0/d/7e/hfx83R4pIiK/zpm+9+ptSUhLS/NYxeRH
+Pj6OloH5839cBbK4GF54wfX+molRREQaQr0h4bLLLgPAZrPxySefOAcB1tTUUFRUxJQpUzxfwwtI
+QMCPX/yaiVFERBqb2zMuHj9+nIKCAsLDw9m6dSvXXHONp+t2QdNMjCIi0tjcurvhf//3f1m5ciW3
+3HIL48ePZ/Xq1aedaVHOniVLYMoUxxgEb2/H45QpjnIRERFPcyskXHTRRVgsFjp16sS3335L27Zt
+sdlsnq7bBa92rEJ+Pnz7reNx2TJHuYiIiKe59XXTtWtXnnzySaKjo4mPj+fQoUOcOHHC03WT/3Py
+WAUREZGG4lZLQlJSEgMHDuSKK67g4Ycf5tChQ01yzgERERE5e9xqSRg5ciRvvvkmAFFRUURFRXm0
+UiIiItL43B6T8Pnnn2scgoiIyAXErZaE/Px87rnnHufsi7UzLn7zzTcerZyIiIg0HrdCwooVK7jy
+yis9XRcRERFpQtzqbpg6daqn6yEiIiJNjFstCVdccQUpKSl0796dZs2aOct79uzpsYqJiIhI43Ir
+JPzwww/k5uaSm5vrLLNYLKxcudJjFRMREZHG5VZI0GqQIiIiFx63xiTs27ePsWPHcuutt3L48GHu
+vfdeioqKPF03ERERaURuhYRZs2bxxz/+kYCAAH7zm98waNAgEhISPF03ERERaURuhYQjR44QEREB
+OMYi3H333ZSVlXm0YiIiItK43AoJzZo148CBA87JlD7//HP8/Pw8WjERERFpXG4NXHzssceYOHEi
+BQUFDBkyhKNHj7J8+XJP101EREQaUb0hYfHixUybNo0jR47w+uuvs2fPHmpqaujcubNaEkRERM5z
+9XY3vPfee+Tk5DBv3jy2b9/ODz/8QGlpKdu3b2fr1q0NVUcRERFpBPW2JDzwwAO8+OKLHDp06JTu
+BU2mJCIicn6rNyTcfffd3H333Tz33HNMnjy5oeokIiIiTYBbdzdMmDCBF154gYSEBMrKykhJScFm
+s3m6biIiItKI3AoJc+bMoaKigvz8fLy9vSkoKODxxx/3dN1ERESkEbkVEvLz83n00Ufx8fGhefPm
+LFq0iG+++cbTdbugVVTA7t2ORxERkcbgVkiwWCzYbDbnZEpHjhxx/l3OrupqiIuDq66CkBDHY1yc
+o9xJCUJERBqAWyHh3nvvZezYsRw+fJh58+Zx1113cd9993m6bhek+HhYvhz27AG73fG4fLmj3L0E
+ISIicnbUe3fD2rVrnX+/4447MMZQU1PD2LFj8fFxa7JG+RkqKuCkS17HunWw+EQ8vqkn3YpamyAA
+li3zeP1EROTCUu83fW5uLgAFBQUUFBRw44034uXlxaZNm7jiiisYOnRog1TyQlFcDIWFrrf9t6AC
+1tWTIObPh4AAz1VOREQuOPWGhAULFgAQGxvLunXraNOmDQBHjx7VvAke0K4dBAc7Ggh+KqxdMT7F
+p0kQhYWOhNGli0frJyIiFxa3xiQcOnSIVq1aOZ83b96cw4cPe6xSF6qAABgyxPW2XkPaYQkOdr2x
+Y0dHwhARETmL3BpYcNNNNzF27FhuvfVW7HY777//PgMHDvR03S5IS5Y4HtetczQQdOzoCA4LlgSA
+75AfxyCcbMgQdTWIiMhZ5/ZS0R988AGfffYZFouFcePGERUVVe9rTpw4wYwZM9i3bx82m41JkyZx
+xRVXMH36dCwWC127diUpKQkvLy+ysrLIzMzEx8eHSZMmERkZSWVlJdOmTeP7778nMDCQRYsW0aZN
+G7Zt28a8efPw9vYmIiKChx56CICUlBQ2bNiAj48PM2bMIDQ0lJKSEuLj46msrOSSSy5hwYIFNG/e
+/NdfNQ/y8XGMQZw/39GD0K7dSd//p0sQteUiIiJnk/GQ119/3cydO9cYY8yRI0fMjTfeaCZOnGg+
+/fRTY4wxiYmJ5sMPPzSHDh0ygwYNMlVVVebYsWPOv7/yyivmmWeeMcYY884775gnn3zSGGPMnXfe
+afbu3WvsdrsZP368yc/PNzt37jSxsbHGbrebffv2meHDhxtjjHnyySfNG2+8YYwx5sUXXzQrVqyo
+t86FhYUmJCTEFBYWeuKSnD3l5cZ8953jUURE5Bc60/eeW2MSfonbbruNKVOm1AYRvL29yc/Pp1ev
+XgD069ePnJwcduzYwbXXXoufnx9BQUEEBweza9cu8vLy6Nu3r3PfLVu2UFZWhs1mIzg4GIvFQkRE
+BDk5OeTl5REREYHFYqF9+/bU1NRQUlJyyjFycnI89XYbVkCAY5CiuhhERMSDPBYSAgMDsVqtlJWV
+8cgjjxAXF4cxxjlTY2BgIKWlpZSVlREUFFTndWVlZXXKT97XarXW2fdM5T89hoiIiLjHYyEBoLi4
+mHvvvZchQ4YwePBgvLx+PF15eTktWrTAarVSXl5epzwoKKhOeX37/txjiIiIiHs8FhL++9//Mm7c
+OKZNm8aIESMA6Natm3OCpo0bNxIeHk5oaCh5eXlUVVVRWlrK7t27CQkJISwsjE8++cS5b48ePbBa
+rfj6+lJQUIAxhk2bNhEeHk5YWBibNm3Cbrezf/9+7HY7bdq0cXmMpkLLL4iISFPnsbmVX3jhBY4d
+O0ZqaiqpqakAPP7448ydO5fk5GQ6d+7MgAED8Pb2JjY2lpiYGIwxTJ06FX9/f6Kjo0lISCA6Ohpf
+X1+WLl0KwOzZs4mPj6empoaIiAi6d+8OQHh4OKNGjcJutzNr1iwAJk2aREJCAllZWbRu3dp5jMZU
+Xe1Yh2HdOigocEyeVHuDgma6FhGRpsRijDGNXYmmoqioiKioKLKzs+nQoYNHzhEX53qqgylTtPyC
+iIg0rDN973l0TILUdaYFnNT1ICIiTYlCQgOqbwGn2uUXREREmgqFhAZUu4CTK1p+QUREmhqFhAZU
+3wJOWn5BRESaGo2nb2BafkFERM4VCgkNrN4FnERERJoQhYRGUrv8goiISFOlMQkiIiLikkKCiIiI
+uKSQICIiIi4pJIiIiIhLCgkiIiLikkKCiIiIuKSQICIiIi4pJIiIiIhLCgkiIiLikkKCiIiIuKSQ
+ICIiIi4pJIiIiIhLCgkiIiLikkLCOaiiAnbvdjyKiIh4ikLCOaS6GuLi4KqrICTE8RgX5ygXERE5
+23wauwLivvh4WL78x+d79vz4fNmyRqmSiIicx9SScI6oqIC1a11vW7dOXQ8iInL2KSScI4qLobDQ
+9bbCQsd2ERGRs0kh4RzRrh0EB7ve1rGjY7uIiMjZpJBwjggIgCFDXG8bMsSxXURE5GzSwMVGUlHh
+6CJo1879L/glSxyP69Y5uhg6dnQEhNpyERGRs0ktCQ3s19zG6OPjuIshPx++/dbxuGyZo1xERORs
+09dLAzsbtzEGBECXLme9aiIiInWoJaEB6TZGERE5lygkNCDdxigiIucShYQGpNsYRUTkXOLRkLB9
++3ZiY2MB2Lt3L9HR0cTExJCUlITdbgcgKyuL4cOHc/fdd7N+/XoAKisrefjhh4mJiWHChAmUlJQA
+sG3bNkaOHMno0aNJSUlxniclJYURI0YwevRoduzYAUBJSQnjxo0jJiaGuLg4jh8/7sm36hbdxigi
+IucSj4WEl156iZkzZ1JVVQXAggULiIuLIz09HWMM2dnZHD58mLS0NDIzM3n55ZdJTk7GZrORkZFB
+SEgI6enpDB06lNTUVACSkpJYunQpGRkZbN++na+//pr8/Hw+++wzVq9eTXJyMrNnzwYgNTWVQYMG
+kZ6eTrdu3Vi1apWn3urPsmQJTJkCv/0teHs7HqdM0W2MIiLS9HgsJAQHB/Pss886n+fn59OrVy8A
++vXrR05ODjt27ODaa6/Fz8+PoKAggoOD2bVrF3l5efTt29e575YtWygrK8NmsxEcHIzFYiEiIoKc
+nBzy8vKIiIjAYrHQvn17ampqKCkpOeUYOTk5nnqrP4tuYxQRkXOFx0LCgAED8Dnpm88Yg8ViASAw
+MJDS0lLKysoICgpy7hMYGEhZWVmd8pP3tVqtdfY9U/lPj9GU1N7GqC4GERFpqhps4KKX14+nKi8v
+p0WLFlitVsrLy+uUBwUF1Smvb9+fe4ymoKICdu/W7Y4iItL0NVhI6NatG7m5uQBs3LiR8PBwQkND
+ycvLo6qqitLSUnbv3k1ISAhhYWF88sknzn179OiB1WrF19eXgoICjDFs2rSJ8PBwwsLC2LRpE3a7
+nf3792O322nTpo3LYzSmXzPTooiISGNosJ7whIQEEhMTSU5OpnPnzgwYMABvb29iY2OJiYnBGMPU
+qVPx9/cnOjqahIQEoqOj8fX1ZenSpQDMnj2b+Ph4ampqiIiIoHv37gCEh4czatQo7HY7s2bNAmDS
+pEkkJCSQlZVF69atncdoLO7OtPhL1nQQERHxBIsxxjR2JZqKoqIioqKiyM7OpkOHDmftuMeOQYcO
+4GpYxG9/6xi86OfnCBLr1kFBgWM+hdrFmzSoUUREPOFM33v6+mkAU6a4Dgjw40yLzz7769d0EBER
+OZs046KHVVTAxx+ffvtll0HLllrTQUREmh6FBA8rLHR0H5xOZCQcPao1HUREpOlRSPCwZ545/bYW
+LRzbtaaDiIg0RQoJHlRRAe++e/rt99zjCApa00FERJoiDVz0oPqWhgZ48MEf/167dsO6dY7XdOz4
+490NIiIijUEtCR5UXzcCQGrqjzMw2mxa00FERJoWhQQPCgiA228//fa0NPj97+vOwOjnpzUdRESk
+aVBI8LBHHjn9ttJSx50PdvuP8yLExzdY1UREROqlkOBhHTvW3+XwU5oXQUREmgqFBA+qroYZM+DI
+Efdfo3kRRESkqdCwOA/66aJOtaxWsFhcT9WseRFERKSpUEuCh1RUnH6q5TZtIDbW9TbNiyAiIk2F
+QoKH1DdHQkGBoxXh4Ycdq0B6ezsep0zRvAgiItJ0KCR4yJnmSEhLAy8vzYsgIiJNl0KCh9Q31XKt
+descj5oXQUREmiKFBA9asgTuv//023Ung4iINGUKCR7k4wPPPacVHkVE5NykkOBhAQEwbJjrbbqT
+QUREmjINk2sAWuFRRETORQoJDcDHx3Hnwvz5jjEI7dqpBUFERJo+hYQGFBDguJNBRETkXKAxCQ2k
+ogJ279biTSIicu5QSPCw6mqIi4OrroKuXSEkBCZPdpSLiIg0ZQoJHla7yNOePdDMVOC/bzcrUivo
+2VNBQUREfoZGaJJWSPCgigpYswa8qSaZOPK5im8JIZ+ruHdbHJMnKiWIiMgZnNwkHRLieIyLa5D/
+aSokeEhlJYSHO255XEw8U1lOJ/bgg51O7GEqy/n9K/HqehARkfqd3CRttzsely93lHuYQoKHXH89
+fPMNNKeCobheM/pO1rEitaIhPmcRETkXVVTAWtffIaxb5/GuB4UED/jvf+Grrxx/b0cxHXG9ZnRH
+CmlHcUN8ziIici4qLnY0SbvSAAsAKSR4wI4dUFPj+Hsx7SjE9eINhXR0bPfg56xbL0VEzmHt2jXq
+AkAKCR4QGgre3o6/HyeAtbheM3odQzhOgEc+50Yc5yIiImdLQIBjHn9XGmABIM246AG/+Q1cfTVs
+2+Z4Pg3HIg1DWEdHCimkI+sY8mO5Bz7n2nEutWrHuYBjimgRETlHNOICQGpJ8IDKSscA1OZU0Jnd
++GHjUZbxB/K5km/pyVZSeBg/bPj5wZw5Z/f8jTzORUREzqbaBYDy8+Hbbx2Py5Y5yj1MIcEDIq6r
+5v4ddedFSCaOGrx4iGf5nJ7O8oW2OAr+c3b7ABp5nIuIiHhC7QJADbhC4Hnd3WC323niiSf49ttv
+8fPzY+7cuVx++eUePed//wux2+OZwo9t/bXzIvTjE3qw7ZTy/y4F0s5eH0DtOJc9e07d1gDjXERE
+5DxxXrckfPTRR9hsNlatWsWf//xnFi5c6PFz7vysgjtPMy9CKF+5LG/zz7PbB9DI41xEROQ8cV63
+JOTl5dG3b18ArrnmGnbu3Onxc4YEFXPJaeZF8KHGZblX0f/1AZzFdaQbcZyLiIicJ87rkFBWVobV
+anU+9/b2prq6Gh8PDvaobO2YF6ETe07ZVo03vq6Cggf6AGrHucyf78gf7dqpBUFERH6e87q7wWq1
+Ul5e7nxut9s9GhAALu0cwMdW1239O7ja9Ys82AfQCONcRETkPHFeh4SwsDA2btwIwLZt2wgJCfH4
+OQMCIH/sEp5mCv/ht5zAm//wW55mCjewhWVMocD7t9RYvDGX/xamTFEfgIiINEnndXfDLbfcwubN
+mxk9ejTGGObPn98g531irg8dXl3G46XzaUcxxbTjOI7/yi+5bBn35MzH+4T6AEREpGk7r0OCl5cX
+c872TEVuOHwYysvBTgD/oe5gxAMH4OiJAH5zFgcpioiIeMJ53d3QWBp5PQ4REZGzQiHBAzRPgYiI
+nA/O6+6GxqR5CkRE5FynkOAhmqdARETOdQoJHlY7T4GIiMi5RmMSRERExCWFBBEREXFJIUFERERc
+UkgQERERlxQSRERExCWFBBEREXFJIUFERERc0jwJJ6mpqQHgwIEDjVwTERERz6v9vqv9/vsphYST
+HD78/9u7/5iq6j+O40+4/AowHSqVEgrMdI0mWDPNNDTJUm7g5ccFFIR0zOWkiUtZA0QEnOa0cLiF
+NCkKHJhDwKQfMrJRtASk8Qe6qChaCg1uwkW5wD3fP/x6F3G74HfkvXx7P/7ynnP43Nd978J533OP
+n85Y8y4AAAqdSURBVE83AJs2bbJyEiGEEOL+6e7uZt68eWO22ymKolghj026ffs2ra2tzJ49G5VK
+Ze04QgghxD9qZGSE7u5u/P39cXFxGbNfmgQhhBBCmCU3LgohhBDCLGkShBBCCGGWNAlCCCGEMEua
+BCGEEEKYJU3CJDEajWRkZKDVaomLi6Ojo2PU/traWsLDw9FqtZSVlVkppe0Zr27V1dVERkYSHR1N
+RkYGRqPRSklty3h1uys9PZ0jR47c53S2a7y6fffdd8TGxhITE0NycjKDg4NWSmpbxqtbZWUlGzdu
+JDw8nJKSEiultF0tLS3ExcWN2T4lzguKmBSffPKJsnfvXkVRFKW5uVnZvn27aZ/BYFDWrl2r6HQ6
+ZXBwUNFoNEp3d7e1otoUS3W7deuW8vzzzysDAwOKoijKrl27lM8//9wqOW2NpbrdVVpaqkRFRSlv
+vvnm/Y5nsyzVzWg0Ki+//LLy008/KYqiKGVlZUp7e7tVctqa8d5vK1asUHp7e5XBwUHT3zpxR0FB
+gRISEqJERkaO2j5VzgtyJWGSNDY2snLlSgACAgJobW017Wtvb8fb25vp06fj5OTEk08+ybfffmut
+qDbFUt2cnJw4ffo0DzzwAADDw8M4OztbJaetsVQ3gKamJlpaWtBqtdaIZ7Ms1e3HH39kxowZFBUV
+sXnzZnQ6Hb6+vtaKalPGe78tXLiQvr4+DAYDiqJgZ2dnjZg2ydvbm+PHj4/ZPlXOC9IkTJL+/n7c
+3d1Nj1UqFcPDw6Z906ZNM+1zc3Ojv7//vme0RZbqZm9vz6xZswAoLi5mYGCAFStWWCWnrbFUt66u
+LvLz88nIyLBWPJtlqW69vb00NzezefNmTp06RUNDA19//bW1otoUS3UDWLBgAeHh4WzYsIGgoCAe
+fPBBa8S0SevWrcPBYezkxlPlvCBNwiRxd3dHr9ebHhuNRtMb46/79Hr9qDfHv5mlut19fOjQIerr
+6zl+/Lh8QvkvS3Wrqamht7eXpKQkCgoKqK6u5uzZs9aKalMs1W3GjBnMmzcPPz8/HB0dWbly5ZhP
+zP9WlurW1tZGXV0dFy9epLa2lp6eHi5cuGCtqFPGVDkvSJMwSZYsWcKlS5cAuHLlCo899phpn5+f
+Hx0dHeh0OgwGA5cvXyYwMNBaUW2KpboBZGRkMDg4yIkTJ0xfOwjLdYuPj+fs2bMUFxeTlJRESEgI
+Go3GWlFtiqW6Pfroo+j1etNNeZcvX2bBggVWyWlrLNVt2rRpuLi44OzsjEqlwsPDg5s3b1or6pQx
+Vc4LssDTJAkODqa+vp7o6GgURSE3N5eqqioGBgbQarWkpqaydetWFEUhPDychx56yNqRbYKluvn7
++3PmzBmeeuoptmzZAtw5AQYHB1s5tfWN934T5o1Xt5ycHHbv3o2iKAQGBhIUFGTtyDZhvLpptVpi
+Y2NxdHTE29ubjRs3WjuyzZpq5wVZu0EIIYQQZsnXDUIIIYQwS5oEIYQQQpglTYIQQgghzJImQQgh
+hBBmSZMghBBCTHF/tz7Enx08eJCIiAiioqJobGyc0LjSJAjxL7J//35CQ0NZv349/v7+hIaGEhoa
+ykcffWT2+I6ODtLS0iyO2dHRMaX/W+off/zBzp07rR1DiP/ZyZMnSUtLs7ggWVtbG83NzZSXl3P4
+8GFycnImNLbMkyDEv8i+ffsA6OzsJD4+nnPnzlk8/tdff6Wzs/N+RLManU5HW1ubtWMI8T+7uz7E
+nj17ALh69SrZ2dnAnZlEc3Nz8fT0xMXFBYPBQH9/v9mpos2RKwlCCPR6PSkpKYSEhKBWq6msrAQg
+OzublpYWsrOzGRoa4o033iAqKoo1a9aQlJQ04aWUjx07xu7du4mMjCQ4OJhTp04B0NfXx86dO9Fq
+taxevZrU1FQAUlJSOHPmjOnnY2NjaW1tJSYmhoMHD6JWq1m3bh1ffPEFW7duJSgoiOLiYuDOnPh7
+9uxBo9EQFhbGxx9/DEB5eTkpKSkkJiaydu1aDhw4YHqNv/32G8nJydy8eZNt27ah0WjQaDTU1dVN
+Sn2F+Cf9dX2I9PR09u3bR3FxMatWraKwsBAHBwfs7e156aWXSExM5JVXXpnQ2HIlQQhBXl4es2fP
+5ujRo/T09BAREcHjjz9OWloaBQUFpKWl0dDQgKurK2VlZRiNRjZt2sSXX3454amL29vbKSkpYXh4
+mLCwMJYvX87Vq1d54oknSEpKwmAw8OKLL9LW1kZ4eDjvvPMOERER/Pzzz/T19eHv7w/cWfirqqqK
+t956i9zcXM6dO0dXVxdRUVHExcWRn5/P4sWLOXz4MH19fURHR7N48WLgzpTCVVVV2NnZ8cILLxAb
+G0taWhrbtm0jLy+P8vJy5s+fT2FhIdeuXaOyslJmXRRTTnt7O/v37wdgaGiI+fPnU1FRwaxZs3j3
+3XfR6/XExsYSEBDAww8/bHEsaRKEEDQ0NHDkyBEAPDw8WL16Nd988w0+Pj6mY5YtW4aHhwcffvgh
+P/zwA7/88gsDAwMTfo6QkBBcXV0BWLNmDQ0NDSQkJHDlyhWKiopob2/n5s2b6PV6li9fTnp6Otev
+X6eiomLUNL+rVq0CYO7cuQQGBuLi4sKcOXNM6wV89dVXDA0NUVZWBsCtW7f4/vvvgTtrELi5uQHg
+5eWFTqczrTR6d//bb7/N9evXee6559i+ffs911IIa/Px8eHQoUPMmTOHxsZGuru7uX37Nq6urqhU
+Ktzc3HBycprQ7680CUIIjEbjqMeKojAyMjJq22effUZ+fj7x8fFoNBq6u7u5l1nd/7q6p4ODA0VF
+RVy8eJGoqCieffZZ2traUBQFe3t7wsLCqK6upqamhvfff9/0s46OjqZ/q1Qqs6/l6NGjLFq0CIDf
+f/+d6dOnU1FRgbOzs+k4Ozu7Mfn9/Pyoqanh0qVL1NbWUlRURHV1taw+KqaUzMxM9u7dy/DwMHZ2
+duTk5ODt7U1TUxPR0dGMjIygVqvx9fUddyy5J0EIwbJly0z3APT09FBbW8vSpUtRqVSmZqG+vp4N
+Gzag0WiYOXMmTU1NY5oLSz799FMMBgM6nY66ujqeeeYZ6uvriYmJQa1WMzIywrVr10xjajQaPvjg
+A7y9vUd92h/P008/TWlpKQA3btxArVbT1dX1t8f/+TW+9957nDhxgvXr15OZmcmNGzdGLecrhK3y
+8vIyXT3z9/enuLiY0tJSSkpK8PHxQaVSkZWVxenTpykvLycxMXFC48qVBCEEycnJZGZmmk7WO3bs
+YNGiRfT09NDT00Nqaipbtmzh9ddf5/z58zg5OREQEEBnZydLliyZ0HM4OTkRExODXq9nx44d+Pr6
+kpCQQFZWFidPnsTd3d005tKlS/Hy8sLT0/Oel7l+7bXXRr2W1NRU5s6d+7fHe3p6MnPmTBISEsjL
+yyMlJQW1Wo2DgwO7du3C3d39np5fiP8nsgqkEOIfd+zYMZydnXn11VcndLyiKHR1dREXF8f58+dH
+fcUghLh/5EqCEGJSFBYWUlVVNWb7I488wsKFC+9prAsXLnDgwAGysrKkQRDCiuRKghBCCCHMkhsX
+hRBCCGGWNAlCCCGEMEuaBCGEEEKYJU2CEEIIIcySJkEIIYQQZkmTIIQQQgiz/gN9gvOlqfUL8gAA
+AABJRU5ErkJggg==
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>From the above scatterplot, it can be observed that the <strong>majority of POIs have a meager value of deferral payments as compared to the deferral_payments of non-POIs</strong>. We can also observe there are two outliers. The one having a high value of total_payments is a POI, and the other outlier with a high value of deferral payments is a non-POI. Hence, <strong>removing the non-POI outlier.</strong></p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[126]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Finding the non-POI employee having maximum &#39;deferral_payments&#39;</span>
+<span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;deferral_payments&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">argmax</span><span class="p">()</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[126]:</div>
+
+
+<div class="output_text output_subarea output_execute_result">
+<pre>&#39;FREVERT MARK A&#39;</pre>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[127]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Removing the non-POI employee having maximum &#39;deferral_payments&#39;</span>
+<span class="n">enron_df_new</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="s1">&#39;FREVERT MARK A&#39;</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">inplace</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h4 id="Financial-Features-:-long_term_incentive">Financial Features : <code>long_term_incentive</code><a class="anchor-link" href="#Financial-Features-:-long_term_incentive">&#182;</a></h4><p>Making a scatterplot to check the <code>long_term_incentive</code> of different Enron employees.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[128]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Finding out the integer index locations of POIs and non-POIs</span>
+<span class="n">poi_rs</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="n">non_poi_rs</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">])):</span>
+    <span class="k">if</span> <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">][</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">:</span>
+        <span class="n">poi_rs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
+    <span class="k">else</span><span class="p">:</span>
+        <span class="n">non_poi_rs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
+
+<span class="c1"># Making a scatterplot</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">non_poi_rs</span><span class="p">,</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;long_term_incentive&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Not-POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">poi_rs</span><span class="p">,</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;long_term_incentive&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;r&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Employees&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;long_term_incentive&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Scatterplot of Employee Number with long_term_incentive&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;upper left&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+
+
+<div class="output_png output_subarea ">
+<img src="
+AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX+P/DXMGzK4MK9apqgYk6lhopclwtquLa4ZS4s
+oWZ63ULBMNyQ3FBcKNNQ63qriwLuWV/vLRO3FEWjkESt5CbglihlDDszn98f82MCHYYBZpiF1/Px
+8IFz5syZ9+csc97ncz6fz5EIIQSIiIiIHmFj6gCIiIjIPDFJICIiIq2YJBAREZFWTBKIiIhIKyYJ
+REREpBWTBCIiItKKSQLVKC0tDUFBQRg1ahRGjhyJ6dOn4+eff67z8tLT07F8+XLN62nTpiEvL88Q
+oQIAtmzZgpUrV9Y4X12+98yZM/D19cWrr76K4uLiKu8NHjwYI0aMwJgxY6r8++6772r1HdXRt1zG
+kpKSgmeeeQZnz56tMn3lypXYsmWLwb7n6aefNuj+oI/Nmzfjs88+AwBs3boVx44dAwAsWrQIO3fu
+rPHz+s5nSDk5OQgODm7Q76ywdOlSJCcnN+h3Llu2DJcvXzbZ9zdWtqYOgMxbaWkpZs6ciX/961/o
+1q0bAODw4cOYMWMGkpKSIJVKa73M69ev49dff9W8fvSk01Dq8r1HjhzBhAkTMGfOHK3vb9y4Ec89
+91x9QzNbtra2CA8Px+effw4XFxdTh2Mw8+fP1/w/JSUFTz31lAmj0c/t27fxyy+/mOS716xZ0+Df
+mZycjEmTJpns+xsrJgmkU1FREfLz81FYWKiZNnr0aMhkMiiVSkilUuzfvx8ff/wxbGxs0LJlS0RH
+R6NNmzaIiorCpUuXUFBQACEEVq9ejXbt2uH9999Hfn4+Fi9erFnmlClT8OGHH8LGxgYrV67EnTt3
+UFZWhpdffhmzZs3CzZs3ERgYiM6dO+PWrVtYt24dFixYgD59+uDatWsQQmD58uXw8vKqEv/PP/+M
+lStX4vfff4dEIsG0adMwduxYzXdXfG/btm01nykrK8O6detw7tw5SKVSeHh4YPHixUhMTERSUhIc
+HByQn5+P8PBwvdfjzZs3MWXKFPTr1w9paWkoLy/H22+/jT179uB///sfunfvjpiYGNy+fRtBQUF1
+LteyZcvg4uKCBQsWAAA+//xzfPXVV/jggw9w/PhxbNu2DWVlZXB0dER4eDh69eoFANi2bRuOHj0K
+lUqFJ598EpGRkWjTps1j5ejYsSM8PDywZMkSbN++/bH3g4KCEBgYiBdeeOGx18899xymTp2KkydP
+QqFQYOHChfjyyy/x008/oXXr1ti+fTuaNm0KAHjvvffwww8/QKVSISQkBL6+vgCAffv2ISEhASqV
+Ci1atEBERAQ6d+6MRYsW4ffff0dOTg6ef/55LFy4UBPT2LFj8fbbb+Pvf/87jhw5gkWLFuHixYtw
+dHTEsmXL8Oyzz+KHH35Aly5d4OjoiMuXL2P9+vWaBPj777+Hn58f7t+/jy5dumDTpk2aOLX59ttv
+sX79ehQVFcHOzg4hISEYOHAgDh48iK+//ho2NjbIysqCnZ0doqOjIZfLkZWVhSVLluDhw4do1aoV
+hBAYPXo0xo0bp/U7lEolli1bhl9//RVvvPEGdu7cie+++w4bN25EUVERJBIJgoOD4evri4MHD2L/
+/v0oKiqCTCbDK6+8gqNHj6K4uBi3bt1C27ZtERgYiF27duHGjRt4/fXXMW3atGrLV3m7du/eHVOn
+TsWgQYNw6dIlPHz4EKGhoXjppZdQXl6ODRs24OTJk5BKpejVqxciIyNhb29f7f4WFBSEnj174rvv
+vsOdO3fQu3dvREdHY/Pmzbh37x7CwsKwfv16bNy4EYGBgbhy5QoUCoWmZvL06dPYsmUL9u3bV+36
+oFoSRDX417/+JTw8PMTgwYNFWFiY2LdvnygsLBRCCHH16lXRt29fcfv2bSGEEB9//LGIiIgQ3333
+nQgODhZKpVIIIcSOHTvEzJkzhRBCHDhwQPzjH//QLF8ul4sHDx4IIYQICgoSSUlJQgghiouLRVBQ
+kDhy5IjIyckRcrlcXLx4UQghNK8///xzIYQQJ0+eFN7e3qK0tFS8//77YsWKFaKsrEwMGTJEfPXV
+V0IIIe7evSsGDBggvvvuu8e+t7LNmzeLN998U5SWlgqlUikWLVokIiIihBBChIeHi3/+859a15Ov
+r68YPny4GD16tObf+PHjq8R77NgxIYQQy5cvF76+viI/P18UFxcLb29vkZqaWu9yXblyRXh7e4uy
+sjIhhBABAQHi9OnT4pdffhEjR44UeXl5QgghfvrpJ+Ht7S0KCgrEoUOHREhIiOYziYmJYvr06Y+V
+7/z58+Lll18WBQUFYvjw4SIuLk4IIcSKFSvE+++/L4QQ4rXXXhP//e9/NZ+p/Foul4tPP/1Usz/0
+6tVL3L17VyiVSvHKK69oyiyXy8WOHTuEEEL8+OOPok+fPuLBgwciJSVFBAQEaPa9b775Rrz44oua
+7TJlyhSt22XLli1i3bp1mvm8vb3FN998I5RKpfD29hb37t2rsl0rxxweHi7Gjx8vCgsLRXl5uXjl
+lVfEoUOHHvuOis/n5eWJ/v37i7S0NM167tOnj8jOzhYHDhwQvXv3Fnfu3BFCCLFy5Urx9ttvCyGE
+mDhxoti9e7cQQojr16+LHj16iAMHDmgtz6PbQwghfv/9dzF8+HCRk5MjhFDvEwMHDhS3bt0SBw4c
+EH/7299Efn6+EEJo4rh9+7ZQKpXipZde0hyrV69eFc8995zmuK1OxTqq2F+PHz8uhBDiyy+/FM8/
+/7wQQohPP/1UBAYGiqKiIqFUKsX8+fPFoUOHdO5vr732mpg3b55QKpUiPz9f+Pj4iHPnzgkh1MdX
+enp6le/Pzs4Wffv2FSUlJUIIIebPny/27t2rc31Q7bAmgWr0+uuvY8KECbh48SIuXryIjz76CB99
+9BH279+Pc+fOwcfHR3MlPnXqVM3nmjdvjsTEROTk5CAlJQVOTk46v6ewsBAXL17Ew4cPsXnzZs20
+a9euwcPDA7a2tujZs2eV5Y8aNQoAMGjQIEilUvz444+a92/cuIGSkhIMHz4cANCmTRsMHz4c33zz
+jeYKWpvTp08jNDQUdnZ2ANRXTXPnztVrXem63WBnZ4fBgwcDANzc3NCrVy/IZDIAQOvWrfHw4UO0
+bt26XuWaN28e2rdvj5MnT6JTp064d+8efHx8EB8fj3v37lXZPhKJBNnZ2Thx4gR++OEHvPrqqwAA
+lUqFoqKiasvYtGlTbNq0CVOmTEGfPn30Wi8VRowYoSm/XC7X1Fa0b98eDx8+1Mzn7+8PAJDL5ejc
+uTO+//57pKamIisrC35+fpr5Hj58iN9//x0A0Lt3b63fOWzYMCxYsADh4eH49ttvMXXqVJw9exZO
+Tk5wc3NDq1atdMY8dOhQNGnSBADQpUsXne0l0tPT4ebmhh49emjm9/T0xIULFyCRSNCtWzc88cQT
+AICuXbvi66+/xsOHD5Geno5du3YBADp37ox+/frpjOlRaWlpyM3NrbKfSiQSzX7z9NNPa/Y1AHju
+uec0x2z79u3h4+MDGxsbuLq6oqSkBEVFRTUerxXs7OwwaNAgTZkqtkdycjLGjBkDR0dHAOraIUB9
+a0fX/ubr6wsbGxvIZDJ06NChyn7xKFdXVzzzzDM4fvw4+vfvj3PnzmHNmjX49ttvq10f7dq106tc
+pMYkgXRKTU3F999/j+nTp8PX1xe+vr5YsGABRo0ahbNnz0IqlUIikWjmr6jCzMnJwZo1a/D6669j
+yJAhcHd3x+eff67zu1QqFYQQSExM1Pwo5+XlwcHBAb/99hvs7e1ha/vnLvtoewiVSlVlmkqleuw7
+hBAoLy+vMY5HX5eVlen8jD7s7OyqrKuKJORR9S1XYGAgDhw4gI4dO2LixImQSCRQqVTo37+/5oca
+AO7cuYPWrVtDpVJh+vTpCAgIAKBuh6LrhxkAunfvjtmzZ+Ott96Ch4fHY7FUeHS9VS5zdeUHABub
+P9tUCyFga2sLlUqFMWPGaG4lqFQq3Lt3D82bNweAam8BPP300ygrK0NSUhI6dOgAX19fhIaGwtbW
+VpNo6VJ5n5NIJFXK9yhd28bOzk5zwqy8rIptW3m5tW3ro1Qq0blzZ+zbt08z7ddff4WLiwu++OKL
+x9aNvb19ldeVy1hbdnZ2mu1Vef9+dJn379+HSqWqcX/Tto50mTBhAj777DM8ePAAw4YNg5OTk871
+QbXD3g2kk4uLC7Zt24Zvv/1WMy03NxdFRUWQy+Xo27cvzp07h3v37gEAEhMTsWHDBpw9exa+vr4I
+CAjAc889h2PHjkGpVAJQ/wBWPlFXvJbJZOjZsyc+/vhjAMAff/wBf39/JCUlaY0tLy8Pp0+fBgAc
+P34cdnZ2kMvlmvc7deoEOzs7HD16FID6R+Krr77C3//+d61xVBgwYAASExNRVlYGlUqF3bt3w9vb
+u87rsLbqW64RI0bg6tWrOHr0qOZqrV+/fjh79iwyMzMBAKdOncLo0aNRUlICHx8f7N+/HwqFAoC6
+pf/bb79dY5xvvPEG/vrXv1ZJ/lxcXDQt0LOzs6vUgNTGoUOHAAAZGRnIyspCjx494O3tjSNHjmj2
+tYSEBEyZMkWv5Q0dOhQbN26Et7c3OnfuDIVCgS+++EJTs1FZdfuFPnr06IFffvkF6enpANRtRy5e
+vKizxkUmk8HT0xMHDx4EoO61cO7cuSonXG2kUqkmCevZsyeysrJw8eJFAMDVq1cxYsQIzboyhf79
+++P//u//UFpaCpVKhXfeeQdHjhyp8/5W3XYZNmwYMjIysHfvXkycOBGAea4PS8WaBNKpU6dO+OCD
+D/Duu+/i7t27cHBwgLOzM1auXAl3d3cAwMKFCzF9+nQAQKtWrRAVFQWFQoGwsDCMGjUKUqkUXl5e
+moZKvXr1wnvvvYe5c+figw8+wLBhwxAQEIDY2Fhs3LgRq1atwqhRo1BaWoqRI0di9OjRuHnz5mOx
+OTg44PDhw9i4cSMcHR3xwQcfVLkCs7OzQ2xsLFavXo0tW7ZAqVRi7ty5mqrcyt9b+SQ8e/ZsREdH
+Y+zYsSgvL4eHhwciIiL0Wl9hYWFVroQA4LXXXkP//v31Xuf1LZe9vT1GjBiB+/fva66cunTpgpUr
+V2LBggWaK/Nt27ahadOmmDBhAn799VdNrUPbtm2xbt26GuOUSCSIjo7G6NGjNdNmz56NRYsW4dSp
+U3B3d3+swaW+cnJyMHbsWEgkEsTExKBFixYYMGAAZsyYgWnTpkEikUAmk2Hr1q01nkwB9bbeuXOn
+JpH6+9//jh9//LFKg9UKvr6+iI6OrlPtkYuLCzZv3oxVq1ahuLgYEokEa9euRadOnfD9999X+7no
+6GgsXboU8fHxaNOmDdq3b//YfvSoLl26QCqVYvz48di3bx/ef/99rF+/HiUlJRBCYP369XjyySdr
+XQZD8fPzw61btzBu3DgIIdCnTx8EBQXBxsamTvvb0KFDERoaitWrV1eZbm9vj5deegnJycmaWi0X
+FxezWx+WSiJqqsshMkM3b97EqFGjdP7wWiJDlKuwsBCBgYF45513NPfGybxt27YNw4cPR+fOnZGf
+n4/Ro0fjo48+soiumGTdWJNAZEW++eYbvPXWW3j11VeZIFiQjh07IjQ0FDY2NlAqlZgxYwaeeOIJ
+jBkzRuv8Tk5OiI+PN1o858+fx9q1a7W+17dvXyxZssRo303mhTUJREREpBUbLhIREZFWTBKIiIhI
+K7ZJqKS4uBiXL19Gq1at6vRMAiIiIkuiVCqRm5uL7t27a+1RwyShksuXLyMwMNDUYRARETWo3bt3
+a+2yzCShkorhWXfv3q0ZOpWIiMha3b17F4GBgdUOT84koZKKWwxPPPEE2rdvb+JoiIiIGkZ1t9jZ
+cJGIiIi0YpJAREREWjFJICIiIq2YJBAREZFWTBKIiIhIKyYJREREpBWTBCMpLAQyM9V/6yslJQW9
+e/fGnTt3NNM2btyIgwcPap3/999/xxdffPHY9Js3b8LT0xNBQUEICgrCpEmTEBMTo3n//PnzmDx5
+MoKCguDn54ePP/4YFc//WrRoEU6fPl3/whARNRKGPA+YCpMEAysvB0JCgG7dALlc/TckRD29Puzt
+7bF48WLo89DOH3/8EcePH9f63lNPPYW4uDjExcUhISEBKSkpuHbtGn766SdER0dj48aNiIuLw65d
+u5CZmYmdO3fWL3AiokbGWOcBU2CSYGBhYcDmzcCNG4BKpf67ebN6en3069cPzZs3x+7du6tM/9e/
+/oVXX30VkyZNwoYNGwAA27dvx/nz57Fnzx6dyywpKUFpaSmaNGmCxMREzJw5E61btwYA2NraYtGi
+RTUug4iIqjLWecAUmCQYUGEh8Nln2t87fLj+VU7vvPMOPvnkE2RlZQEACgoK8N///heJiYlITExE
+VlYWTpw4gVmzZqFfv36YNGnSY8u4fv265nbD7NmzMXnyZHTo0AE5OTlwc3OrMq9MJkNRURFUKlX9
+AiciaiSMfR5oaByW2YDu3AFycrS/l5Ojfr9z57ovv2XLlliyZAnCw8Ph6emJkpIS9OjRA3Z2dgAA
+Ly8v/Pzzz+jRo4fmMzNnzkRhYSHkcjlef/11ze2GR7Vp0wa3bt1C165dNdMUCgXs7e1hY8NckohI
+H8Y+DzQ0/vobUNu2wCMX4xqurur362vw4MHo1KkTDh06BAcHB6Snp6O8vBxCCFy8eBGdOnWCjY2N
+5up/x44diIuLQ0REhM7l+vv7Y9u2bcjNzQUAlJWVYc2aNfDz86t/0EREjURDnAcaEpMEA2raFBgz
+Rvt7Y8ao3zeEpUuXwtHREU5OTnjxxRfh7++P8ePH48knn8TQoUPh5uaGn376CZ988oney+zWrRtC
+Q0MRGhoKf39/BAQEoFOnTpg+fbphgiYiagQa6jzQUCRCn+byjcTNmzcxZMgQJCUl1fkpkOXl6sYp
+hw+rq5ZcXdU7xsaNgC1v7hARWT1LOg/UdN4zs3Atn60t8N57QFSU+t5T27aWlzkSEVHdWdN5wKhJ
+wiuvvAKZTAYAaN++PWbNmoVFixZBIpGgS5cuiIyMhI2NDfbu3YvExETY2tpi9uzZ8PX1RXFxMRYu
+XIgHDx7AyckJ0dHRcHFxQVpaGtasWQOpVAofHx+8+eabAICtW7fi5MmTsLW1xZIlS+Dh4YG8vDyE
+hYWhuLgYrVu3xtq1a9GkSRNjFlmjaVPLapxCRESGZQ3nAaO1SSgpKYEQQjNwz9q1a7F27VqEhIQg
+Pj4eQggkJSUhNzcXcXFxSExMxM6dOxETE4PS0lIkJCRALpcjPj4eY8eORWxsLAAgMjISmzZtQkJC
+Ai5duoQrV64gIyMDFy5cwL59+xATE4MVK1YAAGJjYzFy5EjEx8eja9eu7PNPRERUC0ZLEq5du4ai
+oiJMmzYNkydPRlpaGjIyMtCnTx8AwMCBA5GcnIz09HT06tUL9vb2cHZ2hpubG65du4bU1FQMGDBA
+M++5c+egUChQWloKNzc3SCQS+Pj4IDk5GampqfDx8YFEIkG7du2gVCqRl5f32DKSk5ONVVwiIiKr
+Y7TbDY6OjnjjjTcwYcIE3LhxAzNmzIAQAhKJBADg5OSE/Px8KBQKODs7az7n5OQEhUJRZXrleStu
+X1RMz8nJgYODA1q0aFFl+qPLrphGRERE+jFaktCpUyd06NABEokEnTp1QosWLZCRkaF5v6CgAM2a
+NYNMJkNBQUGV6c7OzlWm65q3WbNmsLOz07kMR0dHzbxERESkH6Pdbti/fz/WrVsHAPj111+hUCjg
+7e2NlJQUAMDp06fh5eUFDw8PpKamoqSkBPn5+cjMzIRcLoenpydOnTqlmbd3796QyWSws7NDdnY2
+hBA4c+YMvLy84OnpiTNnzkClUuH27dtQqVRwcXHRuowGY8DHf6WkpKB///6a4ZQnTpyoGTXxv//9
+LwIDAxEUFAR/f398Vmk80KCgIGRmZtb7+4mIqHEyWk3C+PHjsXjxYvj7+0MikSAqKgotW7ZEREQE
+YmJi4O7ujhEjRkAqlSIoKAgBAQEQQiA0NBQODg7w9/dHeHg4/P39YWdnh02bNgEAVqxYgbCwMCiV
+Svj4+GiGIPby8sKkSZOgUqmwfPlyAMDs2bMRHh6OvXv3omXLlpplGFXlDrLZ2eqhtwzQQbZfv354
+9913AQClpaV44YUX8Je//AV79uzB9u3b4ezsjOLiYsybNw8ODg548cUXDVUiIiJqrARp5OTkCLlc
+LnJycuq+kPnzhQAe/zd/fp0Xef78eRESEqJ5/eDBAzFkyBAxZcoUkZ6eXmXe69evi8DAQCGEEK+9
+9pq4fv16nb+XiIisW03nPQ6mZEg1Pf4rKqrOI2qcP38eQUFBkEgksLOzQ0REBKKjox97cqOrqytu
+375dp+8gIiKqjEmCIRnx8V+VbzdU+OSTT3Dr1i00b95cM+3GjRtoa2lPECEiIrPEBzwZUgM//iso
+KAjr16+HQqEAoO7VsX79egQGBhr0e4iIqHFiTYIhVTz+a/Pmx98zwuO/Bg8eDIVCgenTp0MikUCl
+UmH8+PF46aWXDPo9RETUODFJMLSNG9V/tT3+q4769u2Lvn37an1v9OjRGD16tNb3KrpJEhER1QWT
+BEOzpsd/ERFRo8YkwVis4fFfRETUqLHhIhEREWnFJIGIiIi0YpJAREREWjFJICIiIq2YJBAREZFW
+TBKIiIhIKyYJREREpBWTBCIiItKKSQIRERFpxSSBiIiItGKSQERERFoxSSAiIiKtmCQQERGRVkwS
+iIiISCsmCURERKQVkwQiIiLSikkCERERacUkgYiIiLRikkBERERaMUkgIiIirZgkEBERkVZMEoiI
+iEgrJglERESkFZMEIiIi0opJAhEREWnFJIGIiIi0YpJAREREWjFJICIiIq2YJBAREZFWTBKIiIhI
+KyYJREREpBWTBCIiItKKSQIRERFpxSSBiIiItGKSQERERFoxSSAiIiKtmCQQERGRVkwSiIiISCuj
+JgkPHjzAoEGDkJmZiaysLPj7+yMgIACRkZFQqVQAgL1792LcuHGYOHEiTpw4AQAoLi5GcHAwAgIC
+MGPGDOTl5QEA0tLSMGHCBPj5+WHr1q2a79m6dSvGjx8PPz8/pKenAwDy8vIwbdo0BAQEICQkBEVF
+RcYsKhERkdUxWpJQVlaG5cuXw9HREQCwdu1ahISEID4+HkIIJCUlITc3F3FxcUhMTMTOnTsRExOD
+0tJSJCQkQC6XIz4+HmPHjkVsbCwAIDIyEps2bUJCQgIuXbqEK1euICMjAxcuXMC+ffsQExODFStW
+AABiY2MxcuRIxMfHo2vXrtizZ4+xikpERGSVjJYkREdHw8/PD61btwYAZGRkoE+fPgCAgQMHIjk5
+Genp6ejVqxfs7e3h7OwMNzc3XLt2DampqRgwYIBm3nPnzkGhUKC0tBRubm6QSCTw8fFBcnIyUlNT
+4ePjA4lEgnbt2kGpVCIvL++xZSQnJxurqERERFbJKEnCwYMH4eLiojlJA4AQAhKJBADg5OSE/Px8
+KBQKODs7a+ZxcnKCQqGoMr3yvDKZrMq8NU1/dBlERESkP1tjLPTAgQOQSCQ4d+4crl69ivDwcE27
+AgAoKChAs2bNIJPJUFBQUGW6s7Nzlem65m3WrBns7Ox0LsPR0VEzLxEREenPKDUJu3fvxq5duxAX
+F4dnn30W0dHRGDhwIFJSUgAAp0+fhpeXFzw8PJCamoqSkhLk5+cjMzMTcrkcnp6eOHXqlGbe3r17
+QyaTwc7ODtnZ2RBC4MyZM/Dy8oKnpyfOnDkDlUqF27dvQ6VSwcXFResyiIiISH9GqUnQJjw8HBER
+EYiJiYG7uztGjBgBqVSKoKAgBAQEQAiB0NBQODg4wN/fH+Hh4fD394ednR02bdoEAFixYgXCwsKg
+VCrh4+ODHj16AAC8vLwwadIkqFQqLF++HAAwe/ZshIeHY+/evWjZsqVmGURERKQfiRBCmDoIc3Hz
+5k0MGTIESUlJaN++vanDISIiMqqaznscTImIiIi0YpJAREREWjFJICIiIq2YJBAREZFWTBKIiIhI
+KyYJREREpBWTBCIiItKKSQIRERFpxSSBiIiItGKSQERERFoxSSAiIiKtmCQQERGRVkwSiEg/hYVA
+Zqb6LxE1CkwSiEi38nIgJATo1g2Qy9V/Q0LU04nIqtmaOgAiMnNhYcDmzX++vnHjz9fvvWeSkIio
+YbAmgYiqV1gIfPaZ9vcOH+atByIrxySBiKp35w6Qk6P9vZwc9ftEZLWYJBBR9dq2BdzctL/n6qp+
+n4isFpMEIqpe06bAmDHa3xszRv0+EVktNlwkIt02blT/PXxYfYvB1VWdIFRMJyKrxSSBiHSztVX3
+YoiKUrdBaNuWNQhEjQSTBCLST9OmQOfOpo6CiBoQ2yQQERGRVnonCampqUhISEBpaSkuXrxozJiI
+iIjIDOiVJHz66ad477338Mknn6CgoADLly/Hzp07jR0bERERmZBeScKhQ4ewc+dONGnSBC1btsT+
+/ftx4MABY8dGREREJqRXkmBjYwN7e3vNawcHB0ilUqMFRURERKanV++GPn36IDo6GkVFRTh27Bj2
+7NmDfv36GTs2IiIiMiG9ahLefvttdOjQAU8//TQ+++wzDBo0COHh4caOjYiIiExIr5qEtWvXYvTo
+0fDz8zN2PERERGQm9EoSOnbsiKioKDx8+BAjR47E6NGj0b59e2PHRkRERCak1+2GwMBAJCQk4J//
+/CccHBwwd+5c+Pv7Gzs2IiIiMiG9B1PKz89HcnIyzp49C6VSCR8fH2PGRURERCam1+2GWbNm4cqV
+Kxg+fDjmz5+PHj16GDsuIiIiMjG9koSJEydi4MCBsLXl86CIiIgaC51n/S1btiA4OBhff/01vv76
+68feX7t2rdECIyIiItPSmSR069YNgHowpUdJJBLjRERERERmQWeSMHjwYADAvXv3MHPmzCrvxcTE
+GC8qIiIvCWuhAAAgAElEQVQiMjmdScLGjRvx4MEDHD9+HDdu3NBMVyqVuHTpEhYsWGDs+IiIiMhE
+dCYJw4cPR2ZmJs6fP1/lloNUKsWcOXOMHhwRERGZjs4kwcPDAx4eHhg6dCicnZ0bKiYiIiIyA3r1
+aTx27BjWrVuHP/74AwAghIBEIsHVq1eNGhwRERGZjl5JwtatWxEXFwe5XG7seIiIiMhM6DUsc5s2
+bZggEBERNTJ61SR069YN8+bNg7e3NxwcHDTTx44da7TAiIiIyLT0ShIUCgWcnJyQlpZWZbquJEGp
+VGLZsmX45ZdfIJFIsGLFCjg4OGDRokWQSCTo0qULIiMjYWNjg7179yIxMRG2traYPXs2fH19UVxc
+jIULF+LBgwdwcnJCdHQ0XFxckJaWhjVr1kAqlcLHxwdvvvkmAPUtkZMnT8LW1hZLliyBh4cH8vLy
+EBYWhuLiYrRu3Rpr165FkyZN6rG6iIiIGg+9koSK4ZcfPnyI5s2b67XgEydOAAASExORkpKCd999
+F0IIhISEoG/fvli+fDmSkpLQs2dPxMXF4cCBAygpKUFAQAC8vb2RkJAAuVyO4OBgHDlyBLGxsVi2
+bBkiIyOxZcsWuLq64h//+AeuXLkCIQQuXLiAffv24c6dOwgODsaBAwcQGxuLkSNHYty4cfjwww+x
+Z88eTJ06tW5rioiIqJHRq03CtWvX8MILL2DMmDH49ddfMWzYMGRkZOj8zNChQ7Fq1SoAwO3bt9Gs
+WTNkZGRoxlsYOHAgkpOTkZ6ejl69esHe3h7Ozs5wc3PDtWvXkJqaigEDBmjmPXfuHBQKBUpLS+Hm
+5gaJRAIfHx8kJycjNTUVPj4+kEgkaNeuHZRKJfLy8h5bRnJycp1XFBERUWOjV5KwatUqfPDBB2jR
+ogXatGmDd955B5GRkTV+ztbWFuHh4Vi1ahVGjRql6ToJAE5OTsjPz4dCoagyBoOTkxMUCkWV6ZXn
+lclkVeatafqjyyAiIiL96JUkFBUVoXPnzprX3t7eKC0t1esLoqOj8dVXXyEiIgIlJSWa6QUFBWjW
+rBlkMhkKCgqqTHd2dq4yXde8tV0GERER6UevJKFFixa4du2aphbg888/r7FtwmeffYYdO3YAAJo0
+aQKJRILu3bsjJSUFAHD69Gl4eXnBw8MDqampKCkpQX5+PjIzMyGXy+Hp6YlTp05p5u3duzdkMhns
+7OyQnZ0NIQTOnDkDLy8veHp64syZM1CpVLh9+zZUKhVcXFy0LoOIiIj0IxFCiJpmys7ORnh4OH74
+4Qc4OjqiQ4cO2LBhA9zd3av9TGFhIRYvXoz79++jvLwcM2bMQOfOnREREYGysjK4u7tj9erVkEql
+2Lt3L/bs2QMhBGbOnIkRI0agqKgI4eHhyM3NhZ2dHTZt2oRWrVohLS0NUVFRUCqV8PHxQWhoKABg
+y5YtOH36NFQqFRYvXgwvLy/cv38f4eHhKCgoQMuWLbFp0yY0bdq02phv3ryJIUOGICkpCe3bt6/D
+6iQiIrIcNZ339EoSAOD+/fto2rQpVCoVHjx4gA4dOhg8WFNjkkBERI1JTec9vW43/Pvf/8aMGTPQ
+tGlTPHz4ELNmzcKePXsMHiwRERGZD72ShL1792L37t0AgCeffBIHDx7Erl27jBoYERERmZZeSUJZ
+WRns7e01r+3s7IwWEBEREZkHvUZcHDp0KKZMmYIXX3wRAHD06FEMHjzYqIERERGRaemVJCxcuBBf
+fvklLl68CFtbW0yePBlDhw41dmxERERkQnolCQDQuXNn/PWvf0VFZ4iLFy/ib3/7m9ECIyIiItPS
+K0lYsWIFTpw4AVdXV800iUSCf//730YLjIiIiExLryTh7Nmz+PLLL+Ho6GjseIiIiMhM6NW7wdXV
+FXqOuURERERWQq+ahObNm+Pll1/WPNK5wtq1a40WGBEREZmWXknCgAEDMGDAAGPHQkRERGZEZ5KQ
+m5uLVq1aoW/fvg0VDxEREZkJnUnCsmXLsGPHDrz22muQSCQQQlT5m5SU1FBxEhERUQPTmSTs2LED
+AHD8+PFq59mzZw8mTZpk2KiIiIjI5PTq3aBLYmKiIeIgIiIiM1PvJIFdI4mIiKxTvZMEiURiiDiI
+iIjIzNQ7SSAiIiLrxCSBiIiItKp3kuDs7GyIOIiIiMjM6DXiYl5eHo4cOYKHDx9Wmf7mm2/ySZBE
+RERWSq+ahBkzZuDKlSvGjoWIiIjMiF41CQAf5kRERNTY6JUkDB06FPv27UO/fv0glUo109u1a2e0
+wIiIiMi09EoS8vPz8eGHH6Jly5aaaXx2AxERkXXTK0k4evQozp07B0dHR2PHQ0RERGZCr4aLrq6u
+j/VsICIiIuumV02CRCLByy+/jC5dusDOzk4znd0fiYiIrJdeScL06dNha6t3RwgiIiKyAnqd+Tds
+2IBDhw4ZOxYiIiIyI3q1SfjLX/6Cb7/9FqWlpcaOh4iIiMyEXjUJly9fxmuvvQZA3T5BCAGJRIKr
+V68aNTiiuigsBO7cAdq2BZo2NXU0RESWS68k4fz588aOg6jeysuBsDDg8GEgOxtwcwPGjAE2bgTY
+pIaIqPb0ut1QWlqK7du3Izw8HAqFAlu3buWtBzI7YWHA5s3AjRuASqX+u3mzejoREdWeXknCypUr
+UVhYiIyMDEilUmRnZ2Pp0qXGjo1Ib4WFwGefaX/v8GH1+0REVDt6JQkZGRlYsGABbG1t0aRJE0RH
+R7M9ApmVO3eAnBzt7+XkqN8nIqLa0StJkEgkKC0thUQiAQD89ttvmv8TmYO2bdVtELRxdVW/T0RE
+taNXkjB58mS8/vrryM3NxZo1a/Dqq69i8uTJxo6NSG9Nm6obKWozZgx7ORAR1YVebb7Hjh2L7t27
+IyUlBUqlEtu2bcMzzzxj7NiIamXjRvXfw4fVtxhcXf/s3UBERLWnV5IQHByMLVu24KmnntJMmzJl
+Cj799FOjBUZUW7a2wHvvAVFRHCeBiMgQdCYJc+fOxbVr13Dv3j0MGTJEM12pVOKJJ54wenBEddG0
+KdC5s6mjICKyfDqThOjoaPz+++9Ys2YNli1b9ueHbG3xl7/8BQCQm5uLVq1aGTdKIiIianA6kwSZ
+TAaZTIZt27ZVO88//vEPPvyJGg0O+UxEjYlevRt0EUIYIg4is1ZeDoSEAN26AXK5+m9IiHo6EZG1
+qveI9hwvgRqDiiGfK1QM+QyoG0sSEVkjoz32pqysDEuWLMGtW7dQWlqK2bNn46mnnsKiRYsgkUjQ
+pUsXREZGwsbGBnv37kViYiJsbW0xe/Zs+Pr6ori4GAsXLsSDBw/g5OSE6OhouLi4IC0tDWvWrIFU
+KoWPjw/efPNNAMDWrVtx8uRJ2NraYsmSJfDw8EBeXh7CwsJQXFyM1q1bY+3atWjSpImxikxWqqYh
+n6OieOuBiKxTvW83VOfzzz9HixYtEB8fj3/+859YtWoV1q5di5CQEMTHx0MIgaSkJOTm5iIuLg6J
+iYnYuXMnYmJiUFpaioSEBMjlcsTHx2Ps2LGIjY0FAERGRmLTpk1ISEjApUuXcOXKFWRkZODChQvY
+t28fYmJisGLFCgBAbGwsRo4cifj4eHTt2hV79uwxVnHJinHIZyJqrIzWJuGFF17A/PnzNfNIpVJk
+ZGSgT58+AICBAwciOTkZ6enp6NWrF+zt7eHs7Aw3Nzdcu3YNqampGDBggGbec+fOQaFQoLS0FG5u
+bpBIJPDx8UFycjJSU1Ph4+MDiUSCdu3aQalUIi8v77FlJCcn17e41AhxyGciaqz0ShJu375d5d+d
+O3eQl5cHAFW6Rlbm5OQEmUwGhUKBefPmISQkBEIITRsGJycn5OfnQ6FQwNnZucrnFApFlemV55XJ
+ZFXmrWn6o8sgqi0O+UwNorAQyMzkI0vJrOjVJmHu3Ln46aef8PTTT0MIgZ9//hmtWrWCVCrFypUr
+q/3cnTt3MHfuXAQEBGDUqFHYsGGD5r2CggI0a9YMMpkMBQUFVaY7OztXma5r3mbNmsHOzk7nMhwd
+HTXzEtUFh3wmoykvV7eMPXwYyM5WV1tV7Fy2Rms2RqQXvWoS2rRpgz179uDgwYM4dOgQDhw4gO7d
+uyMuLg4xMTFaP3P//n1MmzYNCxcuxPjx4wEAXbt2RUpKCgDg9OnT8PLygoeHB1JTU1FSUoL8/Hxk
+ZmZCLpfD09MTp06d0szbu3dvyGQy2NnZITs7G0IInDlzBl5eXvD09MSZM2egUqlw+/ZtqFQquLi4
+aF0GUV1UDPmckQH8+KP673vv8TecDKCi68yNG4BK9WfXmbAwU0dGpF9Nwq1bt9C9e3fN66effhrZ
+2dlo27YtlEql1s9s374df/zxB2JjYzWNDpcuXYrVq1cjJiYG7u7uGDFiBKRSKYKCghAQEAAhBEJD
+Q+Hg4AB/f3+Eh4fD398fdnZ22LRpEwBgxYoVCAsLg1KphI+PD3r06AEA8PLywqRJk6BSqbB8+XIA
+wOzZsxEeHo69e/eiZcuWmmUQ1RWHfCaDYtcZMnMSocdoSHPmzIG7uzvGjBkDlUqF//u//0NWVhZe
+f/11rF69GgcOHGiIWI3u5s2bGDJkCJKSktC+fXtTh0NE1i4zUz06l0r1+HtSqbrailkpGVFN5z29
+bjesX78e5eXleOutt7Bo0SKoVCpERUUhJydH092QiIhqiV1nyMzpdbtBJpNh0aJFj00fPXq0wQMi
+Imo0KrrOVB7OswK7zpAZ0CtJOHjwIKKjo/HHH38AgKYr49WrV40aHBGR1WPXGTJjeiUJH3zwAeLi
+4iCXy40dDxFR41LRdSYqio8YJbOjV5LQpk0bJghERMbErjNkhvRKErp164Z58+bB29sbDg4Omulj
+x441WmBkOoWFvKAh4oFApGfvBoVCAScnJ6SlpSElJUXzj6xLeTkQEgJ066buldWtm/p1ebmpIyNq
+QDwQiDT0qklYu3YtysrK8Msvv0CpVKJLly6w5VBzVqdi4LcKFQO/AepbpkSNAg8EIg29ahIuX76M
+ESNGYNGiRVi8eDGef/55XLp0ydixUQOqaeA3PnOGGgUeCERV6FUdsHr1arz77ruaIZDT0tKwatUq
+7N+/36jBUcO5c0fd+0qbnBz1+2xTRVaPBwJRFXrVJBQWFmoSBADo2bMnSkpKjBYUNTwO/EYEHghE
+j9ArSWjevDmOHTumef3111+jRYsWRguq0TCj58dXDPymDQd+o0ajNgeCGR2/RMai1+2GVatWYeHC
+hVi6dCkAwNXVFRs2bDBqYFbNTJ8fz4HfiFDzgWCmxy+RMeh8CmRQUBAkEgkA9VDMhYWFEELAyckJ
+EokE//73vxss0IZg6KdAVtvNOiRE+1jt8+ebRetpdg8nQvUHgpkfv0S1UdN5T2faGxwcbLTArJnO
+C41S839+PAd+I4L2A6Gm3g9mcPwSGZLOJKFPnz4NFYdV0dnNOpitp4ksFns/UCOjV8NF0l+N3ayb
+s/U0kcVi7wdqZJgkGFiNFxoP2Y2AyGKxGxA1MmyKa2AVFxo3bjz+nuZCg90IiCwXj19qRJgkGFjF
+hYa2xs9/Xmjw+fFEFsuWxy81HkwSjEDvCw12IyCyXDx+qRFgkmAEvNAgIiJrwCTBiHihQUREloy9
+G4hqwCH6iaixYpJAVI3ycvUIvN26AXK5+m9IiHo6EVFjwNsNRNXQOXImh+gnokaANQlEWtQ4ciZv
+PRBRI8AkgUgLfYboJyKydkwSiLSw2iH62QqTiGqBSQKRFlY3RD9bYRJRHbDhIlE1rGqIfrbCJKI6
+YE0CUTUqRs7MyAB+/FH997331NMtClthElEdMUkgqkHFyJkWd4uhAlthElEdMUkgsnZW2wqTiIyN
+SQKRtbO6VphE1FAs7e4qEdWFVbXCJKKGwiSBqDHg88uJqA6YJBA1Jnx+ORHVAtskEFGjxkEoiarH
+JIGIGiUOQklUM95uIKJGiYNQEtWMNQlE1OhwEEoi/TBJIKJGh4NQEumHSQIRNTochJJIP0wSiKjR
+4SCURPoxapJw6dIlBAUFAQCysrLg7++PgIAAREZGQqVSAQD27t2LcePGYeLEiThx4gQAoLi4GMHB
+wQgICMCMGTOQl5cHAEhLS8OECRPg5+eHrVu3ar5n69atGD9+PPz8/JCeng4AyMvLw7Rp0xAQEICQ
+kBAUFRUZs6gNgl21qNEyws6/cSMwfz7QsSMglar/zp/PQSiJKjNakvDRRx9h2bJlKCkpAQCsXbsW
+ISEhiI+PhxACSUlJyM3NRVxcHBITE7Fz507ExMSgtLQUCQkJkMvliI+Px9ixYxEbGwsAiIyMxKZN
+m5CQkIBLly7hypUryMjIwIULF7Bv3z7ExMRgxYoVAIDY2FiMHDkS8fHx6Nq1K/bs2WOsohodu2pR
+o2XEnd9qHgVOZERGSxLc3NywZcsWzeuMjAz06dMHADBw4EAkJycjPT0dvXr1gr29PZydneHm5oZr
+164hNTUVAwYM0Mx77tw5KBQKlJaWws3NDRKJBD4+PkhOTkZqaip8fHwgkUjQrl07KJVK5OXlPbaM
+5ORkYxXV6Cq6at24AahUf3bVCgszdWRERtYAO7/FPwqcyIiMliSMGDECtpVSciEEJBIJAMDJyQn5
++flQKBRwdnbWzOPk5ASFQlFleuV5ZTJZlXlrmv7oMiwRu2pRo8Wdn8jkGqzhoo3Nn19VUFCAZs2a
+QSaToaCgoMp0Z2fnKtN1zVvbZVgidtWiRos7P5HJNViS0LVrV6SkpAAATp8+DS8vL3h4eCA1NRUl
+JSXIz89HZmYm5HI5PD09cerUKc28vXv3hkwmg52dHbKzsyGEwJkzZ+Dl5QVPT0+cOXMGKpUKt2/f
+hkqlgouLi9ZlWCJ21aJGizs/kck1WBOd8PBwREREICYmBu7u7hgxYgSkUimCgoIQEBAAIQRCQ0Ph
+4OAAf39/hIeHw9/fH3Z2dti0aRMAYMWKFQgLC4NSqYSPjw969OgBAPDy8sKkSZOgUqmwfPlyAMDs
+2bMRHh6OvXv3omXLlpplWJqKrlqVh4+twK5aZNW48xOZnEQIIUwdhLm4efMmhgwZgqSkJLRv397U
+4WiUl6vbaR0+rK5ldXVV/0Zu3MiW2GTluPMTGVVN5z0eZRagoqtWVJT6NmzbtjVfRBUW6j8vkdmq
+y85PRAbDERctiD5dtTimQuNmtQNusZ8ikUkwSbAyHFOhcWJySETGwCTBirBbeePF5JDIvFlqLR+T
+BCvCbuWNE5NDIvNl6bV8TBKsCLuVN05MDonMl6XX8jFJsCJ8/G3jxOSQyDxZQy0fkwQzV9v7WHz8
+bePD5LD2LPX+MFkWa6jlY5Jgpup6H4uPv22cmBzqx9LvD5NlsYZaPp46zFTFfawKFfexAPVJvyYV
+3cqpceCYQ/qp73FFVBvWMLI4axLMkDXcxyLT4JhD1eNxRaZg6bV8TBLMkDXcxyIyNzyuyBQs/RYw
+kwQzZA33sSweW7ZZHR5XZEqWWsvHJMEMsbW6CbFlm9XicUVUexZS4dH4VNyv0vaEXEtlEU+mNJOW
+bYZYVzUtwyK2Rw1qWwZrPK7ocdawb5sL1iSYKUu5j6VPrbzFXJybQcs2Q6yrmpZhMdtDB3YRJm2s
+Yd82O4I0cnJyhFwuFzk5OaYOxeyVlQkxf74QHTsKYWOj/jt/vnr6o+bPFwJ4/N/8+Q0ft07Xr6sL
+oy1YqVT9vpEZYl3VtAyL2R46WEMZyPC4X9ReTec91iRQneg7HrkZXJzrz8Qt2wyxrmpaxv37FrQ9
+qmFR+xQ1GO4XxsEkoREwdEP92hyMFtXtzMQt2wyxrmpaRnq6BW2PaljUPkUNRtd+kZ0N/O9/DRuP
+tWCSYMW03Z+bO1d9L7Y+CUNtfqQtrtuZCUc+McS6qmkZHh4Wtj20sLh9ihqErv1CpQJefpntE+qC
+SYIV03ZLIDYWeOaZ+jXoqc2PtMV1OzNhyzZDrKualvHXv1rY9tDC4vYpahC69gtAXZtgSY9oNhsN
+3EbCrFlTw8WCAiE6dNDeiMcQDXpq00CociNHqVR3I8fGzhDrqqZlWMP2sIYymKuCAnUb3YICU0dS
+exX7hZtb9b95HTtaZtmMpabznkQIIUydqJiLmzdvYsiQIUhKSkL79u1NHU69ZGaqbzGoVLrn69hR
+fbFc26uv8nJ1Rq6tv3l1F93W3HfZ0GXjOAn6sYYymIvKx3R2trq2sKZj2lxdvgz06KH9908qVVcS
+8gF4ajWd93i7wUrpuiVQWV0betWlVt5ShyXVxVj9sg2xrmpahjVsD2sog7nQt8eSJXB3Z7sVQ2GS
+YKVquj9Xob4HjDF/pC3h8QnW9MNqSpawrQGYVaCGDMUSug/Wprxst2I4TBKsWOWG+tUxxwPGUkZN
+s4QfVnNnKdvanAI1Rijm3K20ruW1mEc0m1HiqVWDtpAwc9bUcLGyggIhrl0TYs4cy2joZSmjpply
+gEZLblxWmaVs65oCbcjtYYx1VlCg/k0wx4Z+9S2v2R4rtRm21ohqOu8xSajEWpOEysz2gPn/dPXK
+MPWP1aNq88NqqPVuJr8rBmEx21pHoKoOHUXYnIIG2x7GXGdz5pguYavu+LCYfUTU4Rg3kwyZwzJT
+Febe0Mucqz0fpc99T0NXDVtTGwiL2dY6AlVl5+Bg7J0G2x41rbP//a/2NdcV++iRI+rXUikgkQAd
+Ohi/er6m48Ms95FHbg/U6Ri3pHuVDZqymLnGUJNg7sy52lObmvrrG/JiwdquqixmW+sINEvaUTRB
+QYPFr2udOTurxweobY1GdfvonDmGj1/f7644PsxqH6mmGi80uKz2688MHiZXgTUJZBAN1bbG0lol
+6+oKauiLBbO8qnpEba6qLGZb6wj0kHIMivB4oMbaHrrWWX6+enyD2tRo6NpH//Mf4x7v+hwfZrWP
+VFON1+0T7St5xw71MPhaaxQsaWzxBktXLABrEh5ninvg1jKanqEvFszqqqoata05sZhtrSXQ0jnz
+RecO2q8ijbk9Hg3FzU1di1CXOEx5Qavvd5vFPqKjGi8T2muTaqw1tJA2CUwSKmGS8DhT7sfm3siy
+JsY4qZvJ74pW9bkdYjHb+pFAzeH4+OGHup/oTZl41va7TbqP6MhoSiEV7rhebZJQ7Xo0i+yHtxuo
+HkzdtsbcG1nWxBhVpebc97s+t0PMZVvXeFvtkUBNuT0qQtFndMHqymXK6vzafrdJ9xEdtwceNnPF
+HVR/e6Dafd+ED5OrlQZNWcwcaxKqaqiqSIu5iqwDY10sGHOd6dvo8NF5LOF2SHXqe1vN1PtwdTUa
+wcE1l8uUF7RmcjGtn2pWcnnwfDFnjjp+S9z3ebuhFpgkVGXsH31r6vNfE1OfRPShz/aoaR5zvh2i
+i6XGXaG6k21wsP7lMvQ+WpvlWcLxUVNGY8pxJuqDSUItMEl4nDF/PC39h9na6LM9apqnNleG5nJi
+aKiupQ1R3srfYaous1af/FezIS2qVqQSJgm1wCThccasLreUPv+NgT7bozbbTNcJ0dxOIsa+rWaq
+8pqq54KhxwYxh0SyNiwtZiYJtcAkoXqG3vHNaCwREvptD13z2Njov83MrQbJ2LfVTFVeU7QRMVTy
+b26JpDVj7wYyCEO3LLaksUQaA322h655JBIgJqbm4aYbuseMPoOAGbOFvyl7CJmi54KhBvyypuHH
+LR2TBDIJU/yAmfsTWU1Jn+2hax6lEoiNrflHvKFGjaztePrG6spo6lEyG7qLZm2S/+qOR1N3vTY7
+pv7hauCaDbPG2w0Nq6Ea+rDqUj/6bI+yMlGv7l4NVQVe1yp+Y7TwN4duoeb0KOuajkfeivz/GuiH
+i20SaoFJgmkY+wfM3O6Bm7uatkd9f8SNvT3MrVFsY9v/6vvQM3NJrEyugXYctkkgs2fMkdRYdVl7
+NW2P+rYnMXYVuKmr+B9lzqNkGkN9H3pmVg91MhUz+uGy6iRBpVJh+fLlmDRpEoKCgpCVlWXqkKiB
+mdsJwxrU90fc2KPRmlujWEsZfdfQtCWb+h6PjS2xeowZ/XBZdZJw7NgxlJaWYs+ePXjrrbewbt06
+U4dEDczcThjWwhA/4saqQTLXK1FzeT6FKel7PDbWxErDjH64rDpJSE1NxYABAwAAPXv2xOXLl00c
+ETU0cz1hWDpz/xFv9FeiZsqiHupkSmb0w2Umh7RxKBQKyGQyzWupVIry8nLYmssvGTWIihPD4cPq
+mjpXV/VxxhNG/VX8iJubiiQmKkpdM9u2bSM80ZgpHo96MpMVZdVnS5lMhoKCAs1rlUrFBKER4gmj
+8TLXJKYx4/GoJzNZUVZ9u8HT0xOnT58GAKSlpUEul5s4IjKlRlt1SWSGeDzqycQryqovq4cNG4az
+Z8/Cz88PQghERUWZOiQiIiKLYdVJgo2NDVauXGnqMIiIiCySVd9uICIiorpjkkBERERaMUkgIiIi
+rZgkEBERkVZMEoiIiEgrJglERESkFZMEIiIi0opJAhEREWll1YMp1ZZSqQQA3L1718SREBERGV/F
++a7i/PcoJgmV5ObmAgACAwNNHAkREVHDyc3NRYcOHR6bLhFCCBPEY5aKi4tx+fJltGrVClKp1NTh
+EBERGZVSqURubi66d+8OR0fHx95nkkBERERaseEiERERacUkgYiIiLRikkBERERaMUkgIiIirZgk
+1JNKpcLy5csxadIkBAUFISsry9QhGURZWRkWLlyIgIAAjB8/HklJScjKyoK/vz8CAgIQGRkJlUpl
+6jAN4sGDBxg0aBAyMzOtsow7duzApEmTMG7cOOzbt8/qylhWVoa33noLfn5+CAgIsLrteOnSJQQF
+BQFAteXau3cvxo0bh4kTJ+LEiROmDLdOKpfx6tWrCAgIQFBQEN544w3cv38fgOWXEahazgpffPEF
+Jk2apHltduUUVC9fffWVCA8PF0II8f3334tZs2aZOCLD2L9/v1i9erUQQojffvtNDBo0SMycOVOc
+Py/mTQYAAAhoSURBVH9eCCFERESEOHr0qClDNIjS0lIxZ84cMXz4cHH9+nWrK+P58+fFzJkzhVKp
+FAqFQrz//vtWV8avv/5azJs3TwghxJkzZ8Sbb75pNWX88MMPxciRI8WECROEEEJrue7duydGjhwp
+SkpKxB9//KH5v6V4tIyBgYHiypUrQgghEhISRFRUlMWXUYjHyymEEBkZGWLy5MmaaeZYTtYk1FNq
+aioGDBgAAOjZsycuX75s4ogM44UXXsD8+fMBAEIISKVSZGRkoE+fPgCAgQMHIjk52ZQhGkR0dDT8
+/PzQunVrALC6Mp45cwZyuRxz587FrFmz8Pzzz1tdGTt16gSlUgmVSgWFQgFbW1urKaObmxu2bNmi
+ea2tXOnp6ejVqxfs7e3h7OwMNzc3XLt2zVQh19qjZYyJicGzzz4LQN2H38HBweLLCDxezt9++w0x
+MTFYsmSJZpo5lpNJQj0pFArIZDLNa6lUivLychNGZBhOTk6QyWRQKBSYN28eQkJCIISARCLRvJ+f
+n2/iKOvn4MGDcHFx0SR5AKyujL/99hsuX76MzZs3Y8WKFQgLC7O6MjZt2hS3bt3Ciy++iIiICAQF
+BVlNGUeMGAFb2z8HxtVWLoVCAWdnZ808Tk5OUCgUDR5rXT1axoqE/bvvvsOuXbswdepUiy8jULWc
+SqUSS5cuxeLFi+Hk5KSZxxzLyWGZ60kmk6GgoEDzWqVSVdnhLdmdO3cwd+5cBAQEYNSoUdiwYYPm
+vYKCAjRr1syE0dXfgQMHIJFIcO7cOVy9ehXh4eHIy8vTvG8NZWzRogXc3d1hb28Pd3d3ODg4VHk2
+iTWU8ZNPPoGPjw/eeust3LlzB1OmTEFZWZnmfWsoYwUbmz+v6yrK9ehvUEFBQZUTjSX6z3/+g23b
+tuHDDz+Ei4uL1ZUxIyMDWVlZeOedd1BSUoLr169jzZo16Nevn9mVkzUJ9eTp6YnTp08DANLS0iCX
+y00ckWHcv38f06ZNw8KFCzF+/HgAQNeuXZGSkgIAOH36NLy8vEwZYr3t3r0bu3btQlxcHJ599llE
+R0dj4MCBVlXG3r1745tvvoEQAr/++iuKiorQv39/qypjs2bNND+kzZs3R3l5udXtqxW0lcvDwwOp
+qakoKSlBfn4+MjMzLfp36PDhw5rj0tXVFQCsroweHh44cuQI4uLiEBMTg6eeegpLly41y3JaxyWv
+CQ0bNgxnz56Fn58fhBCIiooydUgGsX37dvzxxx+IjY1FbGwsAGDp0qVYvXo1YmJi4O7ujhEjRpg4
+SsMLDw9HRESE1ZTR19cXFy9exPjx4yGEwPLly9G+fXurKuPUqVOxZMkSBAQEoKysDKGhoejevbtV
+lbGCtv1TKpUiKCgIAQEBEEIgNDQUDg4Opg61TpRKJdasWYO2bdsiODgYAPC3v/0N8+bNs5oy6tKq
+VSuzKyef3UBERERa8XYDERERacUkgYiIiLRikkBERERaMUkgIiIirZgkEBERkVbsAklEOt28eRMv
+vPACOnfuXGX6xIkTERgYWOflLlq0CH369MG4cePqGyIRGQmTBCKqUevWrXH48GFTh0FEDYxJAhHV
+mbe3N3x9ffHtt9+iVatWCAgIQFxcHO7evYt169ahT58+CAoKgru7O9LT01FSUoIlS5bAx8enynIO
+HDiAjz/+GBKJBN26dUNERAT+85//4Pz589i0aRMAYOvWrbC3t0dgYCBWrlyJn3/+GUqlEjNmzMDI
+kSOhVCqxfv16XLhwAUqlEuPGjcPUqVNx9+5dhIWFobCwEDY2Nli2bBl69uxpitVFZHHYJoGIanTv
+3j2MGTOmyr8ff/wR9+/fx/PPP48vv/wSAHDs2DHEx8cjODgYn376qebzpaWlOHToEDZt+n/t3TtI
+Y1sUxvE/BERtxEIENamVNIKPRASjECwslCioiAE7m1hJUBF8tMrFRkg6CxHhkAcSTCEoVj5QCxGU
+g5WkUBBEAxExkjPFcA/jJdwZmBnvnZnvVx323qfYq1qstWH9xfT0NK+vr/aeaZpEo1HW19dJpVKU
+lZWxurpKT08Ph4eH5HI5LMsilUrR19dHJBLB7XaTSCTY2NggGo2SyWQwDAOAZDJJLBZjd3eX09NT
+YrEYnZ2dJBIJwuEwZ2dnHxs8kV+YKgki8lX/1m7o6OgAoLa2lqamJgBqamrIZrP2mcHBQQAaGhqo
+qqrCNE177+TkhK6uLiorKwEYGhpiZmaGqakpfD4fOzs7OJ1OnE4n1dXVHBwc8PLyQjweB+D5+Znr
+62t7UNfR0ZG9bpombW1tTExMcHV1hc/nY3R09AdHR+T3pSRBRL5LSUmJ/e1wOIqe+XL9n5NSC4XC
+u7OWZdnj1gcGBohEItTV1dkPHAuFAsvLy7jdbuDzMLKKigri8TjhcJju7m4AHh4eKC8vp7S0lO3t
+bfb390mn0ySTSdbW1n7AzUV+f2o3iMhPl06nAbi4uCCbzb6bbNfa2sre3h6Pj48AGIaBx+MBoLm5
+mbu7O46Pj/H7/QB4vV42NzeBz22Q3t5ebm9v8Xq9GIZBPp8nl8sxMjLC+fk5S0tLbG1tEQgEmJub
+4/Ly8iOvLvJLUyVBRL7q7zcJX2ppafnm/zOZDIFAAICVlZV3lYX6+nrGx8cJBoPk83ncbjeLi4v2
+vt/v5+npya5YhEIhFhYW7MeK4XAYl8vF8PAwNzc3BAIB3t7e6O/vx+Px4HK5mJycJJlM4nA4mJ+f
+/55QiPxRNAVSRH6qYDBIKBSyqwPfyrIs8vk8Y2NjzM7O2u0FEfk4ajeIyP/S/f097e3tNDY2KkEQ
++Y+okiAiIiJFqZIgIiIiRSlJEBERkaKUJIiIiEhRShJERESkKCUJIiIiUpSSBBERESnqEw/f4Nw9
+YrqVAAAAAElFTkSuQmCC
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>One employee has a very high value of <code>long_term_incentive</code>, so considering this point as an outlier and removing it.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[129]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;long_term_incentive&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">argmax</span><span class="p">()</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[129]:</div>
+
+
+<div class="output_text output_subarea output_execute_result">
+<pre>&#39;MARTIN AMANDA K&#39;</pre>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[130]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">enron_df_new</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="s1">&#39;MARTIN AMANDA K&#39;</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">inplace</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h4 id="Financial-Features-:-restricted_stock-and-restricted_stock_deferred">Financial Features : <code>restricted_stock</code> and <code>restricted_stock_deferred</code><a class="anchor-link" href="#Financial-Features-:-restricted_stock-and-restricted_stock_deferred">&#182;</a></h4>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[131]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Scatterplot of restricted_stock vs &#39;restricted_stock_deferred&#39; w.r.t POI</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;restricted_stock&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;restricted_stock_deferred&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Not-POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;restricted_stock&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;restricted_stock_deferred&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;r&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;POI&#39;</span><span class="p">)</span>
+
+    
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;restricted_stock&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;restricted_stock_deferred&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Scatterplot of restricted_stock vs &#39;restricted_stock_deferred&#39; w.r.t POI&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;upper right&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> 
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+
+
+<div class="output_png output_subarea ">
+<img src="
+AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVGX/P/D3LCzCkFtupRhSaGaG6DdNMbfMVEgUDdAG
+yyVze1RExQUkUATFUklNLbXIR9wyxBZ3o1z4KYWKBpalgblQhjoM2zD37495OIksHpUZR3y/rstL
+zv6Zw2HOe+5zzzkKIYQAERERkQzKB10AERERPTwYHIiIiEg2BgciIiKSjcGBiIiIZGNwICIiItkY
+HIiIiEg2BocHJC0tDVqtFt7e3vDy8sKoUaPwyy+/3PP6Tp48ibCwMGl4xIgRuHbtWnWUCgCIi4tD
+RETEHee7l+3+8MMP6NGjB3x9fVFQUHCvJVbo5s2bCAwMrHT6gAEDcOPGjXtevjLffvsttFrtXS9X
+6sMPP8TevXvvefmWLVtW6+//dnFxcff1+m43Z84cpKenVzht9uzZOHz48D0vX5lr166hZcuWd7XM
+rQ4ePIilS5fe8/JarRbffvvtPS9/6tQp9OzZ847z/fzzz3jllVcwcOBAZGdn3/P27ka7du2QnZ1d
+7cdJZSr7/aekpKBt27YYMGAAfHx8MGDAAAwaNAj79++X5tHr9YiJiUGfPn3g7e0Nb29vfPDBB2Xe
+i+73d1XTMDg8AEVFRRgzZgxCQkKQlJSEnTt3wtvbG6NHj0ZJSck9rfPXX3/FlStXpOFDhw5VV7l3
+5V62+9VXX2HIkCHYtm0b7O3tq7We69ev49SpU5VOT0xMxGOPPXbPy5tLSkoKDAaDxbcrl729PWrV
+qlVt6zt8+DAqu6XM/Pnz0blz53te3lxOnTqF69evW3Sb92Lfvn3o2LEjtm/fjqZNm1p029V9nFSm
+qt+/s7MzEhMT8eWXXyIxMRFRUVGYOnUqrl27BoPBgLfffhtGoxFffvklkpKSsHnzZuTl5WHkyJFW
+/Tf4IKkfdAGPovz8fNy8eRN6vV4a9/rrr0Oj0aCkpAQqlQpbt27FunXroFQqUbduXcTExKBRo0aI
+iorCiRMnkJeXByEE5s2bhyeeeALLli3DzZs3MXPmTGmdw4cPx+rVq6FUKhEREYFLly6huLgY/fv3
+x7vvvovs7GwMGzYMrq6uuHjxIqKjoxEUFIQXX3wRGRkZEEIgLCwMHTp0KFP/L7/8goiICOTm5kKh
+UGDEiBHw8fGRtl263SZNmkjLFBcXIzo6GkeOHIFKpULbtm0xc+ZMJCQkYN++fbCzs8PNmzcxY8YM
+aZnb64uPj0d2djZiY2ORn58PhUKBiRMnokePHsjJycGMGTPwzz//AAC6deuGyZMnY+bMmSgoKMCA
+AQPwxRdf4IUXXkCvXr2QkZGB2NhYDB48GEeOHEG9evWwatUqbN++HWq1Gs2bN0d0dHS55c+fP4/5
+8+cjNzcXJSUl0Gq1GDx4MABg6dKlSEpKQp06ddC8eXNZx8KyZcuwZ88e2NjYoG7duliwYAH27NmD
+9PR0LFy4ECqVCp06dcJ7772HjIwMKBQKdO3aFUFBQVCr1Thx4gTmzZuH/Px82NjYYPr06XjppZek
+9efk5ODtt9+Gv78/3nzzTWn8zZs30a1bN+zatQsNGjQAALzxxhsYP348HB0dER0dDaPRCAAYM2YM
++vTpU6buNm3aSG/UPXv2RNu2bZGZmYmgoCC0bdu2wuPNYDAgMjISP/74I2xsbNC0aVMsWLAAq1ev
+xtWrVxEcHIyFCxciNjYWtWvXxm+//YaAgADs3r0bw4YNw2uvvYYDBw5gyZIlMBqNcHBwwHvvvYdv
+vvmmzPItWrTA/PnzcfbsWRQXF+Oll17C9OnToVarsXv3bnzwwQeoVasW2rRpI+t3tHv3bqxcuRIK
+hQIqlQrTp0+Hra0tEhISUFJSAicnJ0yZMgXLly/HV199BZVKBRcXF4SGhqJBgwbIycnB3Llz8dtv
+v0GpVMLf379MK5bBYMDUqVOhVqsRExMDtbryt+X//ve/+PTTT6HRaODm5lZm2sqVK7F7924YjUY8
++eSTmDt3LlJSUrBx40aUlJSgoKAAixcvxpYtW7Bx40YYjUbUqVMHoaGhcHV1RUhICHJzc5GVlYXu
+3bvj77//LjM8adIkxMbG4tixYygpKUHr1q0xZ84caDQaHD9+HJGRkVAoFHj++eelY+fW46TUP//8
+gx49euDw4cNwcHBAWFgYzp07hw0bNgAAXn31VaxYsQJPP/20tExcXBzS0tJw9epVtGzZErGxsdK0
+Dz74oMzv/4UXXqjy99mqVSvY29vj4sWLOHz4MIxGY5n3zVq1amH27Nnw8fHBnj170Ldv3yrX90gS
+9ECsXbtWtG3bVvTs2VMEBweLLVu2CL1eL4QQ4ueffxYdO3YUf/75pxBCiHXr1onQ0FDx448/iokT
+J4qSkhIhhBCrVq0SY8aMEUIIsW3bNvHOO+9I63dzcxN///23EEIIrVYr9u3bJ4QQoqCgQGi1WvHV
+V1+JrKws4ebmJo4dOyaEENLwjh07hBBCHDx4UHTp0kUUFRWJZcuWiffee08UFxeLXr16iV27dgkh
+hLh8+bLo2rWr+PHHH8tt91ZLly4VEyZMEEVFRaKkpESEhISI0NBQIYQQM2bMEB9//HG5ZW6vLzc3
+V7z66qsiKytL2vbLL78sLl68KD788ENpfXl5eWLy5Mnixo0bIisrS7i7u5fZL9u3by+3n/bu3Ste
+ffVVkZubK4QQIioqSqxYsaLM8sXFxaJfv34iPT1dCCHEjRs3RN++fcVPP/0k9uzZI/r16ydu3rwp
+iouLxTvvvCPefPPNqg4B8eeffwoPDw9RWFgohBDik08+EXv27BFCCPHmm2+Kb775RgghxPTp00Vk
+ZKQwGo2isLBQjBgxQqxatUoUFRWJLl26iAMHDgghhDh16pTw8vISJSUlws3NTZw5c0b069dPJCYm
+Vrj96dOnS/v9119/Fd27dxclJSUiMDBQ7Ny5UwhhOhbDw8OrfB09evQQH374oTRc2fF27Ngx8dpr
+rwmj0SiEEGLhwoUiNTVVWsfJkyel1z5z5kxpfaX7IicnR7Rv316cOXNGCCHErl27xMiRI8stHxIS
+Ij777DMhhBAGg0EEBweL1atXS8v/8ssvQgghPvroI+Hm5lblaxNCiF69eomffvpJCCHE999/L+Li
+4oQQQvqbEEKIrVu3Cj8/P5GXlydNGzFihBBCiPHjx4uYmBghhOmY6d+/vzh//rx48803xY4dO8S4
+cePEe++9J+2Xypw5c0a89NJL4urVq0IIIUJDQ0WPHj2EEEJs375dTJ48WRQXFwshhEhISBCjRo0q
+V2dKSooYOnSo9F7z/fffi759+wohTH+Hw4cPl7Z3+3BcXJyIjo6W6ly8eLGYO3euKCwsFJ07dxaH
+Dx8WQgiRlJQk3NzcpL/Timi1WrF//34hhBCvvvqq6Ny5s9DpdOKXX36R6rnVsmXLRJ8+faTXd7tb
+f/+3Onr0qOjfv3+Zcbt27RKdO3cWer1eREREiOjo6ArXuWDBAhEZGSmEKPv3SELU+BaHEydOIDY2
+FvHx8RVOT05Oxpo1awAAQgikpqZi586dcHV1NWtdb7/9NoYMGYJjx47h2LFjWLNmDdasWYOtW7fi
+yJEj8PT0lD6xv/XWW9JytWvXRkJCArKyspCSkgJHR8cqt6PX63Hs2DFcv35duh6r1+uRkZGBtm3b
+Qq1Ww93dvcz6vb29AZg+tatUKmRmZkrTz58/j8LCQrz66qsAgEaNGuHVV1/F999/j3bt2lVaR3Jy
+MqZMmQIbGxsApmuG48ePv+N+urW+tLQ05OTklFlOoVAgMzMTXbt2xTvvvINLly6hc+fOmDp1Kpyc
+nCpsSr69BQUAjhw5gtdeew21a9cGAOkTyK3XhM+fP48//vgDs2bNksYVFBTgzJkzOHfuHHr37g2N
+RgMA8PX1rfSYK9WoUSO0atUKAwcOxMsvv4yXX365TGtBqeTkZGzcuBEKhQK2trbw9/fHp59+ii5d
+ukCpVKJ79+4ATJ/ukpKSpOVGjx6Nxo0bS7/P2w0ZMgTvvfceRo4ciW3btmHQoEFQKpXo27cvIiIi
+sH//fnTu3BlBQUFVvg7g331a1fHm6ekJlUqFIUOGwNPTE3369EHbtm2rXN+tfvzxRzzzzDN49tln
+AZg+mZYeh7c6ePAgTp06ha1btwKAdK06NTUVbm5u0idZPz8/vP/++3d8bf3798eECRPQrVs3dOnS
+BaNHjy43T3JyMgYNGgQHBwcAQGBgID766CMUFRXh8OHDmDZtGgDAyckJO3fulJaLiYlBXl4e9uzZ
+A4VCUWUdR44cQZcuXaQWIj8/P/zwww8AgAMHDuDUqVPw9fUFABiNRuTn51e4by5cuAB/f39p3PXr
+15GbmwsAaN++fZn5bx0+ePAgbt68KfU3KS4uRv369XH27Fmo1Wrp2PXy8irT36oivXv3RnJyMpyd
+ndGoUSO4ubnh2LFjyMzMrPB3CgDu7u5VtsZU5o8//sCAAQMAmFp3GjdujBUrVkiXUCq7HFFUVASV
+SnXX23sU1OjgsGbNGuzYsaPKa2ylb9gA8PHHH8PDw8PsoSE1NRU//fQTRo0ahR49eqBHjx4ICgqC
+t7c3Dh06BJVKVeZNpKCgABcvXkRWVhbmz5+Pt99+G7169UKLFi2wY8eOKrdlNBohhEBCQoK0H65d
+uwY7Ozv8888/sLW1LfPHePsfitFoLDOutAnyVkKIO14LvH05o9GI4uLiKpcBUKa+kpISuLq6YsuW
+LdL0K1euoF69erCxscG+fftw5MgRHD16FEOGDMHy5cvRsGHDcussfXO/1e37/MaNG+U6TZaUlOCx
+xx5DYmKiNO6vv/6Ck5MTFi1aVKZJVs4bjlKpxOeff45Tp07hyJEjiIqKQseOHTFnzpwy81W07wwG
+Q7maAeDs2bNo0aIFACAiIgIfffQR1q1bhxEjRpTbfocOHWAwGHDy5Ens3LkTCQkJAAB/f3/06NED
+hw4dwvfff48PP/wQO3bsgJOTU6WvpXSfVnW8OTo6IjExET/++COOHj2KyZMnIzAwsEwwvn19t7r9
+9QohkJmZiVatWpXbP0uXLpX+jm/cuAGFQoEjR46U+R3JPQlNmTIFgwcPxg8//IAvvvgCq1evxhdf
+fFFmHnFbc3zp76h0O7fWnZWVhbp16wIwXaIUQmDOnDn46KOPqqxDoVBUeowZjUaMGjUKQ4cOBWA6
+6VUUmo1GIwYMGCAFGaPRiKtXr0qB+fb9fuuw0WjErFmz0K1bNwBAXl4eCgsLcenSpXKv/077tnfv
+3hg2bBieeuopdOnSBY899hh++OEHnDp1CuHh4RUuU9ExIUdpH4eKeHh44OOPP4bRaIRS+W+XP6PR
+iGPHjmHs2LH3tM2arkZ3jnR2dkZcXJw0nJmZCa1WC61Wi4kTJ+LmzZvStMuXLyMxMRETJkwwe131
+6tXDypUrcfz4cWlcTk4O8vPz4ebmho4dO+LIkSO4evUqACAhIQGLFi3CoUOH0KNHDwwdOhTPP/88
+9u7dK3WmVKlUZU7epcMajQbu7u5Yt24dANObaEBAAPbt21dhbdeuXUNycjIAYP/+/bCxsSlzLdXF
+xQU2NjbYvXs3ANOJe9euXVLntdvrKNW1a1ckJCSguLgYRqMRGzZsQJcuXe5qv7m7u+PChQs4duwY
+AFNv8T59+uDq1auIjY3FihUr8Morr2D27Nl4+umncf78eajVapSUlNyx41znzp2xZ88e6HQ6AKZr
+quvXry+zvIuLC+zs7KQ3oUuXLsHLywvp6eno2rUrvv32W9y4cQNGo7HSN6pbZWRkwMvLC66urhgz
+ZgzeeustqXXn1v3o6emJDRs2QAiBoqIibN68GZ07d0aLFi2gUCikDqmnT5/G8OHDpaDh7u6O6Oho
+rFy5EmfPnq2whiFDhiAyMhItW7bEE088AcAUHH7++WcMGjQIkZGRuHHjhuxOgFUdbwcOHMBbb72F
+du3aYeLEifDx8UFGRka511uZF154AefOnZO+fbRv3z7pBHj7/lq/fr20v8aOHYvPP/8cHTp0wK+/
+/ipt8/aTf0UMBgN69uwJvV6PgIAAzJ07F+fOnZOC263b/OKLL6R+S/Hx8fi///s/2Nra4qWXXsK2
+bdsAmPqWDB8+HOfPnwcAtG3bFpMnT8Yff/yBzZs3V1lL586dcejQIVy+fBkAsH37dmmap6cntm7d
+Kh2/S5cuxfTp08uto0uXLvjqq6+k95aNGzdi+PDhd9wPpdvYsGEDioqKYDQaERoaivfffx9ubm4Q
+QuC7774DYPq93Ol4ady4MerWrYuEhAR06dIFnp6e2L17N3Jzc6UWpbsh5/ipSJ8+fVCrVi1ERUVJ
+LVMFBQWIjIyEo6MjevfufdfrfBTU6BaHPn36lGlqDg0NRVRUFJ5++mls2bIFH3/8MaZMmQIAWLdu
+Hd566y3Y2tqavS4XFxcsX74cH3zwAS5fvgw7Ozs4OTkhIiJC+rQ4bdo0jBo1CgDQoEEDREVFQafT
+ITg4GN7e3lCpVOjQoYPUGapdu3ZYsmQJxo8fj+XLl6N3794YOnQoVqxYgdjYWERGRsLb2xtFRUXw
+8vLC66+/XuFXs0pPjLGxsbC3t8fy5cvLfLKxsbHBihUrMG/ePMTFxaGkpATjx49Hp06dAKDMdm8N
+HGPHjkVMTAx8fHxgMBjQtm1bhIaG3tV+q1evHpYtW4aFCxeisLAQQggsXLgQTz75JIYPH46QkBB4
+eXnB1tYWLVu2hJeXF1QqFVq3bo2+ffti48aNla67W7du+PXXXxEQEAAAePrppxEZGYlatWqVWX7F
+ihWYP38+Pv74YxgMBkyaNElqzs3MzISvry8ee+wxtGrVSuqoWZlWrVqhb9++8PX1hYODA+zt7aXW
+hh49eiAmJgbFxcWYM2cO5s2bB29vbxQXF6Nr16549913YWtri7i4OERFRWHhwoWwsbFBXFxcmWO4
+RYsWGDduHKZNm4YtW7aUO759fHzw/vvvl2myDw4ORlRUFJYsWQKlUokJEybcVW/8yo63kpISJCcn
+w8vLCw4ODqhduzYiIyMBAK+88gqmTJmCefPmVbrexx9/HLGxsZgxYwZKSkqg0WjwwQcflFt+9uzZ
+mD9/vrS/OnfujFGjRsHGxgaxsbEIDg6GjY0N/u///u+Or0WtVmPWrFkIDg6WWg6ioqKkQDBx4kTY
+2Nhg9uzZuHTpEoYMGQKj0YjmzZtLHfjCwsIQHh4Ob29vCCEwZsyYMh0z7ezsEB0djREjRqBTp05w
+dnausJaWLVti2rRpGD58OBwdHctc5hkyZAiuXLmCN954AwqFAk2aNEF0dHS5dXTt2hWjR4/GiBEj
+oFAooNFo8OGHH97xMgkAjBs3DjExMRg4cCBKSkrw7LPPIiQkBDY2Nli+fDnCw8Px/vvv49lnn0X9
++vXvuL7evXtj7dq1aN26NZRKJezt7fHKK69I0zdu3Ij09HTMnz+/3LJXrlzBO++8g9WrV6NRo0Zl
+fv+enp533HYptVqNtWvXYsWKFdKlupKSEvTs2RNr166VLq1SWQpxp49iD7ns7GwEBQVh8+bNaN++
+PVq3bg3AdH3uqaeeknqP9+3bF4mJidX+dcCHSXZ2Nry9vfHTTz896FKIiMhK1egWh9u5uLggJiYG
+TzzxBFJTU5GTkwPAdF3YxcXlkQ4NZB4ff/xxmQ6Ltxo5ciRef/11C1dEtzt69CgWLFhQ4bSOHTuW
+6QxrblFRUUhJSalw2syZM6WWPaIH6ZFqcUhPT0dMTAwMBgMUCgXmz58PFxcXfPPNN/jxxx8xe/bs
+B10uERGRVavxwYGIiIiqT43+VgURERFVrxrZx6GgoADp6elo0KABb+BBREQ1XklJCXJyctCmTRuz
+99erkcEhPT0dw4YNe9BlEBERWdSGDRsqvPNqdaqRwaH0lqwbNmxA48aNH3A1RERE5nX58mUMGzZM
+Ov+ZU40MDqWXJxo3bmzxx8gSERE9KJa4PM/OkURERCQbgwMRERHJxuBAREREsjE4EBERkWwMDkRE
+RCQbgwMRERHJxuAgg14PnDtn+p+IiKxTdb9Xp6SkoH379rh06ZI0LjY2Fl988UWF8+fm5lb4NNzs
+7Gx4eHhAq9VCq9XCz88P77//vjT96NGjCAwMhFarhb+/P9atW4fSx0iFhIQgOTm5el5QNWFwqILB
+AEyeDDz3HODmZvp/8mTTeCIisg7mfK+2tbXFzJkzIed5kJmZmdi/f3+F055++mnEx8cjPj4eGzdu
+REpKCjIyMnD27FnExMQgNjYW8fHx+Pzzz3Hu3Dl88skn91+8mTA4VCE4GFi6FDh/HjAaTf8vXWoa
+T0RE1sGc79WdOnVC7dq1sWHDhjLj165dC19fX/j5+WHRokUAgI8++ghHjx7Fpk2bqlxnYWEhioqK
+UKtWLSQkJGDMmDFo2LAhAECtViMkJOSO63iQGBwqodcDX35Z8bTERF62ICKyBpZ4rw4PD8f69etx
+4cIFAEBeXh6++eYbJCQkICEhARcuXMCBAwfw7rvvolOnTvDz8yu3jl9//VW6VDF27FgEBgaiefPm
+yMrKgrOzc5l5NRoN8vPzYTQa7794M6iRt5yuDpcuAVlZFU/LyjJNd3W1bE1ERFSWJd6r69ati1mz
+ZmHGjBnw8PBAYWEhXnjhBdjY2AAAOnTogF9++QUvvPCCtMyYMWOg1+vh5uaGt99+W7pUcbtGjRrh
+4sWLaN26tTROp9PB1tYWSqV1fra3zqqsQJMmwG0hUNKsmWk6ERE9WJZ6r+7ZsydcXFywfft22NnZ
+4eTJkzAYDBBC4NixY3BxcYFSqZRaCVatWoX4+HiEhoZWud6AgACsXLkSOTk5AIDi4mLMnz8f/v7+
+1VO4GTA4VMLBARgwoOJpAwaYphMR0YNlyffq2bNnw97eHo6Ojujbty8CAgIwePBgPPnkk3jllVfg
+7OyMs2fPYv369bLX+dxzz2HKlCmYMmUKAgICMHToULi4uGDUqFHVV3g1Uwg5XUUfMtnZ2ejVqxf2
+7dt3X0/HNBhMnWsSE01NXs2amQ7E2FhAzYs8RERWge/V1Xfek+MR2aX3Rq0GliwBoqJM18maNGFL
+AxGRteF7tWU9kEsVJ06cgFarLTd+/fr16N+/v9Tz9LfffoPRaERYWBj8/Pyg1WqlXq2W5OBg6lzD
+A5GIyHrxvdoyLN7isGbNGuzYsQO1atUqNy09PR0xMTFo06aNNG737t0oKirCpk2bkJaWhujoaKxc
+udKSJRMREdH/WLzFwdnZGXFxcRVOO336NFavXo2AgACsWrUKAJCamoquXbsCANzd3ZGenm6xWomI
+iKgsi7c49OnTB9nZ2RVO69+/P4YOHQqNRoMJEybgwIED0Ol00Gg00jwqlQoGgwHqR6XHCxERkRWx
+mrOvEALDhw+Hk5MTAKBbt244c+YMNBoN8vLypPmMRiNDAxER0QNiNfdx0Ol08PLyQl5eHoQQSElJ
+QZs2beDh4SE9GSwtLQ1ubm4PuFIiIrJK1fx4zJSUFLz00ktSh/033nhDuvvjN998g2HDhkGr1SIg
+IABf3nLfa61Wi3PnzlVLDdbogX90T0pKgl6vh5+fH6ZMmYLAwEDY2tripZdeQrdu3WA0GnHo0CH4
++/tDCIGoqKgHXTIREVmTW2/k8McfpltJVtONHDp16oQPPvgAAFBUVITXXnsN9evXx6ZNm/DRRx/B
+yckJBQUF+M9//gM7Ozv07du3Ol6RVXsgwaFp06bYvHkzAMDb21sa7+PjAx8fnzLzKpVKREREWLQ+
+IiJ6iJQ+HrNU6eMxAdMNHqqJTqeDUqnE5s2bERwcLF1at7e3x4wZMzB37lwGByIiIqt2p8djRkXd
+140djh49Cq1WC4VCARsbG4SGhiImJqbcEy2bNWuGP//885638zBhcCAiooeXmR+PeeulilLr16/H
+xYsXUbt2bWnc+fPn0eQRefqh1XSOJCIiumsP4FHGWq0WCxcuhE6nAwDk5eVh4cKFGDZsWLVvyxqx
+xYGIiB5epY/HvLWPQykzPcq4Z8+e0Ol0GDVqFBQKBYxGIwYPHox+/fpV+7asEYMDERE93GJjTf9X
+9HjM+9CxY0d07Nixwmmvv/46Xn/99QqnlX5ls6ZicCAioocbH49pUQwORERUM5Q+HpPMip0jiYiI
+SDYGByIiIpKNwYGIiIhkY3AgIiIi2RgciIiISDYGByIiIpKNwYGIiIhkY3AgIiIi2RgciIiISDYG
+ByIiIpKNwYGIiIhkY3AgIiIi2RgciIiISDYGByIiIpKNwYGIiIhkY3AgIiIi2RgciIiISDYGByIi
+IpKNwYGIiIhkY3AgIiIi2RgciIiISDYGByIiIpKNwYGIiIhkY3AgIiIi2dQPYqMnTpxAbGws4uPj
+y4zfuXMnPv30U6hUKri5uSE8PBxKpRIDBw6ERqMBADRt2hQLFix4EGUTERE98iweHNasWYMdO3ag
+Vq1aZcYXFBRgyZIlSEpKQq1atRAUFIQDBw7A09MTQohyIYOIiIgsz+KXKpydnREXF1duvK2tLRIS
+EqRAYTAYYGdnh4yMDOTn52PEiBEIDAxEWlqapUsmIiKi/7F4cOjTpw/U6vINHUqlEo8//jgAID4+
+Hnq9Hl26dIG9vT1GjhyJTz75BO+99x6Cg4NhMBgsXTYRERHhAfVxqIzRaMSiRYvw+++/Iy4uDgqF
+Ai4uLmjevLn0c506dZCTk4MmTZo86HKJiIgeOVb1rYqwsDAUFhZixYoV0iWLrVu3Ijo6GgBw5coV
+6HQ6NGjQ4EGWSURE9Mh64C0OSUlJ0Ov1aNOmDbZu3YoOHTpg+PDhAIDAwEAMHjwYM2fOREBAABQK
+BaKioiq81EFERETm90DOwE2bNsXmzZsBAN7e3tL4jIyMCudfvHixReoiIiKiqlnVpQoiIiKybgwO
+REREJBuDAxEREcnG4EBERESyMTgQERGRbAwOREREJBuDAxEREcnG4EBERESyMTgQERGRbAwORERE
+JBuDAxG1T8UxAAAgAElEQVQREcnG4EBERESyMTgQERGRbAwOREREJBuDAxEREcnG4EBERESyMTgQ
+ERGRbAwOREREJBuDAxEREcnG4EBERESyMTgQERGRbAwOREREJBuDAxEREcnG4EBERESyMTgQERGR
+bOqqJvbs2RMKhaLS6fv27av2goiIiMh6VRkc4uPjIYTA8uXL0axZMwwaNAgqlQpJSUnIzs62VI1E
+RERkJaoMDk8++SQAIDMzEwsWLJDGjxgxAoMGDTJvZURERGR1ZPdxOHr0qPTzd999B5VKZZaCiIiI
+yHpV2eJQat68eZgxYwauXr0KwNQSsXDhQrMWRkRERNZHVnBo3bo1kpKS8M8//0ChUKBOnTrmrouI
+iIiskKxLFRcvXsTbb78NPz8/FBcXIzAw8L46R544cQJarbbc+P3798PX1xd+fn7YvHkzAMBoNCIs
+LAx+fn7QarW4cOHCPW+XiIiI7o+s4BAWFoaRI0fCwcEBjz/+OLy8vDBjxox72uCaNWswZ84cFBYW
+lhlfXFyMBQsWYO3atYiPj8emTZvw119/Ye/evSgqKsKmTZswdepUREdH39N2iYiI6P7JCg7//PMP
+PD09AQAKhQJvvPEGdDrdPW3Q2dkZcXFx5cafO3cOzs7OqF27NmxtbdG+fXscO3YMqamp6Nq1KwDA
+3d0d6enp97RdIiIiun+ygoO9vT0uX74s3Qzq+PHjsLW1vacN9unTB2p1+a4VOp0OTk5O0rCjoyN0
+Oh10Oh00Go00XqVSwWAw3NO2iYiI6P7I6hw5c+ZMjBkzBn/88QcGDBiA69evY+nSpdVaiEajQV5e
+njScl5cHJyencuONRmOFwYOIiIjMT9YZ+O+//8bWrVtx/vx5lJSUoEWLFvfc4lAZV1dXXLhwAbm5
+uXBwcMDx48cxcuRIKBQKHDhwAP369UNaWhrc3NyqdbtEREQkn6zgsGjRInTv3h3PPPNMtReQlJQE
+vV4PPz8/hISEYOTIkRBCwNfXF40aNULv3r1x6NAh+Pv7QwiBqKioaq+BiIiI5FEIIcSdZnr33XdR
+t25dvPDCC7C3t5fG+/j4mLW4e5WdnY1evXph3759aNq06YMuh4iIyKwsed6T1eJQt25dAKb7L9zK
+WoMDERERmYes4NCwYUNMmTLF3LUQERGRlZP1dcwDBw5AxhUNIiIiquFktTjUqVMHr732Gp577jnY
+2dlJ42991DYRERHVfLKCw8CBA81dBxERET0EZAeH7Oxs/Prrr/D09MSlS5fQrFkzc9dGREREVkZW
+H4evv/4aY8eOxfz583H9+nX4+/sjMTHR3LURERGRlZEVHNasWYONGzfC0dER9evXx/bt27F69Wpz
+10ZERERWRlZwUCqVZR401bBhQyiVshYlIiKiGkRWH4dnnnkGn3/+OQwGA37++Wf897//RatWrcxd
+GxEREVmZKpsN9Ho9ACAsLAxXrlyBnZ0dZs2aBY1Gg7lz51qkQCIiIrIeVbY4aLVabNu2DQsXLkR4
+eDimTp1qqbqIiIjIClUZHPR6PYKDg/H999+jsLCw3HTeAIqIiOjRUmVwWLt2LVJSUpCamooXX3zR
+UjURERGRlaoyODRp0gQ+Pj5o1aoVWrVqhevXr6N27dqWqo2IiIisjKzvVAoh8Nprr2HAgAG4cuUK
+evfujdOnT5u7NiIiIrIysoLDvHnzsHz5ctSpUweNGjVCeHg4v1VBRET0CJIVHPLz8+Hq6ioNd+nS
+BUVFRWYrioiIiKyTrOBQp04dZGRkQKFQAAB27NjBvg5ERESPIFl3jgwPD8eMGTPwyy+/oEOHDmje
+vDkWLVpk7tqIiIjIysgKDs7Ozti4cSP0ej2MRmOZ51YQERHRo+OOd44svTxRkc8++6zaCyIiIiLr
+VWVwmDhxIgBg8+bNsLe3h4+PD9RqNXbu3FnhnSSJiIioZqsyOJTeLTImJgbbtm2Txru7u2PQoEHm
+rYyIiIisjqxvVRQWFuL333+XhjMzM2EwGMxWFBEREVknWZ0jQ0JCoNVq0ahRIxiNRly7dg2LFy82
+d21ERERkZWQFB09PT+zfvx9nz56FQqFAy5YtoVabFt20aRP8/PzMWiQRERFZB1mXKgDA1tYWbdq0
+wXPPPSeFBgBISEgwS2FERERkfWQHh8oIIaqjDiIiInoI3HdwqOo+D0RERFSz3HdwICIiokcHgwMR
+ERHJJutbFRXJz89HrVq14OTkJHsZo9GI8PBwZGZmwtbWFvPmzUPz5s0BADk5OQgKCpLm/fnnnzF1
+6lQEBARg4MCB0vMxmjZtigULFtxr2URERHQfZAWH2NhYBAcHS8MHDx5EREQE9u/ff1fPq9i7dy+K
+ioqwadMmpKWlITo6GitXrgQANGjQAPHx8QCAn376CR988AHeeOMNFBYWQgghTSMiIqIHR9alij/+
++APR0dH466+/MGnSJCxatAjR0dF3vbHU1FR07doVgOm21enp6eXmEUIgMjIS4eHhUKlUyMjIQH5+
+PkaMGIHAwECkpaXd9XaJiIioesgKDkuWLMGNGzfQq1cvtGrVCl9++aX0HIu7odPpyjySW6VSlbt1
+9f79+/HMM8+gRYsWAAB7e3uMHDkSn3zyCd577z0EBwfzdtdEREQPSJWXKj788EPp5yZNmkCj0eDM
+mTNYtWoVAGDChAl3tTGNRoO8vDxp2Gg0lrmZFADs2LEDgYGB0rCLiwuaN28OhUIBFxcX1KlTBzk5
+OWjSpMldbZuIiIjun+xvVSgUCgQEBKBly5b3vDEPDw8kJycDANLS0uDm5lZunvT0dHh4eEjDW7du
+lS6LXLlyBTqdDg0aNLjnGoiIiOjeVdniUNqiYDAY8N1336FXr164du0a9u/fD19f37veWO/evXHo
+0CH4+/tDCIGoqCgkJSVBr9fDz88P165dg0ajKXNTqcGDB2PmzJkICAiAQqFAVFRUuVYKIiIisgxZ
+Z+DQ0FAYjUb06tULAJCSkoKTJ08iIiLirjamVCrLLePq6ir9XK9ePSQmJpaZbmtryydxEhERWQlZ
+wSE9PR1JSUkATCf3RYsWwdvb26yFERERkfWR1cfBaDTi6tWr0vDff/8NpZI3nSQiInrUyGpxePfd
+dzFw4EC0b98eQgicPHkSs2fPNndtREREZGVkBQdvb2+8+OKLSEtLg42NDUJDQ9GwYUNz10ZERERW
+RlZwyM/Px2effYYjR46gpKQEnTp1wqRJk+Dg4GDu+oiIiMiKyOqoEBERgfz8fERFRSEmJgbFxcWY
+O3euuWsjIiIiKyOrxeH06dPYsWOHNBwWFoZ+/fqZrSgiIiKyTrJaHIQQuHHjhjR848YNqFQqsxVF
+RERE1klWi8Nbb72FIUOGoEePHgBMD6IaPXq0WQsjIiIi6yMrOPj6+qJNmzY4fvw4jEYj4uLi7uuZ
+FURERPRwkhUcJk6cWC4sDB8+HJ9++qnZCiMiIiLrU2VwGD9+PDIyMnDlyhXpORWA6aFXfKw1ERHR
+o6fK4BATE4Pc3FzMnz8fc+bM+XchtRr169c3e3FERERkXar8VoVGo0HTpk2xdOlS3Lx5E08++SR+
+/PFHrF+/HteuXbNUjURERGQlZH0dc9q0adi1axdOnDiBuLg4aDQahISEmLs2IiIisjKygkN2djYm
+TZqEXbt2YfDgwRg/fjyuX79u7tqIiIjIysgKDiUlJbh27Rr27duH7t27IycnBwUFBeaujYiIiKyM
+rK9jjhw5Em+88QZ69uwJNzc39OnTB5MmTTJ3bURERGRlZD9W29vbWxr++uuvpVtOh4aGIjIy0jzV
+ERERkVWRdanidrc+pyI9Pb3aiiEiIiLrdk/BgYiIiB5NDA5EREQkG4MDERERyXbfwUEIUR11EBER
+0UPgvoND586dq6MOIiIieghU+XVMrVYLhUJR6fTPPvsM06dPr/aiiIiIyDpVGRwmTpwIANi8eTPs
+7e3h4+MDtVqNnTt3orCw0CIFEhERkfWoMji8+OKLAEyP1962bZs03t3dHYMGDTJvZURERGR1ZPVx
+KCwsxO+//y4NZ2ZmwmAwmK0oIiIisk6ybjkdEhICrVaLRo0awWg04tq1a1i8eLG5ayMiIiIrIys4
+eHp6Yv/+/Th79iwUCgVatmwJtVrWokRERFSDyLpUcf36dURERGDhwoV44oknEBoaiuvXr9/1xoxG
+I8LCwuDn5wetVosLFy6Umb5+/Xr0798fWq0WWq0Wv/322x2XISIiIsuRFRxCQ0Px/PPPIzc3F46O
+jmjYsCGmTZt21xvbu3cvioqKsGnTJkydOhXR0dFlpqenpyMmJgbx8fGIj49HixYt7rgMERERWY6s
+4JCdnQ0/Pz8olUrY2tpiypQpuHz58l1vLDU1FV27dgVg+mbG7U/WPH36NFavXo2AgACsWrVK1jJE
+RERkObI6KqhUKty8eVO6GdT58+ehVN79TSd1Oh00Gk2Z9RoMBqm/RP/+/TF06FBoNBpMmDABBw4c
+uOMyREREZDmyzr4TJ06EVqvFpUuXMG7cOKSlpSEqKuquN6bRaJCXlycNG41GKQAIITB8+HA4OTkB
+ALp164YzZ85UuQwRERFZlqxmg5dffhlr165FTEwMfH19sWPHjnt6RoWHhweSk5MBAGlpaXBzc5Om
+6XQ6eHl5IS8vD0IIpKSkoE2bNlUuQ0RERJYl66O7n58fNm3ahO7duwMwfeofMGAAkpKS7mpjvXv3
+xqFDh+Dv7w8hBKKiopCUlAS9Xg8/Pz9MmTIFgYGBsLW1xUsvvYRu3brBaDSWW4aIiIgejCqDQ2Bg
+IP7f//t/AIBWrVpJfRxUKhV69ux51xtTKpWIiIgoM87V1VX62cfHBz4+PndchoiIiB6MKoPDZ599
+BgCYN28e5syZY5GCiIiIyHrJ6uMwZMgQTJkyBQBw7tw5DBs2DL/99ptZCyMiIiLrI/sGUKWXEFxd
+XTFu3DjMnj3brIURERGR9ZEVHPLz89GtWzdpuEuXLsjPzzdbUURERGSdZAWHevXqYePGjcjLy0Ne
+Xh62bNmC+vXrm7s2IiIisjKygsOCBQtw8OBBeHp6okePHjh48CDmz59v7tqIiIjIysi6j8MTTzwh
+PTuCiIiIHl1VBocxY8Zg1apV6Nmzp3QPh1vt27fPbIURERGR9akyOERGRgIAlixZwj4NREREVHVw
+aNiwIQBgxowZ+OabbyxSEBEREVkvWX0cWrVqhS+//BJt27aFvb29NP6JJ54wW2FERERkfWQFhxMn
+TuDEiRNlxikUCvZxICIiesTICg5ffPEF6tSpU2Zcdna2WQoiIiIi61XlfRwuXbqEP//8E2+++ab0
+859//omsrCyMGjXKUjUSERGRlaiyxWHZsmVISUnB1atXMWzYsH8XUqvRvXt3c9dGREREVqbK4LBg
+wQIAwOrVq/HOO+9YpCAiIiKyXrJuOd2nTx/s2LEDQgiEhYXB19cXx48fN3dtREREZGVkBYdZs2bB
+xsYG+/btw++//46ZM2di4cKF5q6NiIiIrIys4FBYWIi+ffviwIED8Pb2RocOHWAwGMxdGxEREVkZ
+WcFBpVJh165dOHjwILp37469e/dCqZS1KBEREdUgss7+EREROHjwIObOnYuGDRviq6++wrx588xd
+GxEREVkZWcGhZcuWGDduHGxtbVFSUoKgoCC0atXK3LURERGRlZEVHL7++muMGzcO8+fPR25uLvz9
+/ZGYmGju2oiIiMjKyAoOa9aswcaNG+Ho6Ij69etj+/btWL16tblrIyIiIisjKzgolUpoNBppuGHD
+huwcSURE9AiS9ZCrZ555Bp9//jkMBgN+/vln/Pe//2UfByIiokeQrGYDvV6PK1euwM7ODrNmzYJG
+o8HcuXPNXRsRERFZGVktDhcvXkRUVBSmTp1q7nqIiIjIiskKDkqlEj179oSLiwvs7Oyk8Z999pnZ
+CiMiIiLrIys4TJs2zdx1EBER0UNAVnB48cUXzV0HERERPQT4nUoiIiKSTVaLQ3UxGo0IDw9HZmYm
+bG1tMW/ePDRv3lyavnPnTnz66adQqVRwc3NDeHg4lEolBg4cKN1HomnTpliwYIElyyYiIqL/sWhw
+2Lt3L4qKirBp0yakpaUhOjoaK1euBAAUFBRgyZIlSEpKQq1atRAUFIQDBw7A09MTQgjEx8dbslQi
+IiKqgEUvVaSmpqJr164AAHd3d6Snp0vTbG1tkZCQgFq1agEADAYD7OzskJGRgfz8fIwYMQKBgYFI
+S0uzZMlERER0C4u2OOh0ujK3rlapVDAYDFCr1VAqlXj88ccBAPHx8dDr9ejSpQvOnj2LkSNHYsiQ
+ITh//jxGjx6Nb7/9Fmq1RUsnIiIiWDg4aDQa5OXlScNGo7FMADAajVi0aBF+//13xMXFQaFQwMXF
+Bc2bN5d+rlOnDnJyctCkSRNLlk5ERESw8KUKDw8PJCcnAwDS0tLg5uZWZnpYWBgKCwuxYsUK6ZLF
+1q1bER0dDQC4cuUKdDodGjRoYMmyiYiI6H8s2uLQu3dvHDp0CP7+/hBCICoqCklJSdDr9WjTpg22
+bt2KDh06YPjw4QCAwMBADB48GDNnzkRAQAAUCgWioqJ4mYKIiOgBsegZWKlUIiIiosw4V1dX6eeM
+jIwKl1u8eLFZ6yIiIiJ5eAMoIiIiko3BgYiIiGRjcCAiIiLZGByIiIhINgYHIiIiko3BgYiIiGRj
+cCAiIiLZGByIiIhINgYHIiIiko3BgYiIiGRjcCAiIiLZGByIiIhINgYHIiIiko3BgYiIiGRjcCAi
+IiLZGByIiIhINgYHIiIiko3BgYiIiGRjcCAiIiLZGByIiIhINgYHIiIiko3BgYiIiGRjcCAiIiLZ
+GByIiIhINgYHIiIiko3BgYiIiGRjcCAiIiLZGByIiIhINgYHIiIiko3BgYiIiGRjcCAiIiLZLBoc
+jEYjwsLC4OfnB61WiwsXLpSZvn//fvj6+sLPzw+bN2+WtQwR0d3Q64H0dNM/vb7q+c6dq3qee5nX
+kusiMgeLBoe9e/eiqKgImzZtwtSpUxEdHS1NKy4uxoIFC7B27VrEx8dj06ZN+Ouvv6pchohILoMB
++M9/gMaNgeefN/1r3Ng0zmD4d74bN4C33waefRZwczP9Gz/eNM/tJ3WDAZg8GXjuOdN8zz1nGr51
+fXdTX3Wti8ic1JbcWGpqKrp27QoAcHd3R3p6ujTt3LlzcHZ2Ru3atQEA7du3x7Fjx5CWllbpMkRE
+cgUHA3FxZcfdvGkap1QCsbGmedauNY0vdfEisGIFsHkz4OgIZGUBzs7AgAGA0Vh2nefPA0uXmn5e
+suTu6ytd9n7XRWROFm1x0Ol00Gg00rBKpYLhf3Fap9PByclJmubo6AidTlflMkREcuj1wBdfVD79
+yy+BSZNMJ+pbQ8Ot/voLuHDBFBZKT+rr11c8b2Li3V1q0OtNNVTHuojMzaLBQaPRIC8vTxo2Go1Q
+q9UVTsvLy4OTk1OVyxARyXHpEpCdXfn07OzKT9xVqSxk/PEH8N13d+5HcWt9WVkVT8vKAn77jf0e
+yHpYNDh4eHggOTkZAJCWlgY3NzdpmqurKy5cuIDc3FwUFRXh+PHjaNeuXZXLEBHJ0aQJ0KxZ5dMb
+NTKdvKuLEEC/fpX3oyhV2meidm3T5Y+KODoC/fuz3wNZD4t+dO/duzcOHToEf39/CCEQFRWFpKQk
+6PV6+Pn5ISQkBCNHjoQQAr6+vmjUqFGFyxAR3Q0HB2DgwLJ9CG7l4wN8/bXpEsTdeOwxU2fK2wnx
+78+39qMo7atgMJj6NCQmmlonnJ2BOnUq3saNG/9u4276Pej1pjDUpInp9RNVF4UQtx7iNUN2djZ6
+9eqFffv2oWnTpg+6HCKyAgYDEBRk6pdQeonhsceA4cOB998v3zlRjokTTYGgNAAoFEBJScXzOjsD
+P/9sOolPnlzxttzdgdxc0+WJpk2Ba9cqvhzy1FPA6dMVB4KKQsmAAabOn7zKW3NZ8rzHw4iIHglq
+NbBsGRAdbeozAAAtWvx78o2NNf2fmGg6cTs4mDpC6vWmk2/dusA//5j6QzRrVvZkHBUFHD0K9O5d
++fazs/9tAaisP0VuLnDsGHD9OpCfD7zwQsXzZWWZ1uXqWn4av51hvWpKKxDvHElEjxQHB6BNG9O/
+W9+81WrTifX0aSAzE7h8Gbh6FfjlF+DMGeCnn0z/Z2aa5lmy5N9P8A4OQKdOplaCyjRtajph3Kkj
+5PXrpkDQokXl/R6aNTOt63b8doZ1qmn36GBwICK6hYOD6cTt4FD259unVbTcwIGVr3fgQNM8TZrI
+CwQODqZWjYoMGFBxDXcKJdXZAZTkK20FOn++7Nd5g4MfdGX3hsGBiKiaxMaa+j089ti/45ycTONK
+L4XcTSCIjTXdX+KppwCVyvT/pEn/rut2ckMJWU5NbAViHwciompyp34UpW7vT3Frn4nb17dkiakP
+hZxr46WhpKKOl5W1UpB5yWkFqqivijVjcCAiqmal/Sgqcy+BQO7JRW4oIcsobQWq6Ku+D2srEC9V
+EBE9IFX1mbhXt3fyvL0jJ1nWvfRVsXY8lIiIaqC7aaUg86pprUAMDkRERGZ0t5emrB2DAxERkQXU
+lFYg9nEgIiIi2RgciIiISDYGByIiIpKNwYGIiIhkY3AgIiIi2RgciIiISDYGByIiIpKNwYGIiIhk
+Y3AgIiIi2RgciIiILEyvB86dM/3/sGFwICIishCDAZg8GXjuOcDNzfT/5Mmm8Q8LPquCiIjIQoKD
+gaVL/x0+f/7f4SVLHkhJd40tDkRERBag1wNfflnxtMTEh+eyBYMDERGRBVy6BGRlVTwtK8s0/WHA
+4EBERGQBTZoAzs4VT2vWzDT9YcDgQEREZAEODsCAARVPGzDANP1hwM6RREREFhIba/o/MdF0eaJZ
+M1NoKB3/MGBwICIishC12vTtiagoU5+GJk0enpaGUgwOREREFubgALi6Pugq7g37OBAREZFsDA5E
+REQkm0UvVRQUFGDatGn4+++/4ejoiJiYGNSrV6/MPOvXr8dXX30FAOjWrRsmTJgAIQRefvllPPXU
+UwAAd3d3TJ061ZKlExERESwcHDZu3Ag3NzdMnDgRX331FVasWIE5c+ZI07OysrBjxw5s2bIFSqUS
+AQEBeOWVV1CrVi0899xz+OijjyxZLhEREd3GopcqUlNT0bVrVwDAyy+/jCNHjpSZ3rhxY3z88cdQ
+qVRQKBQwGAyws7PD6dOnceXKFWi1WowePRq//fabJcsmIiKi/zFbi8OWLVvw6aeflhlXv359ODk5
+AQAcHR1x8+bNMtNtbGxQr149CCGwcOFCtG7dGi4uLvjrr7/wzjvvoG/fvjh+/DimTZuGbdu2mat0
+IiIiqoTZgsOQIUMwZMiQMuMmTJiAvLw8AEBeXh4ee+yxcssVFhZi1qxZcHR0xNy5cwEAbdq0gUql
+AgB06NABV69ehRACCoXCXOUTERFRBSzax8HDwwPfffcd2rZti+TkZLRv377MdCEExo0bh44dO+Kd
+d96Rxn/44YeoU6cORo8ejYyMDDRp0qTK0FBSUgIAuHz5snleCBERkRUpPd+Vnv/MSSGEEGbfyv/k
+5+djxowZyMnJgY2NDRYvXowGDRpg3bp1cHZ2htFoRFBQENzd3aVlgoKC0KJFC0ybNg16vR4qlQph
+YWFwreLOGcePH8ewYcMs8ZKIiIisxoYNG9ChQwezbsOiwcFSCgoKkJ6ejgYNGkiXOIiIiGqqkpIS
+5OTkoE2bNrC3tzfrtmpkcCAiIiLz4J0jiYiISDYGByIiIpKNwYGIiIhkY3AgIiIi2Sx6Hwcyj5s3
+b2LatGnQ6XQoLi5GSEgI2rVrh7S0NMyfPx8qlQqenp6YMGECANN9MQ4ePAi1Wo1Zs2ahbdu2uHbt
+GoKDg1FQUICGDRtiwYIFqFWrFvbv34/ly5dDrVbD19cXb7zxBoxGI8LDw5GZmQlbW1vMmzcPzZs3
+x4ULFxASEgKFQoFnnnkGc+fOhVJZc7Ppnj178O2332Lx4sUAwP1thSrbd1S1EydOIDY2FvHx8ZUe
+Z5s3b0ZCQgLUajXGjh2LHj16VPogw+r426iJiouLMWvWLFy8eBFFRUUYO3Ysnn76aevf34IeekuX
+LhXr1q0TQghx7tw54ePjI4QQ4vXXXxcXLlwQRqNRjBo1Spw+fVqkp6cLrVYrjEajuHjxohg0aJAQ
+QojIyEixbds2IYQQq1atEuvWrRNFRUXilVdeEbm5uaKwsFAMGjRI5OTkiF27dokZM2YIIYT46aef
+xLvvviuEEGLMmDHi6NGjQgghQkNDxe7duy25GywqMjJS9OnTR0yePFkax/1tfSrbd1S51atXCy8v
+LzFkyBAhRMXH2dWrV4WXl5coLCwUN27ckH5eu3atWLZsmRBCiJ07d4rIyEghxP3/bdRUW7duFfPm
+zRNCCPHPP/+Ibt26PRT7mx9PaoC33noL/v7+AEzf5bWzs4NOp0NRURGcnZ2hUCjg6emJw4cPIzU1
+FZ6enlAoFHjiiSdQUlKCa9eulXsA2eHDh3Hu3Dk4Ozujdu3asLW1Rfv27XHs2LEy87q7uyM9PR0A
+cPr0abz44otl1lFTeXh4IDw8XBrm/rZOle07qpyzszPi4uKk4YqOs5MnT6Jdu3awtbWFk5MTnJ2d
+kZGRUeGDDKvjb6Omeu211zBp0iQApjsnq1Sqh2J/Mzg8ZLZs2QIvL68y/86fPw97e3vk5ORg2rRp
+CAoKgk6ng0ajkZYrfahYVeNvfwDZreNKx+t0unLrUKlUMBgMZZ4fUtFDzB5GFe3vkydPol+/fmVu
+e879bZ0q23dUuT59+kCt/vcqdkXHWVXHakXH9f3+bdRUjo6O0Gg00Ol0+M9//oPJkyc/FPubfRwe
+MhU9PAwAMjMzERQUhOnTp+PFF1+ETqeTHigG/PtQMRsbm3LjnZycoNFokJeXB3t7e2ne0nGVzVvK
+aDjzpJwAAAeuSURBVDRCrVaXub5e2UPMHjaV7e/bVbSvuL8fvMr2HclX0XEm51itat67/duoyS5d
+uoTx48dj6NCh8Pb2xqJFi6Rp1rq/2eJQA/z666+YNGkSFi9ejG7dugEwvWHa2Njgjz/+gBACP/zw
+Azp06AAPDw/88MMPMBqN+PPPP2E0GlGvXj3pAWQApAeQubq64sKFC8jNzUVRURGOHz+Odu3awcPD
+A8nJyQBMHQLd3NwAAK1bt0ZKSoq0DnPfL92acH9bp8r2HclX0XHWtm1bpKamorCwEDdv3sS5c+fg
+5uZW4XFdHX8bNdVff/2FESNGYNq0aRg8eDCAh2N/85bTNcDYsWORmZmJJ598EoDpJLZy5UqkpaUh
+KioKJSUl8PT0xJQpUwAAcXFxSE5OhtFoxP9v7/5CmuziOIB/RW2mlayLjJJAi/5oZppY0YUtIy8S
+pbyoKIOIaZSYRatNnax8nNnIUMiChJD+aJZ1IRYUaVaMVjfZhVtZCKmsTMUSI3Hz916Io15ffef7
+9v6pvp+rhwPnPOecbTw/zs5zfgaDAXFxcejp6cGxY8cwODgItVqN06dPIzAw0LPLX0SQlpaGnTt3
+enaqv3r1CiICs9mMhQsXor29HUajEcPDwwgPD4eiKD91rhCbzYaamhqcOXMGADjf/0MTzR1NrrOz
+E4cPH0Ztbe2E37Pa2lpcu3YNIoLMzEwkJSVNmMjwe/w2fkaKouDOnTsIDw/3lOXl5UFRlP/1fDNw
+ICIiIq/xrwoiIiLyGgMHIiIi8hoDByIiIvIaAwciIiLyGgMHIiIi8hoDB6JfkMFgQFdX17jy9+/f
+Q6vVTlo3PT19Svey2WxTrgOMJm/bv3//lOsBo6+dfX1sMhF9PwwciH5BNpsNf/QmdkhICC5cuDBp
+3adPn/5T3frGx48f4XA4/pV7EZH3ePYq0Q/KZrPBYrFgZGQE8+fPR2BgINra2uB2u6HVapGcnAyH
+w4GCggK4XC6oVCoUFxfj7t276O7uRkZGBq5cuYK0tDSsWLECdrsdFosFOTk5aGxsRFdXFwwGA/r6
++hAQEABFUXDjxg0Ao0dxX79+HQ8fPkR5eTlcLhdCQ0NRWFgItVqNx48fo7i4GCqVCmFhYX86lvr6
+elRWVsLX1xehoaGwWCxQFAXd3d04cOAAzp49i7q6Oly8eBE+Pj6IjIyE0WhEUFAQ6uvrce7cOfj4
++CAqKgqFhYWedt1uNw4dOoTQ0FAcPXr0H/ssiH4pfyMjKBH9h548eSKrVq2ST58+icVikaqqKhER
+GRgYkM2bN8vbt29Fr9fL7du3RUSkoaFBbt26JSIiGo1GOjo6PNdjaXU7OjpEo9GIiIhWq5XLly+L
+iMiDBw8kOztbREQWL14sIiK9vb2SkpIi/f39IiJSXV0tubm5MjQ0JOvWrZPXr1+LiEhubq7s2rVr
+0rFs2LBBenp6RESktLRUWltbv+mLw+GQjRs3Sl9fn4iImEwmOXnypLx7907Wrl0rTqdTRESOHDki
+9+7dk/LycikrKxO9Xi9FRUV/fZKJaByuOBD9wMLCwjBz5kxYrVZ8+fIFdXV1AIDPnz+jra0NCQkJ
+OHHiBB49egSNRoOkpKQ/bCc6Onpc2bNnz1BaWgoASEhI8ORBGdPS0gKn04ndu3cDGD3eOTg4GC9f
+vsScOXM8Rztv2bIFZWVlk45Do9Fgx44dSExMRFJSEpYtW4bOzs5v+qLRaKBWqwEA27Ztg8FgQHR0
+NGJjYzF37lwA8CQIstvtqKmpwcDAAO7fvz/5JBLRlDBwIPqBBQQEABh9aFssFkRGRgIYTZ4THBwM
+f39/xMTEoKmpCVVVVWhuboaiKOPaUalU48p+n1r5zZs3WLRokafM7XYjNjYW58+fBwAMDQ1hcHDQ
+k0BnjDf5M/Lz8+FwONDc3AydToesrKxvku183d5Yf1wu17hMl319fZ7rmJgYREREQFEUlJeX/2kf
+iMg73BxJ9BNYs2YNqqurAQDd3d1ISUmB0+lETk4OXrx4ge3bt+PgwYNobW0FMPowd7vdk7YZFxeH
+hoYGAIDVaoXRaPTUdblciI6OxvPnz9He3g4AqKiowKlTp7BkyRL09vZ6NjaOtTERl8uFTZs2Qa1W
+IzMzE6mpqbDb7fDz84PL5QIAxMfHo7GxEf39/QCA2tparF69GlFRUWhpacGHDx8AAGaz2bPCsHTp
+Umi1WrS1taGpqWlqE0pEE+KKA9FPICsrCyaTCcnJyXC73dDpdFiwYAH27duHvLw8VFRUwNfXF3q9
+HgCwfv16ZGRkoLKycsI2CwoKkJ+fj6tXr2L69OmelYrExESkpqbi5s2bMJvNyMnJwcjICEJCQmCx
+WODv74/S0lLodDr4+fkhIiJi0r77+fkhOzsbe/bsQUBAAGbNmoWSkhLMnj0b8+bNQ3p6Oi5duoTM
+zEykp6djeHgYkZGROH78OGbMmIG8vDzs3bsXIyMjWLlyJbZu3YqKigoAwLRp02AymaDX6xEfH4+g
+oKDvNONEvy5mxyQiIiKvccWBiP4VJSUlsFqt48qXL1+OoqKi/6BHRPRXcMWBiIiIvMbNkUREROQ1
+Bg5ERETkNQYORERE5DUGDkREROQ1Bg5ERETkNQYORERE5LXfANa6C1pnDOBOAAAAAElFTkSuQmCC
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[132]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;restricted_stock_deferred&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">argmax</span><span class="p">()</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt output_prompt">Out[132]:</div>
+
+
+<div class="output_text output_subarea output_execute_result">
+<pre>&#39;BHATNAGAR SANJAY&#39;</pre>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>There is an obtained <strong>outlier in the feature <code>restricted_stock_deferred</code></strong>. Taking a quick look at the values of <code>restricted_stock_deferred</code> <em>most of the values are zeros</em>, and the remaining few are negative values. The outlier found here is the Enron employee <em>'BHATNAGAR SANJAY'</em> who is not a POI. Hence, this <strong>datapoint is removed.</strong> There is no exciting observation in the other axis of this graph.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[133]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">enron_df_new</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="s1">&#39;BHATNAGAR SANJAY&#39;</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">inplace</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h4 id="Email-Features-:-from_poi_to_this_person-and-from_this_person_to_poi">Email Features : <code>from_poi_to_this_person</code> and <code>from_this_person_to_poi</code><a class="anchor-link" href="#Email-Features-:-from_poi_to_this_person-and-from_this_person_to_poi">&#182;</a></h4><p>Given that the dataset is related to the emails, it can be thought that for doing such a big scam, the POI's might frequently have communication between them via E-mails. Hence, by checking on the number of e-mails transferred between POIs and an Employee, we can guess for the involvement of that person in that scam.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[134]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;from_poi_to_this_person&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;from_this_person_to_poi&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Not-POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;from_poi_to_this_person&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;from_this_person_to_poi&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;r&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;POI&#39;</span><span class="p">)</span>
+
+    
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;from_poi_to_this_person&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;from_this_person_to_poi&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Scatterplot of count of from and to mails between poi and this_person w.r.t POI&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;upper right&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> 
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+
+
+<div class="output_png output_subarea ">
+<img src="
+AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVPX+B/D3MAMoDO7ptQAFhZsbroleV8QrWhLuC4aZ
+aUpqgI/lipoLLhFKZm5X7YYmmhLUNbUcNQuVvO56RZPSQFExUxkQBpjv74/5MYLMwjbDDLxfz+Mz
+zjlzzvmcc4bzme9yvkcihBAgIiIiq2RT1QEQERFR+TGRExERWTEmciIiIivGRE5ERGTFmMiJiIis
+GBM5ERGRFatxifz8+fMICgqCv78/Bg8ejEmTJuHXX38t9/ouXryIhQsXat9PnDgRDx8+rIxQAQDr
+1q3DkiVLjH6uPNv9+eef4ePjg+HDhyMnJ6e8IVbIggULcPny5TItc/XqVfTv3x9Dhw5FWlpasXlx
+cXHo27cv3n777coM02S2bt2KOXPmlJiemZmJ8ePHmz0ehUKBZcuWAQCCgoJw8ODBUi9b1s8DVbef
+lSk6Ohrx8fEmWXdpvx9///vfdf79Fz2fZNixY8cQHR2tc16/fv3g5+eHgIAADBkyBK+99hoiIiKg
+Vqu1nzlw4ABGjhyJgQMHwt/fH9OmTcO1a9e08+Pi4jBlyhSTxC4zyVotlEqlwpQpU7Bt2za0adMG
+AJCQkIDJkydDoVBAKpWWeZ03btzAvXv3tO8TExMrLd6yKM929+/fj5EjR+Ldd981QUSlc+LECYwe
+PbpMyygUCnh7e2P58uUl5sXHxyMsLAwBAQGVFWKVePz4MS5dumT27fr6+sLX19ds26uq/axMISEh
+Zt9maY+buc+nNbt06RIeP36sd35kZCTatWsHQJNLgoKC8OWXX+KNN97Ajh07sG/fPnz00Udo2bIl
+AODHH3/ExIkT8a9//QutWrUyaew1KpE/ffoUmZmZyM7O1k57/fXXIZfLUVBQAKlUir1792L79u2w
+sbFB/fr1sWrVKjRp0gQRERG4cOECsrKyIITAsmXL8OKLL+KTTz5BZmYm5s6dq13nm2++ic2bN8PG
+xgZLlixBeno68vLy8Nprr2Hq1KlIS0vDuHHj0KJFC9y+fRsrV67EzJkz0bVrVyQnJ0MIgYULF6JL
+ly7F4v/111+xZMkSPHr0CBKJBBMnTsSQIUO02y7cbtOmTbXL5OXlYeXKlTh58iSkUim8vLwwd+5c
+xMbGQqFQwN7eHpmZmZg9e3axbR09ehRr166FWq2Gg4MDPvzwQ7z88ss4fPgwPv30UxQUFEAul2Pu
+3Lnw8vLCunXr8Ndff2lrJ4q+DwoKQocOHXD27Fmkp6ejc+fOWLVqFaKjo3H//n3MmjULq1evRvv2
+7YvFsH79euzfvx9SqRRubm4IDw/HyZMnsWvXLhQUFCAnJwcff/yx9vMRERG4dOkS0tLS8NdffyE5
+ORmPHj1Camoq+vbti6lTp+LDDz9EcnIyJBIJevXqhZkzZ0Imk6Fdu3aYMGECjh07BqVSiffffx8H
+Dx7E9evX0bhxY2zcuBEODg7F4vv999+xZMkSZGdn4/79+3j55Zexdu1a2Nvbo127dnjnnXeQmJiI
++/fvY/z48ZgwYQLy8vKwbNkynDhxAg0bNkTDhg3h5ORU4rs6d+5c5OTkICAgAHFxcTh37hxWr16N
+p0+fwtbWFqGhoejdu3eJ5Uq7H3v37sXu3buRl5eHx48fY/LkyQgMDERcXBwOHTqETZs2adeZn5+P
+pUuX4uzZs7C1tYWzszNWrFgBR0fHEtv/4YcfsHnzZuTk5MDf3x/BwcEAgLNnzyIyMhJPnz6FRCLB
+jBkz4OPjU2w/vb29Ubt2bYSFhSEjIwO9evXC9u3b0b17d3zzzTdQKBSIjo7GV199hV27dkGtVqNe
+vXoIDw9HixYtoFKpEBkZidOnT6OgoACtW7fGggULIJfL0a9fPwwdOhQnT55Eeno6Bg0ahA8++KBE
+/P369UP//v3x3//+F5mZmXjrrbcQGBgIANi9ezdiYmJgY2ODRo0aITw8HG5ubpgzZw48PDxK1AKZ
+8/sBaP7mLly4gEePHuHtt9/GuHHjip3P77//Hhs2bIBEIoFUKsUHH3yAV155pcS6C6WlpSEoKEjv
+dWnDhg34/vvvoVar8dJLL2HRokVo0qQJgoKCULduXfz2228YO3YsmjRponO7d+/exeLFi3H79m0I
+ITBkyBBMmjQJaWlpmDBhAvr06YMLFy7g8ePHCAsLw6uvvlosvmnTpqFv374YOXIkzp8/j9GjR+Pw
+4cNwcXHBhg0bkJmZWewcP3/djYmJQePGjQEAFy5cQGxsLAoKCuDk5ISwsDC9xwUA7Ozs0LlzZ/z2
+229QqVRYs2YN9uzZgxYtWmg/06dPH0yePBlr1qzB5s2bDa6vwkQNs23bNuHl5SX69esnZs2aJb76
+6iuRnZ0thBDi6tWrwtvbW9y5c0cIIcT27dtFeHi4OHv2rJgxY4YoKCgQQgixadMmMWXKFCGEEPv2
+7RPvvPOOdv2enp7izz//FEIIERQUJBQKhRBCiJycHBEUFCT2798vUlNThaenpzh9+rQQQmjff/PN
+N0IIIY4dOyZ69OghVCqV+OSTT8SHH34o8vLyhK+vrzh06JAQQoi7d++KXr16ibNnz5bYblHR0dFi
++vTpQqVSiYKCAjFnzhwRHh4uhBBi9uzZ4l//+leJZTIyMkTnzp3F//73PyGEEIcOHRJvv/22uHHj
+hvjHP/4h/vjjDyGEECdOnBA9evQQmZmZ2jgLFX3/xhtviPfee08UFBSIzMxM0bNnT3Hy5EkhhBA+
+Pj7i4sWLJWLYu3evGD16tMjKytKub+LEiSXW/bw33nhDHDhwQLt/b775pnbeBx98IJYuXSrUarXI
+zc0VEydOFJs2bdIev3//+99CCM357dixo7h7964oKCgQQ4cO1Z6bolauXCni4+OFEEKoVCoxePBg
+cfDgQe36YmJihBBCXLp0SbRt21bk5OSIzz//XIwfP17k5uaKrKwsMXToUDF79uwS605NTRUdOnQQ
+Qgjx8OFD0b17d3H+/HkhhBDXr18XXbt21Z6HokqzH0qlUowaNUo8fPhQCCHEuXPntNsq+n0uPJan
+T58WAwcOFGq1WgghxOrVq8WZM2d0HvspU6aIvLw8kZmZKQYOHCiOHTsmHj16JAYMGCBSU1OFEJrv
+bu/evcXt27eL7ecvv/wihg4dqo2jR48e4uOPPxZCCPHee++J/fv3i6SkJBEYGKj9m/3pp5/EoEGD
+hBBCrFu3TqxcuVIb58cffywWLVokhNB8z1auXKndfrt27XQePx8fHxEeHi7UarVIT08X3t7eIjk5
+WZw4cUL0799f+ze2b98+MWjQIKFWq/X+HZnr+1G4vq1btwohhLhy5Ypo27atUKlUxc6nr6+vOHfu
+nPa4rVu3rsR6n9+GvuvS119/LUJDQ0VeXp4QQojY2FgxadIkIYTmezB37lztevRtd9y4cWLbtm1C
+CCGePHki/P39xX/+8x/tdo8cOSKEEOLgwYOib9++JeL7+uuvxYwZM4QQmmtCjx49RGxsrBBCiOHD
+h4sLFy7o3J/C6+7zDF1Xnr9O3b17VwwcOFAcPHhQXLp0SXh7e+tcLjk5WXTq1EkIUTJXVKYaVSIH
+gLfeegsjR47E6dOncfr0aWzZsgVbtmzB3r17cfLkSfTs2VNbop0wYYJ2ubp16yI2NhapqalISkrS
+WRopKjs7G6dPn8bjx4+17S7Z2dlITk6Gl5cXZDIZOnToUGz9/v7+ADS/5KRSabH2lZs3byI3NxcD
+BgwAADRp0gQDBgzATz/9hI4dO+qN4/jx4wgLC4OtrS0ATTvmtGnTDMZ+9uxZeHh4aKuDBgwYgAED
+BmDnzp3o1q0bXFxcAADdu3dHgwYNStXG7ePjAxsbG8jlcjRr1sxgFVZh3MOGDdOWgsePH4+NGzdC
+pVIZ3VZRnTt3LrbOXbt2QSKRwM7ODmPGjMG///1vvPPOOwAAPz8/AICrqys8PT3RpEkTAICzs7PO
+eN9//30kJiZiy5YtuHnzJu7fv1+stqewSrNNmzZQqVTIzs7GyZMnMXjwYNjZ2cHOzg7+/v7FzrMu
+Fy9ehKurq7bGwsPDA506dcIvv/yiPRdFGdsPR0dHbNy4ET/++CNu3ryJ5OTkYnE/z9PTE1KpFCNH
+jkTPnj3h5+cHLy8vnZ8dMWIEZDIZ5HI5/Pz8cOLECQBARkZGse+dRCLBtWvX4OHhoZ3WuXNn3Lt3
+D3/++Sd++uknBAcHIy4uDtOnT8fp06cRERGB9evX49atWxgzZox2ucePH+PRo0c4duwYMjMztdvM
+y8tDw4YNtZ8rPB9NmjRBw4YN8fjxY53HLzAwEBKJBH/729/Qq1cvJCYm4sGDB3j11VfRoEEDAMCw
+YcOwfPnyEn00ijLX96PQ4MGDAQCtWrWCSqWCUqksNv+1117D9OnT0adPH/To0QOTJ082uk5916Wj
+R4/i0qVLGD58OABArVbj6dOn2uWK1ibq2m52djbOnj2Lbdu2AQCcnJwwbNgwHD9+HO3bt4etrS36
+9OkDAGjdujUePXpUIjYfHx+sWLEC+fn5+PnnnxEcHIzExET07dsXf/75p7YavKjnr7tlMWvWLNSq
+VQtqtRq2trYYOXIk/Pz8cPnyZeTn5+tcRqVSQSKRlGt7ZVGjEvmZM2dw7tw5TJo0CT4+PvDx8cHM
+mTPh7++PxMRESKXSYgc9JycHt2/fRmpqKpYvX4633noLvr6+cHd3xzfffGNwW2q1GkIIxMbGonbt
+2gCAhw8fwt7eHn/99Rfs7Owgkz07/M+3z6vV6mLTinaqKCSE0PsF0recWq1GXl6ewWWePw5CCFy7
+dg1Cx7D8hTFIJJJi85/fRq1atbT/f/6zujw/X61WG91XXYpWh+s6FkXXWfhj5/n/6zNz5kwUFBRg
+0KBB6Nu3L9LT04vFbW9vDwDaY6lrn0vTL6Os597Yfty9exejR4/GqFGj0LlzZwwcOBBHjx7Vu/06
+deogISEBZ8+exalTpxAaGqqtCja0P0IIyGQyFBQUoEWLFvjqq6+08+7du4cGDRoU619iY2MDHx8f
+HDt2DBcuXMCqVauwadMmHDx4EB06dICjoyPUajUCAgLw/vvva4/N/fv3UbduXajVasybN0+bALKy
+spCbm6tdf+H5AAx/B4v+XarVatjY2Bj87utjru/H83HrW19YWBhGjBiBn3/+GXFxcdi8eTPi4uJg
+Y6O/z7O+65JarcakSZO0zQ4qlarYj92if3e6thsTE2Pwb9zW1lYbl75EWLduXbRu3RpHjx5FZmYm
+AgICsH79ehw+fBj9+/fXudzz192yKNpGXlThj9GrV6+WaAtPSkoyWNCqLDWq13qDBg2wYcMG/Pe/
+/9VOy8jIwNOnT+Hp6Qlvb2+cPHkS9+/fBwDExsbio48+QmJiInx8fBAYGIh27drh8OHDKCgoAKD5
+ohf9Yy58L5fL0aFDB2zfvh0A8OTJE4wdOxYKhUJnbA8fPsTx48cBAEeOHIGtrS08PT21893c3GBr
+a4vvv/8egOZCeOjQIfzjH//QGUehXr16ITY2Fnl5eVCr1di5cyd69Ohh8Di1b98eKSkp2t78CoUC
+77//Prp164bExESkpqYCgLa9sX379qhfvz6uXLkCIQSys7Px888/G9zG88freT179kRcXJy2BBMT
+E4NXXnkFdnZ2pVqvLj179sTOnTshhIBKpcKePXu0x688fv75Z0ybNg2vvvoqJBIJLly4oP1e6NOr
+Vy/Ex8cjNzcXubm5+O6773R+rjABCiHQvn17/P7777h48SIATV+J06dPo2vXruWK+/Lly2jQoAHe
+ffdd9OrVS5vE9cV+9OhRTJgwAR07dsSMGTMwZMgQJCcn6/xsfHw8hBB4/PgxDhw4gN69e6NDhw64
+desWTp8+DUBzwfPz88P9+/eL7ScA/POf/8S//vUveHp6ws7ODt26dUNUVJS2lqFHjx7Yv3+/9m90
+165dePPNNwE8O78qlQpqtRrh4eGIiooq8/Ep7IF+584dJCYmonfv3ujZsye+++47bc/wffv2oV69
+emjWrJne9Zjr+1Ea+fn56NevH7KzszF27FgsWrQIKSkpRn8c67su9ezZE3v37tWW+qOjo3X2OdC3
+XXt7e7Rv3x47d+4EoOmFHx8fX+a/x/79+yMqKgrdu3eHXC6Hm5sbtmzZov2+lIW+a5Ex9vb2mDVr
+Fj744AOkpKRopx87dgxbt241S2fIGlUid3Nzw/r167FmzRrcvXsX9vb2cHJywpIlS+Du7g5AUx02
+adIkAMALL7yAiIgIKJVKzJo1C/7+/pBKpejSpYu2k0fHjh2xdu1aTJs2DevXr8c///lPBAYG4rPP
+PkNkZCSWLl0Kf39/qFQqDB48GK+//rrO6jh7e3skJCQgMjIStWrVwvr164v9Gra1tcVnn32GZcuW
+Yd26dSgoKMC0adPQrVs3ACi23aI/AIKDg7Fq1SoMGTIE+fn58PLyQnh4uMHj1KhRI0RGRmL27Nna
+Tm1r1qxBy5YtsWjRIkyfPh0FBQWoVasWNm7cCCcnJ7z++uv46aefMGDAADRp0gQdO3Ys1UWmf//+
+CAsLw7Jly9CzZ0/t9BEjRiA9PR0jR46EWq1Gs2bNEBkZaXR9hixYsADLli2Dv78/8vLy0KtXL0yd
+OrXc6wsLC8O0adNQt25d1K5dG6+88gr++OMPg8uMGTMGf/zxBwYPHmwwEbzwwgto3bo1Bg0ahF27
+diE6OhpLly5FTk4OJBIJVqxYATc3t3LF3aNHD+zduxcDBw5E7dq14eXlhQYNGuDWrVs6P9+7d28c
+P34cgwcPhoODA+rWrYulS5fq/GxhFWlOTg7eeOMNeHt7AwA++eQTrF69Grm5uRBCYPXq1XjppZe0
+ndIK97N79+64d+8exo4dCwDaBNqvXz8AmkQ3efJkTJw4ERKJBHK5HJ9++ikkEgneffddrFq1CkOH
+DkVBQQFatWql89YtY9LS0rT7sGDBAri7u8Pd3R0TJkzAm2++CbVajQYNGmDTpk0GS7Pm/H4YI5PJ
+MG/ePMyaNQsymQwSiQQRERFGfxjruy6NHDkS9+7dw6hRoyCRSNC0aVOsXLmyTNuNjIzEkiVLEBcX
+B5VKBX9/fwwbNgy3b982uj+F+vfvj6VLl2LWrFkAnv2Y69SpEwBNgeedd97R29ls/vz5aNu2LcaO
+HYvu3btjxowZsLW1NXqNfN6YMWPQqFEjLFiwAE+ePEF+fj7c3Nywbds2k/dYBwCJKO1POjKZtLQ0
++Pv749y5c1UdClGN1q9fP0RHR+usQq1peF2yHjWqRE5ERM9EREQgKSlJ5zxrH6inJmGJnIiIyIrV
+qM5uRERE1Q0TORERkRWzujbynJwcXL58GS+88EK5xkYnIiKyNgUFBcjIyEDbtm2LjcsBWGEiv3z5
+MsaNG1fVYRAREZndzp07SzyHw+oS+QsvvABAszN/+9vfqjgaIiIi07t79y7GjRunzYFFWV0iL6xO
+/9vf/gZnZ+cqjoaIiMh8dDUps7MbERGRFWMiJyIismJM5ERERFaMiZyIiMiKMZETERFZMSZyIiIi
+K8ZETkREFi87G0hJ0bxWhqSkJHTu3Bnp6enaaZGRkYiLi9P5+UePHuHbb78tMT0tLQ2dOnVCUFAQ
+goKCMHr0aERFRWnnnzp1CuPHj0dQUBDGjBmD7du3o/BZZXPmzMHx48crvC9M5EREZLHy84HQUKBN
+G8DTU/MaGqqZXlF2dnaYO3cuSvMQ0GvXruHIkSM657Vs2RIxMTGIiYnBrl27kJSUhOTkZFy/fh2r
+Vq1CZGQkYmJisGPHDqSkpGDr1q0VD74IJnIiIrJYs2YB0dHAzZuAWq15jY7WTK+obt26oW7duti5
+c2ex6du2bcPw4cMxevRofPTRRwCAjRs34tSpU9i9e7fBdebm5kKlUqF27dqIjY3FlClT0LhxYwCA
+TCbDnDlzjK6jrKxuZDcyIDsbSE8HmjYFHByqOhoiogrJzgbi43XPS0gAIiIqfqlbvHgxRo4ciV69
+egEAsrKycODAAcTGxkImk2HGjBk4evQopk6ditjYWIwePbrEOm7cuIGgoCAAmpHXxo8fj2bNmiE1
+NRUjRowo9lm5XI6nT59CrVZXLPAimMirg/x8zc/ThATgjz8AV1cgIACIjARkPMVEZJ3S04HUVN3z
+UlM181u0qNg26tevj3nz5mH27Nno1KkTcnNz0b59e9ja2gIAunTpgl9//RXt27fXLjNlyhRkZ2fD
+09MTb731lrZq/XlNmjTB7du30bp1a+00pVIJOzs72NhUXoU4q9arA1PWPRERVZGmTTXlEl1cXDTz
+K0O/fv3g5uaGr7/+Gvb29rh48SLy8/MhhMDp06fh5uYGGxsbbSl606ZNiImJQXh4uMH1jh07Fhs2
+bEBGRgYAIC8vD8uXL8eYMWMqJ/D/x0Ru7YzVPVVWF08iIjNzcNBULuoSEFC5LYjz589HrVq14Ojo
+iEGDBmHs2LEYMWIEXnrpJfTv3x+urq64fv06Pv/881Kvs02bNggLC0NYWBjGjh2LwMBAuLm5YdKk
+SZUXOACJKE13PQuSlpYGX19fKBQKPv0M0NyP4empKYk/TyoFrl2reN0TEVEVKdpymJqqKYnXxJZD
+Q7nPpIdh06ZNOHLkCPLy8jB27Fh07doVc+bMgUQigYeHBxYtWgQbGxvs2bNH27EgODgYPj4+pgyr
+eimse7p5s+S8yqx7IiKqAjIZsHatpmMb+/LqZrKq9aSkJJw7dw67du1CTEwM7t69ixUrViA0NBRf
+fvklhBBQKBTIyMhATEwMYmNjsXXrVkRFRUGlUpkqrOrHnHVPRERVxMFBU7nIS1pJJiuR//zzz/D0
+9MS0adOgVCrxwQcfYM+ePejatSsAoHfv3khMTISNjQ06duwIOzs72NnZwdXVFcnJyfDy8jJVaNVP
+ZKTmVVfdExERVWsmS+R//fUX7ty5g40bNyItLQ3BwcEQQkAikQAAHB0dkZmZCaVSCScnJ+1yjo6O
+UCqVpgqremLdExFRjWWyRF6vXj24u7vDzs4O7u7usLe3x927d7Xzs7KyUKdOHcjlcmRlZRWbXjSx
+UxkU1j0REVGNYbI28s6dO+Onn36CEAL37t3D06dP0b17dyQlJQEAjh8/ji5dusDLywtnzpxBbm4u
+MjMzkZKSAk9PT1OFRUREVK2YrETu4+OD06dPY8SIERBCYOHChXB2dkZ4eDiioqLg7u4OPz8/SKVS
+BAUFITAwEEIIhIWFwd7e3lRhERGRNarkIaiTkpIQGhqKli1bAtCMke7v74+goCAcOHAAO3bsgI2N
+DfLz8zF69GgMGTIEABAUFITFixejhQXVfpr09rMPPvigxLQdO3aUmDZq1CiMGjXKlKEQEZE1MuEQ
+1N26dcOaNWsAACqVCgMHDkTDhg2xe/dubNy4EU5OTsjJycF7770He3t7DBo0qDL2qNJxZDciIrJc
+ZhqCWqlUasc1mTVrlravVq1atTB79uwST0izJDVoXBwiIrIqJn782alTpxAUFASJRAJbW1uEh4dj
+1apVcH1ugHcXFxfcuXOn3NsxNSZyIiKyTCZ+/FnRqvVCn3/+OW7fvo26detqp928eRNNLXiUTFat
+ExGRZTLX48+KCAoKwurVq7XjmWRlZWH16tUYN25cpW+rsrBETkRElqlwCOro6JLzTDQEdb9+/aBU
+KjFp0iRIJBKo1WqMGDECr776aqVvq7IwkRMRkeUy0RDU3t7e8Pb21jnv9ddfx+uvv65zXkxMTIW2
+awpM5EREZLk4BLVRTORERGT5OAS1XuzsRkREZMWYyImIiKwYEzkREZEVYyInIiKyYkzkREREVoyJ
+nIiIyIoxkRMREVkxJnIiIiIrxkRORERkxZjIiYiIrBgTORERkRVjIiciIrJiTORERERWjImciIjI
+ijGRExERWTEmciIiIivGRE5ERGTFmMiJiIisGBM5ERGRFWMiJyIismJM5ERERFaMiZyIiMiKMZET
+ERFZMSZyIiIiK8ZETkREZMWYyImIiKwYEzkREZEVYyInIiKyYjJTrnzo0KGQy+UAAGdnZ0ydOhVz
+5syBRCKBh4cHFi1aBBsbG+zZswexsbGQyWQIDg6Gj4+PKcMiIiKqNkyWyHNzcyGEQExMjHba1KlT
+ERoaCm9vbyxcuBAKhQIdOnRATEwM9u3bh9zcXAQGBqJHjx6ws7MzVWhERETVhskSeXJyMp4+fYqJ
+EyciPz8fM2fOxJUrV9C1a1cAQO/evZGYmAgbGxt07NgRdnZ2sLOzg6urK5KTk+Hl5WWq0IiIiKoN
+kyXyWrVq4e2338bIkSNx8+ZNTJ48GUIISCQSAICjoyMyMzOhVCrh5OSkXc7R0RFKpdJUYREREVUr
+Jkvkbm5uaNasGSQSCdzc3FCvXj1cuXJFOz8rKwt16tSBXC5HVlZWselFEzsRERHpZ7Je63v37sXK
+lSsBAPfu3YNSqUSPHj2QlJQEADh+/Di6dOkCLy8vnDlzBrm5ucjMzERKSgo8PT1NFRYREVG1YrIS
++YgRIzB37lyMHTsWEokEERERqF+/PsLDwxEVFQV3d3f4+flBKpUiKCgIgYGBEEIgLCwM9vb2pgqL
+iIioWpEIIURVB1EWaWlp8PX1hUKhgLOzc1WHQ0REZHKGch8HhCEiIrJiTORERERWjImciIjIijGR
+ExERWTEmciIiIivGRE5ERGTFmMiJiIisGBM5ERGRFWMiJyIismJM5ERERFaMiZyIiMiKMZETERFZ
+MSZyIiIiK8ZETkREZMWYyImIiKwYEzkREZEVYyInIiKyYkzkREREVoyJnIiIyIoxkRMREVkxJnIi
+IiIrxkRORERkxWT6ZoSHh2Pp0qUICgqCRCIpMf+LL74waWBERERknN5EPnr0aADAjBkzzBYMERER
+lY3eqvW2bdsCALp27YqnT5/i6NGj+OGHH/DkyRN07drVbAESERGRfkbbyLds2YJPP/0UTZs2hbOz
+MzZu3IioNYfCAAAgAElEQVSNGzeaIzYiIiIyQm/VeqFvvvkGX331FWrVqgUAGDVqFIYNG4apU6ea
+PDgiIiIyzGiJXAihTeIAYG9vD5nMaP4nIiIiMzCakbt164YZM2Zg6NChAID4+Hh4e3ubPDAiIiIy
+zmginz9/Pnbt2oX4+HgAgLe3t7ZHOxEREVUto4lcIpGgY8eOyMnJgUwmQ7du3Vi1TkREpEd2NpCe
+DjRtCjg4mH57RtvIt27dipCQEGRkZCAtLQ3BwcHYt2+f6SMjIiKyIvn5QGgo0KYN4OmpeQ0N1Uw3
+JaNF6z179iAuLg5yuRwAMG3aNIwdOxbDhw83bWRERERWZNYsIDr62fubN5+9X7vWdNs1WiKvW7du
+sap0BwcHODo6mi4iIiIiK5OdDfx/V7ISEhI0803FaIncxcUFo0ePxmuvvQaZTIYffvgBcrkcn376
+KQBg+vTppouOiIjICqSnA6mpuuelpmrmt2hhmm0bTeRubm5wc3ODSqWCSqVCjx49TBMJERGRlWra
+FHB11VSnP8/FRTPfVIwmckMl7ilTphhc9s8//8SwYcOwbds2yGQyzJkzBxKJBB4eHli0aBFsbGyw
+Z88exMbGQiaTITg4GD4+PmXfCyIioirk4AAEBBRvIy8UEGDa3usVeh75/fv39c7Ly8vDwoULtaPC
+rVixAqGhofjyyy8hhIBCoUBGRgZiYmIQGxuLrVu3IioqCiqVqiIhERERVYnISCAkBGjeHJBKNa8h
+IZrpplShRG7IqlWrMGbMGDRu3BgAcOXKFe1T03r37o0TJ07g4sWL6NixI+zs7ODk5ARXV1ckJyeb
+KiQiIiKTkck0vdOvXAGuXdO8rl2rmW5KJknkcXFxaNCgAXr16qWdJoSARCIBADg6OiIzMxNKpRJO
+Tk7azzg6OkKpVJoiJCIiIrNwcNB0bDPHYDBAKdrIy2Pfvn2QSCQ4efIkrl69itmzZ+Phw4fa+VlZ
+WahTpw7kcjmysrKKTS+a2ImIiMiwCpXIhRA6p+/cuRM7duxATEwMWrVqhVWrVqF3795ISkoCABw/
+fhxdunSBl5cXzpw5g9zcXGRmZiIlJQWenp4VCYmquexsICVF81r0/0RENVWpSuR5eXn4/fffUVBQ
+AA8PD+0AMUOGDCn1hmbPno3w8HBERUXB3d0dfn5+kEqlCAoKQmBgIIQQCAsLg729ffn2hKq1/HzN
+qEkJCcAffwCFYxIplUCzZppeoZGRpm+LIiKyNBKhr1j9/y5duoSQkBDUq1cParUaDx48wPr169G+
+fXtzxVhMWloafH19oVAo4OzsXCUxkPmFhuq+raOokBDTDoNIRFRVDOU+o+WX5cuXY82aNdrEff78
+eSxduhR79+41TbREzzE09GFRCQlARIT5OpgQEVkCo23k2dnZxUrfHTp0QG5urkmDIirK0NCHRRUO
+g0hEVJOU6qEphw8f1r4/fPgw6tWrZ9KgiIoqHPrQGFMPg0hEZImMJvKlS5di06ZN8Pb2hre3NzZu
+3IglS5aYIzYiAM+GPjTG1MMgEhFZIqNt5Hl5efjqq6+QnZ0NtVoNuVyO8+fPmyM2Iq3CIQ4TEjRV
+6I6OgBBAVpamtF7Ya52IqKbRm8jPnDkDtVqNBQsWYPny5dp7xvPz87F48WIcOnTIbEESFQ59GBGh
+aQcvrEIv/D9L4kRUU+lN5CdOnMAvv/yC+/fvI7rIfT8ymQyjR482S3BEzysc+rCQqZ7vS0RkLfQm
+8hkzZgAA4uPj9Q78snv3biZ1IiKiKmS0s5uh0dtiY2MrNRgiIiIqG5OMtU5ERETmUaFEXvhYUiIi
+IqoaJnkeOREREZkHEzkREZEVq1Aid3Jyqqw4iIiIqByMjuz25MkTfPvtt3j06FGxzm3Tp0/HF198
+YdLgiIiIyDCjiTwkJAROTk7w8PBg5zYiIiILYzSRP3jwANu3bzdHLERERFRGRtvIW7VqheTkZHPE
+QkRERGVktET+66+/YujQoWjYsCHs7e0hhIBEIoFCoTBHfERERGSA0UT+6aefmiMOIiIiKgejifzF
+F1/Erl27cOrUKeTn56Nbt2544403zBEbERERGWE0ka9evRq3bt3C8OHDIYRAXFwc0tLSMG/ePHPE
+R0RERAYYTeSJiYmIj4+HjY2mX1zfvn3h7+9v8sCIiIjIOKO91gsKCpCfn1/svVQqNWlQREREVDpG
+S+T+/v4YP348XnvtNQDA/v37MXjwYJMHRkRERMYZTeRTp05Fq1atcOrUKQghEBwcjD59+pgjNiIi
+IjLCaNW6SqVCkyZNMHv2bLRu3RqnTp3C/fv3zREbERERGWE0kb///vs4dOgQLl68iPXr10Mul2PO
+nDnmiI2IiIiMMJrI09LSEBISgoMHD2L48OGYNm0aHj9+bI7YiIiIyIhS9Vp/+PAhFAoF+vbti4yM
+DOTk5JgjNiIiIjLCaGe3SZMmYdSoUejXrx88PT3h5+eHkJAQc8RGRERERpTqoSmHDx/Wvv/uu+94
+HzkREZGFMFq1fvToUQghtO+ZxImIiCyH0RJ5vXr1MHDgQLRp0wb29vba6StWrDBpYERERGSc0UQ+
+dOhQc8RBRERE5VCqRJ6WloYbN26gZ8+eSE9Ph4uLizliIyIiIiOMtpF/9913CA4OxvLly/H48WOM
+GTMGCQkJRldcUFCAuXPnYsyYMRg7diyuX7+OW7duYezYsQgMDMSiRYugVqsBAHv27MGwYcMwatQo
+HD16tOJ7RUREVEMYTeRbtmzBrl274OjoiIYNG+Lrr7/G5s2bja64MCHHxsYiNDQUa9aswYoVKxAa
+Goovv/wSQggoFApkZGQgJiYGsbGx2Lp1K6KioqBSqSq+Z0RERDWA0ap1GxsbyOVy7fvGjRtrn01u
+SP/+/dG3b18AwJ07d1CnTh2cOHECXbt2BQD07t0biYmJsLGxQceOHWFnZwc7Ozu4uroiOTkZXl5e
+5dwlIiKimsNoRvbw8MCOHTuQn5+Pq1evIjw8HC+//HKpVi6TyTB79mwsXboU/v7+EEJAIpEAABwd
+HZGZmQmlUgknJyftMo6OjlAqleXcHSIioprFaCJfuHAh7t27B3t7e8yfPx9yuRyLFi0q9QZWrVqF
+Q4cOITw8HLm5udrpWVlZqFOnDuRyObKysopNL5rYiYiISD+jVesODg6YMGEC2rZtC5lMhi5duhSr
+atcnPj4e9+7dw5QpU1C7dm1IJBK0bdsWSUlJ8Pb2xvHjx9GtWzd4eXlh7dq1yM3NhUqlQkpKCjw9
+PStl54iIiKo7o4k8ISEBq1evRufOnVFQUIDFixdj2bJl6NOnj8HlBgwYgLlz52LcuHHIz8/HvHnz
+0KJFC4SHhyMqKgru7u7w8/ODVCpFUFAQAgMDIYRAWFhYsYFniIiISD+JKDr+qg4DBw7Ev//9bzRp
+0gQAcPv2bUydOhXffvutWQJ8XlpaGnx9faFQKODs7FwlMRAREZmTodxntI1cLpfjhRde0L5/6aWX
+YGtrW/lREhERUZkZrVr39PTE5MmTMXz4cEilUhw4cACNGzdGfHw8AGDIkCEmD5KIiIh0M5rIhRBo
+3LgxfvrpJwBA7dq1Ubt2bSQlJQFgIiciIqpKRhO5oaechYeHV2owREREVDbGh2gz4PLly5UVBxER
+EZVDhRK5kQ7vREREZGIVSuSFw60SERFR1ahQIiciIqKqxap1IiIiK1bmRF70yWT/+Mc/KjUYIiIi
+Khujifzo0aP46KOPkJWVhUGDBsHX1xc7d+4EAHzwwQcmD5CIiIj0M5rIP/30UwwbNgzfffcdvLy8
+cOTIEezbt88csREREZERpapab9GiBY4dO4Z+/frB0dEReXl5po6LiIiISsFoIm/UqBGWLl2Ky5cv
+o1evXli5ciVefPFFc8RGRERERhhN5B9//DHatWuHL774Ag4ODnBxcUFUVJQ5YiMiIiIj9Cbyo0eP
+AgAOHz4MADh37hzi4+Ph6OiIH374wTzRERERkUF6H5py6dIl+Pj4aJ9y9jw+9YyIiKjq6U3k7733
+HgDDTz8jIiKiqmX0MabHjh3D+vXr8ddffxUbyU2hUJg0MCIiIjLOaCJfvnw55s+fj5YtW/IhKURE
+RBbGaCJ3cnJC3759zRAKERERlZXeRH769GkAmsFgli1bBl9fX8hkzz7+yiuvmD46IiIiMkhvIv/k
+k0+0/7979y6uXbumfS+RSPDFF1+YNjIiIiIySm8ij4mJAQD8+uuv8PDwKDbv/Pnzpo2KiIiISkVv
+Ij9z5gzUajUWLFiA5cuXa3us5+fnY/HixTh06JDZgiQiIiLd9CbyEydO4JdffsH9+/cRHR39bAGZ
+DKNHjzZLcERERGSY3kQ+Y8YMAEB8fLzeUdx2797NpE5ERFSFjD40xdBQrLGxsZUaDBEREZVNqZ5H
+rk/Rkd6IiIjI/CqUyDnSGxERUdWqUCInIiKiqsVETkREZMUqlMidnJwqKw4iIiIqB6MPTXn48CH2
+79+Px48fF5s+ffp0DtNKRERUxYyWyCdPnoz//e9/5oiFiIiIyshoiRwAVqxYYeo4iIiIqByMJvL+
+/fvjq6++Qrdu3SCVSrXTX3zxRYPL5eXlYd68ebh9+zZUKhWCg4PRsmVLzJkzBxKJBB4eHli0aBFs
+bGywZ88exMbGQiaTITg4GD4+PhXfMyIiohrAaCLPzMzE5s2bUb9+fe00iUQChUJhcLlvvvkG9erV
+w0cffYRHjx5hyJAhePnllxEaGgpvb28sXLgQCoUCHTp0QExMDPbt24fc3FwEBgaiR48esLOzq/je
+ERERVXNGE/n333+PkydPolatWmVa8cCBA+Hn5wdAMwKcVCrFlStX0LVrVwBA7969kZiYCBsbG3Ts
+2BF2dnaws7ODq6srkpOT4eXlVY7docqUnQ2kpwNNmwIODlUdDZkKzzORdTPa2c3FxaVEj/XScHR0
+hFwuh1KpxHvvvYfQ0FAIIbSjwTk6OiIzMxNKpbLYbWyOjo5QKpVl3h5Vnvx8IDQUaNMG8PTUvIaG
+aqZT9cHzTFQ9GC2RSyQSvPbaa/Dw8ICtra12emluPUtPT8e0adMQGBgIf39/fPTRR9p5WVlZqFOn
+DuRyObKysopN5/3pVWvWLKDIk2tx8+az92vXVklIZAI8z0TVg9FEPnXq1HKt+MGDB5g4cSIWLlyI
+7t27AwBat26NpKQkeHt74/jx4+jWrRu8vLywdu1a5ObmQqVSISUlBZ6enuXaJlVcdjYQH697XkIC
+EBHB6tfqgOeZqPowmsi7du2KH3/8EadOnUJ+fj68vb3Rv39/oyveuHEjnjx5gs8++wyfffYZAGD+
+/PlYtmwZoqKi4O7uDj8/P0ilUgQFBSEwMBBCCISFhcHe3r7ie0blkp4OpKbqnpeaqpnfooV5Y6LK
+x/NMVH1IhJFnkW7ZsgXff/89/P39IYTAt99+i/79+5e7pF5RaWlp8PX1hUKhgLOzc5XEUJ1lZ2va
+Sm/eLDmveXPgyhWW1KoDnmci62Io9xnt7PbNN98gJiYG48ePx5tvvomYmBgkJCSYLFiqWg4OQECA
+7nkBAby4Vxc8z0TVh9GqdSFEsVvP7O3tIZOVakA4slKRkZrXhARNNauLi+biXjidqgeeZ6LqwWhG
+7tatG2bMmIGhQ4cCAOLj4+Ht7W3ywKjqyGSaXssREby/uDrjeSaqHowm8vnz52PXrl2Ij4+HEALd
+unXD6NGjzREbVTEHB3Z4qgl4nomsm9FE/vbbb2Pbtm0IDAw0Rzw1DkfVIiKiijDa2S0nJwfp6enm
+iKVG4ahaRERUGfSWyL/77ju8+uqruH//Pnx8fNCoUSPY29trh1k19tAUMoyjahERUWXQm8g/+eQT
+DBgwAI8fP8aRI0eKjZNOFcNRtYiIqLLoTeQdO3ZEu3btIISAr6+vdnphQr969apZAqyOOKoWERFV
+Fr1t5CtWrMDVq1fh4+ODq1evav8lJycziVdQ06aAq6vueS4umvlERESlYbSz24YNG8wRR43CUbWI
+iKiycIi2KsJRtYiIqDIwkVcRjqpFRESVgYm8inFULSIiqgijbeRERERkuZjIiYiIrBgTORERkRVj
+IiciIrJiTORERERWjImciIjIijGRExERWTEmciIiIivGRE5ERGTFmMiJiIisGBM5ERGRFWMiJyIi
+smJM5ERERFaMiZyIiMiKMZETERFZMSZyIiIiK8ZETkREZMWYyImIiKwYEzmRNcvOBlJSNK9EVCMx
+kRNZo/x8IDQUaNMG8PTUvIaGaqYTUY0iq+oAiKgcZs0CoqOfvb9589n7tWurJCQiqhoskRNZm+xs
+ID5e97yEBFazE9UwJk3kFy5cQFBQEADg1q1bGDt2LAIDA7Fo0SKo1WoAwJ49ezBs2DCMGjUKR48e
+NWU4RNVDejqQmqp7XmqqZj4R1RgmS+RbtmzBggULkJubCwBYsWIFQkND8eWXX0IIAYVCgYyMDMTE
+xCA2NhZbt25FVFQUVCqVqUIiqh6aNgVcXXXPc3HRzCeiGsNkidzV1RXr1q3Tvr9y5Qq6du0KAOjd
+uzdOnDiBixcvomPHjrCzs4OTkxNcXV2RnJxsqpCIqgcHByAgQPe8gADNfCKqMUzW2c3Pzw9paWna
+90IISCQSAICjoyMyMzOhVCrh5OSk/YyjoyOUSqWpQiKqPiIjNa8JCZrqdBcXTRIvnE5ENYbZeq3b
+2Dwr/GdlZaFOnTqQy+XIysoqNr1oYiciPWQyTe/0iAhNm3jTpiyJE9VQZuu13rp1ayQlJQEAjh8/
+ji5dusDLywtnzpxBbm4uMjMzkZKSAk9PT3OFRGT9HByAFi2YxIlqMLOVyGfPno3w8HBERUXB3d0d
+fn5+kEqlCAoKQmBgIIQQCAsLg729vblCIiIisnoSIYSo6iDKIi0tDb6+vlAoFHB2dq7qcGqE7GzW
+3hIRVSVDuY8DwpBeHAWUiMjycYhW0oujgBIRWT6WyEknjgJKRGQdmMhJJ44CSkRkHZjISafqMgoo
+H9dNRNUdEznpZO2jgLKjHhHVFOzsRnpZ8yig7KhHRDUFS+QWqLKrg8u7vsJRQK9cAa5d07yuXauZ
+bsnYUY+IahImcgtS2dXBlbU+axsFlB31iKgmsfCyVc1S2dXBNbV6ubCj3s2bJedVpKMeR7gjIkvE
+ErmFqOzq4JpcvVzZHfXYcY6ILBlL5BaiNNXBLVpU3fqsTWV21KupNRtEZB1YIrcQlX3fdnW5D7y8
+KqujXk2u2SAi68BEbiEquzrY2u8DrywV7ajHjnNEZOlYtW5ORnpLlbU62FjnK2u+D9xSmKLjHDvN
+EVFlYoncHErZW6q01cGl7XxlrfeBW5LKrNlgpzkiMgVe0s2hjL2lCquDK2l1RtdHhlVWzQY7zRGR
+KbBEbmqV3FuKna/MrzJqNnjeiMhUmMhNrZJ7S7HzVdWpSMc5njciMhUmclMrxX1gZRkLvabfVmat
+eN6IyFSYyE3NwQEF/rp7S+W9FoDQeQ5l6vzE28qsE88bEZkKO7uZwfuIhAuAACTABalIhQsSEICd
+P0fizIVnnytt5yfeVmadeN6IyBQkQghR1UGURVpaGnx9faFQKODs7FzV4RiVnQ20bg3cugXURjaa
+Ih3paIqncIBUChQUlFymeXNNhypjpTST3I/Mm5xNjoeYiMrKUO5j1bqJFe3k9BQO+A0t8BSaq7eu
+JA6UvvNTpT5elDc5m421PRaWiCwbE7kRZemIpouhTk5Sqe7pxjo/VTQmnQpvcr55E1Crn9Xzz5pV
+iRshIqLKxkSuR0ULqIXJFtDfyaldO93T9XV+MlmhmTc5l0upf1CZ5JcXEZEGE7ke5S2g6kq20txs
+fDg+BS+7ZkMq1bSBh4QAJ09qXps3R7Hp+jo/mazQzJucy6TUP6jYXEFE5iCsTGpqqvD09BSpqakm
+20ZWlhDNmgkBlPzXvLlmvj7vvvvss1LkiSiEiN/QXOTDRhS4Nhd/TQgRWY/zSmzvxg3D6zUWU0aG
+8XUYXHnz5uXb4RooJET3oQoJKe8HiYgMM5T7WCLXoTwF1Px8YNo0YNOmZ9M+wiyEIRpuuAkp1LD5
+4ybqfR4Nh4WzitW2lqbzk6GYbt4EOnSoQKGPNzmXWqlbIdhcQURmwkSuQ9Ommg5nRdVGNtyRgpYv
+ZhfriFaYkENCgM8+e9YTvTayMQS6L+QPtiegc6vsYon3yRMDzajZ2XjxaQo8nfVf/G/fLl7dHhJS
+tn1GZGTZ6vkrQ3najqu4vbnUP/LYXFHp2NWASDcmch0cHID69TX/lyIfUQjFFbTBNXji8N02cJgX
+ivyc/GLNn0VL4gDQFOlwge4Led0nqVD9kV4s8To76yhRF2ljrd3eEz//1QZRCIUcT+COFNSG/iva
+pk2aGoJSl8zN+czT8rQdW0h7c6mHWuWYrJXGQk49keWqgqr+CjFXG7mrq6Y5Mwq62zmPdgjR2fxZ
++K82ssRv0N3unILmojayDC4fEiL0trE+kTiJPNiIWzbNRRRChBR5htdjacrTdmxB7c36Qnn3XQuN
+uTSdMCyYpRxGoqrENnIjnq+yK6wVNVQ97n4pwWCJ+CkcEA/d7c4JCNAOCqPPoa+zof5a97adRCZk
+UMNVfRNhiMZH0N9t3eKaY8vTdmxh7c2FrRDNmmneF44HsH//cyXFqmiuKKoaFGUt7NQTWaYq+GFR
+IZVZIs/L0/yqb95cCBsbTSl8wgQh0tOFcHISwh03RB5sdBYHVJAKd9wwWKqWIk/8xzNEFDRrLtRS
+aalK0IX/PGxuCLWN7m2XpYQvlWoKYxbjxg3NwS5LsOVZxgyK3qFgsKRYVSXialCUtdBTT2R2LJHr
+8fx92X/8AXz+OeDhAeTkAOloilTobudMl7ogHYbbOQsgw+Dra9H0zyvwa3YNL6uvYCbWouC5Z9UU
+dqQrWsK3e+kFCAfHUu1HM0kqnG10d54yV3OsoY5IxeaVp+3YAtubs7M1JXBdSpQUq2JM1mpSlLXA
+U09kcWpsIn/yBNi2Tfc8pRLIyzNcPf5bO+PV44XuKx3ww28tSnz++Y50V6DpzCZFPj5tuBA2ysxS
+rV/azAWvvq37imbqu8cM1d7qnDdP/2Nd9QZrgbfHWXyndIsPsHQs8NQTWZ4qqCGokMqqWh8/vlS1
+1tpBXVLQXKggFSloLg62ChHxe/OEg0Pp1qHvn76OdD96vSvU+kZ/0VNVWrSZQCrVvIaEaJoPTMlQ
+7a2+eWEzyhFsVe2gHhY/ho7FB1h6FnbqiaqEodxnEYm8oKBAhIeHi1GjRok33nhD3Lx5U+9nKyOR
+Z2UJUbt22ZJubWQJd9ww2tu8LOv7Dc10z3zpJb3t4/mQiFt4SeRLdF/RzNkca2i0uWbNhHBxMZJH
+yhOsBfXAtvgmaIsPsGws6NQTmZ2h3GeCm4TL7vDhw1CpVNi9ezfOnz+PlStXYsOGDSbb3m+/AU+f
+lm2ZwkeQVhZD95kjPR2PHJqivvJ2iVm30Ayv4DTavvgYB043hUOj4nWLhc2x5mCo9jYtTdPvQJfC
+mt0WLcoRrDl30IjCzucJCZp9cnHRVPeaq1O6URYfYNlY0KknsigW0UZ+5swZ9OrVCwDQoUMHXL58
+2aTbUyhMuvpSMdSRTu3iim8M3Lr2EI2QeLcF0h9XbQOhoY5Izs4lR8crVF06KZlzDJ1ysfgAiagy
+WEQiVyqVkMvl2vdSqRT5JrzXNS7OZKvWSS4H2rcvnrwMdaR74hOAyVnRWIMQ/IbmyIMUv6E51iAE
+70NTmrKEZGioI9KQIcDQobrnVbdOSlXRKb1MLD5AIqoIi/hpLpfLkZWVpX2vVqshM2GpITQUOH68
+8tZnYwO0bAlcv15y3t//Dpw9q7mGPnigGROkcFcLk3IAEuCCVDx2ckGjiQGwWxKJl47JMPPmWsxH
+BJoiHeloWqzXu6Ukw9LU3laTml0iIotkESXyTp064fj/Z9bz58/D09PTpNvTV1IsLy8v4MIFzRPI
+Ckf5kko178+ff5ZwGzUCJk58tlwBZJiJtWiLKxj68jXUS9NUfTrUkWlLuoVt84VJ3MnJvIODGWOo
+9pY1u0REpmcRl9R//vOfSExMxJgxYyCEQEREhMm3+euvmoFfdHFy0rxmGrmNWyoF2rUDTp4EatUC
+zp3TlLovXtQk90aNSi4TFaUpwcfHazqENWkCDBnigOjoFsUS3PMlXWdnwMdHM4BNnTpl319TM9QR
+iZ2UiIhMRyKEEFUdRFmkpaXB19cXCoUCzs7OFV7f118Dn3wCvPce4Oen6U1d2Pacng7Y2gI3bgAv
+vaR5VKiXl2aeoWRdGtnZz7ZlqIq8tJ8jIqLqy1Dus4gSeVUaOrR4VXvRkmPh/wt7Zv/978/m9etX
+se2WtpTK0iwRERliEW3kREREVD5M5ERERFaMiZyIiMiKMZETERFZMSZyIiIiK8ZETkREZMWYyImI
+iKyY1d1HXlBQAAC4e/duFUdCRERkHoU5rzAHFmV1iTwjIwMAMG7cuCqOhIiIyLwyMjLQrFmzYtOs
+bojWnJwcXL58GS+88AKkhU8oISIiqsYKCgqQkZGBtm3bolatWsXmWV0iJyIiomfY2Y2IiMiKMZET
+ERFZMSZyIiIiK8ZETkREZMWs7vazyqRWq7F48WJcu3YNdnZ2WLZsWYlu/TXdhQsXEBkZiZiYGNy6
+dQtz5syBRCKBh4cHFi1aBBsbG+zZswexsbGQyWQIDg6Gj49PVYddJfLy8jBv3jzcvn0bKpUKwcHB
+aNmyJY+ZAQUFBViwYAF+//13SCQSfPjhh7C3t+cxK4U///wTw4YNw7Zt2yCTyXjMjBg6dCjkcjkA
+wNnZGVOnTq0+x0zUYIcOHRKzZ88WQghx7tw5MXXq1CqOyLJs3rxZDB48WIwcOVIIIcSUKVPEqVOn
+hBBChIeHi++//17cv39fDB48WOTm5oonT55o/18T7d27VyxbtkwIIcRff/0l+vTpw2NmxA8//CDm
+zANLqtoAAAodSURBVJkjhBDi1KlTYurUqTxmpaBSqcS7774rBgwYIG7cuMFjZkROTo4ICAgoNq06
+HbMaXbV+5swZ9OrVCwDQoUMHXL58uYojsiyurq5Yt26d9v2VK1fQtWtXAEDv3r1x4sQJXLx4ER07
+doSdnR2cnJzg6uqK5OTkqgq5Sg0cOBAhISEAACEEpFIpj5kR/fv3x9KlSwEAd+7cQZ06dXjMSmHV
+qlUYM2YMGjduDIB/m8YkJyfj6dOnmDhxIsaPH4/z589Xq2NWoxO5UqnUVrUAgFQqRX5+fhVGZFn8
+/Pwgkz1rfRFCQCKRAAAcHR2RmZkJpVIJJycn7WccHR2hVCrNHqslcHR0hFwuh1KpxHvvvYfQ0FAe
+s1KQyWSYPXs2li5dCn9/fx4zI+Li4tCgQQNtIQTg36YxtWrVwttvv42tW7fiww8/xKxZs6rVMavR
+iVwulyMrK0v7Xq1WF0tcVJyNzbOvS1ZWFurUqVPiGGZlZRX7Q6hp0tPTMX78eAQEBMDf35/HrJRW
+rVqFQ4cOITw8HLm5udrpPGYl7du3DydOnEBQUBCuXr2K2bNn4+HDh9r5PGYlubm54fXXX4dEIoGb
+mxvq1auHP//8Uzvf2o9ZjU7knTp1wvHjxwEA58+fh6enZxVHZNlat26NpKQkAMDx48fRpUsXeHl5
+4cyZM8jNzUVmZiZSUlJq7HF88OABJk6ciPfffx8jRowAwGNmTHx8PDZt2gQAqF27NiQSCdq2bctj
+ZsDOnTuxY8cOxMTEoFWrVli1ahV69+7NY2bA3r17sXLlSgDAvXv3oFQq0aNHj2pzzGr0EK2Fvdav
+X78OIQQiIiLQokWLqg7LoqSlpWHmzJnYs2cPfv/9d4SHhyMvLw/u7u5YtmwZpFIp9uzZg927d0MI
+gSlTpsDPz6+qw64Sy5Ytw4EDB+Du7q6dNn/+fCxbtozHTI/s7GzMnTsXDx48QH5+PiZPnowWLVrw
+e1ZKQUFBWLx4MWxsbHjMDFCpVJg7dy7u3LkDiUSCWbNmoX79+tXmmNXoRE5ERGTtanTVOhERkbVj
+IiciIrJiTORERERWjImciIjIijGRExERWTEmcqIKmjt3Lvz8/PCf//ynqkMpITo6GgqFwuBn5s6d
+i9u3b5dr/UeOHMH27dsBAOvWrSs2pG8hhUKB6Ojocq2fiIzjMGZEFfT111/j4sWLsLOzq+pQSigc
++92QpKQkTJs2rVzrv3Ll/9q735Cm2jcO4F856VpQthxFK6EShUSmvqis1NxG/8Q/bILbi0KCGlJa
+UoQjQULRGr0wFKIsyqyoKM2ILbRClMolETj6SS8kTS2yFKeSenBn1++FOPQxp0/1/GrP7/q8cXif
++7rvsyNcu8+55/WfeY/R6XTQ6XQ/FJ8xNj9O5Iz9hOzsbBARtm3bhuDgYKxcuRIymQxXr15FaWkp
+WlpaEBAQgLS0NJjNZrx69QoXL14EEaG7uxu7d+/G0qVL8fTpUwBAZWUllErlnONptVpotVq8fv0a
+AFBaWorIyEh0dnaisLAQLpcLS5YsQUFBAdRqNSwWCzZv3gyDwfDdeJWVlfjy5QvMZjNu3bqFDx8+
+oKSkBKIoQqFQoKioaM7Svh0dHbhz5w4AQKVSAQCcTidMJhP6+vpgMBiQm5uL2tpatLa24uzZs7Ba
+rXjx4gUEQYBOp0NOTs6c51pbW4uGhgYMDQ1hYGAAGo3GW3aysrISjx8/hiRJiI+Px8mTJ/Hx40cc
+PHgQCoXCWwq1sLAQbrcbMpkMZ86cwbp169DY2Ijz58/D4/EgNDQURUVFUCqV0Gq1SEtLw/PnzzE2
+Ngar1YqoqKj5/wgY+93+1+XWGPu3iYiIoJ6eHu9PIqKbN2/S4cOHye120+joKGVkZFBjYyM5HA6K
+jY2lT58+0ejoKMXExNDt27eJiMhisVBVVZXPsTQaDVVUVBAR0bNnzyglJYWIiDIyMqi+vp6IJkvy
+JiUlkSiKlJ+fTzU1NfPG7OnpIVEUSaPRUFtbGxER2e12MhgMPvuWl5dTeXm597VerydRFGlgYICi
+o6NpZGSEampqKD8/n3p7eyk5OZmIJstKnjhxgsbHx+eMXVNTQ9u3b6evX7+SKIpkNBqpvr6empqa
+KDc3l9xuN0mSRMePH6e6urpZ18BisZDdbiciIpvNRg8ePKD+/n6Kj4/3HnP58mXKzc31vg/Xrl0j
+IqLq6mrKycnxee6M/Sn4GTljv0hISAjWrl0LYPJ2tV6vhyAIkMvlSE1NRUtLCwAgIiICq1evhlwu
+h0KhwNatWwFMrmqHh4fnHSczMxPA5Oq8r68Pnz9/Rnd3N3bt2gVgsiRvcHAw3r9//7fm39XVhWXL
+lkGtVgMA9u7di+7uboyMjCw4RkJCAoKCgrBixQooFAoMDQ1521atWgWZTAaTyYSqqirk5eVBJpP5
+jKfVaqFUKhEUFITk5GQ4HA60tLTA6XTCYDBAr9fj7du36OjoADDzGuzYsQPFxcU4deoUAgMDkZqa
+CqfTCbVa7T3GaDTC4XDMmD8AhIeHw+VyLfi8Gfud+NY6Y7/I4sWLva89Hs+MNiKCJEkAgMDAwBlt
+giD8rXGmV+jzeDyQJAn0l/+0PH28hfrrnH8kzvS5BQQEzJjXokWLcO/ePbS2tqK5uRkmkwk3btzA
++vXr54w3/b3xeDwQBAGSJCErKwsHDhwAAAwPD0MQBAwODs64Bnv27EFsbCwaGxtx/fp1NDU1QaPR
+zDq/6aWLpz5YTJW3ZMwf8IqcsX9AXFwc6urqIEkSxsbG8OjRI2zZsuWXxLbZbACAJ0+eICwsDGvW
+rEFoaCgaGhoATFby6+/vR3h4+ILiTSXHDRs2wOVywel0AgDsdjtUKhWWL1/us+/0ROhLe3s79u3b
+h02bNiE/Px9hYWHo7Oz02ae5uRkjIyMQRRE2mw2JiYmIi4vDw4cP8e3bN7jdbhw5cgT19fWz+ubl
+5Xmf2R87dgzt7e2Ijo5GW1sbent7AQB37979ZdeFsd+FV+SM/QOMRiO6urqQnp6OiYkJpKWlYefO
+nd6yiT/jzZs3uH//PuRyubc047lz53D69GlUVFQgMDAQFRUVC95Fn5SUBLPZjCtXrqCsrAzFxcUY
+GxtDcHAwysrKfPadSsq+NuhNiYyMRExMDFJSUiCXy7Fx40YkJib67BMSEoJDhw5hcHAQ6enp3lvf
+7969Q2ZmJiRJQkJCAvR6/ayv0GVnZ6OgoAAXLlyAIAiwWCxQKpUoKipCTk4OJiYmoFKpUFJSMu/c
+GfuTcfUzxvyIVqtFdXW19xnvv9n03e6MsbnxipyxP8z+/fu/u+nNZDL9ULzx8XEYjcbvth09enTe
+73hbrVa8fPly1u+joqJ+ejVrt9tx6dKl77ZlZWX9VGzG/l/wipwxxhjzY7zZjTHGGPNjnMgZY4wx
+P8aJnDHGGPNjnMgZY4wxP8aJnDHGGPNjnMgZY4wxP/ZfSlayTVNi5cIAAAAASUVORK5CYII=
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>This scatterplot shows the relationship between the count of emails sent to and fro among different employees of Enron. I think a different feature showing the proportion of mail sent by employees and POI to each other will be more helpful in finding the POI. As POIs are more likely to have more communications with other POIs as compared to communication with other non-POIS, <strong>two new features are created.</strong></p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h4 id="Features-created:-fraction_mail_from_poi-and-fraction_mail_to_poi-&lt;a-id=#new_features_2&gt;&lt;/a&gt;">Features created: <code>fraction_mail_from_poi</code> and <code>fraction_mail_to_poi</code> &lt;a id=#new_features_2&gt;&lt;/a&gt;<a class="anchor-link" href="#Features-created:-fraction_mail_from_poi-and-fraction_mail_to_poi-&lt;a-id=#new_features_2&gt;&lt;/a&gt;">&#182;</a></h4>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[136]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;fraction_mail_from_poi&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;from_poi_to_this_person&#39;</span><span class="p">]</span><span class="o">/</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;from_messages&#39;</span><span class="p">]</span> 
+<span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;fraction_mail_to_poi&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;from_this_person_to_poi&#39;</span><span class="p">]</span><span class="o">/</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;to_messages&#39;</span><span class="p">]</span>
+
+<span class="c1"># Scatterplot of fraction of mails from and to between poi and this_person w.r.t POI</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;fraction_mail_from_poi&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;fraction_mail_to_poi&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">False</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Not-POI&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;fraction_mail_from_poi&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;fraction_mail_to_poi&#39;</span><span class="p">][</span><span class="n">enron_df_new</span><span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="kc">True</span><span class="p">],</span>
+            <span class="n">color</span> <span class="o">=</span> <span class="s1">&#39;r&#39;</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;POI&#39;</span><span class="p">)</span>
+
+    
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;fraction_mail_from_poi&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;fraction_mail_to_poi&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Scatterplot of fraction of mails between poi and this_person w.r.t POI&quot;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;upper right&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> 
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+
+
+<div class="output_png output_subarea ">
+<img src="
+AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPMICKEGqp4UZIUuaGS7mgJbiUJu4KZriX
+qVdFU3FFU0E0bi7k1uovtDAptyw10PKGwkWTgq5o7qCEuAODzPb8/piYWGZhGwaOn/fr5Wuc88w5
+5zsL53ue5TxHJoQQICIiohrPxtoBEBERUeVgUiciIpIIJnUiIiKJYFInIiKSCCZ1IiIiiWBSJyIi
+kggm9SqSlJSEgIAA+Pr6YtCgQZgyZQr+/PPPcm/v999/R3BwsP75pEmTcPfu3coIFQAQERGBlStX
+mn1defb7yy+/wNvbGyNGjMCjR4+KlG3duhW9e/fGokWLyrRNY5YuXYqUlBQAwJIlS3Dy5MlK2a4p
+pt5fRX311Vf46KOPAAA+Pj5ITk4u9bplfT0ApKWlYebMmWVap7qx5Pe+cuVKRERElFhe+HNLT09H
+x44dDa5f+Psk0/bs2YNdu3YZLHvuuefg6+uLIUOGYOjQoRg0aBC2b99e5DVfffUVBg8ejIEDB+L1
+11/H/PnzcfPmTX15aY951Z2ttQN4HCiVSkydOhWfffYZ2rRpAwDYv38/3nrrLcTGxkIul5d5mxcv
+XkRmZqb+eVxcXKXFWxbl2e+hQ4cwatQoTJ8+vURZdHQ0wsPD0aVLl8oIDydPnoSfnx8AICQkpFK2
+aY6p91dRY8aMqfRtmnLz5k1cuXKlSvdZ2arqey+stJ9bVX+fNdmZM2fQqlUro+X/93//hwYNGgAA
+cnJyMGTIEHh4eMDb2xtr165Famoqtm/fDhcXF2i1Whw4cAB+fn7Ys2cPnn766ap6GxbHpF4F8vLy
+kJ2dDYVCoV82ePBgODo6QqPRQC6XIzo6Gp9//jlsbGxQv359rF27Fo0bN0ZoaCh+++035ObmQgiB
+1atXo0mTJti0aROys7OL1GjHjx+Pjz76CDY2Nli5ciUyMjKgUqnw+uuv45133kF6ejrGjh0Ld3d3
+3LhxA2FhYZg7dy5eeuklpKamQgiB4ODgEgn1zz//xMqVK3H//n3IZDJMmjQJQ4cO1e+7YL8uLi76
+dVQqFcLCwnDq1CnI5XK0b98eixYtQlRUFGJjY1GrVi1kZ2cjKChIv05gYCAyMzOxZMkSzJ49G199
+9RWcnZ1x+fJljBkzBu3atcP7778PpVKJrKws9OjRA6GhoQCA48ePY8OGDdBqtXBwcMB7772HH374
+Abdu3cK8efOwbt06hIeHY+zYsXjttdcQExODDz/8EBqNBo6Ojli0aBHat2+PiIgI3LhxA1lZWbhx
+4wYaNGiA9evXo3HjxkU+k/K8v/T0dIwfPx7dunVDUlIS1Go1FixYgN27d+Py5cto27YtPvjgA9jY
+2GDbtm2IiYlBfn4+8vLyEBQUhH79+iEiIgL37t0r0kqTm5uLRYsW4dq1a7CxsUGbNm2wcuVK2NiU
+bIj78ssvkZqaCqVSiYkTJ2LkyJEAgGPHjmHr1q1QqVSoXbs2goKC0L59eyxduhSZmZmYPHkyateu
+jd69e2PUqFFISkqCn58fYmJi0Lx5c2zduhXZ2dlYsGABtm7diqNHj0Kr1aJp06ZYvnw5GjdujOzs
+bISEhODChQtQqVTo3r07FixYAFtbW7Rr1w5vv/024uLicOvWLYwbNw4TJkwoEf8LL7yA8ePHIyEh
+AQqFAnPnzkX//v0BAJs3b8ahQ4cgl8vh5uaGZcuWoWHDhggICNB/74UlJSUZ/D2lp6djwoQJeOWV
+V/Dbb7/hwYMHmDNnDgYOHIicnBwsWbIEqampaNSoEeRyOTp37lxkuxqNpsjn9t5770Gj0SA4OBjJ
+ycl4+PAhFixYgFdffbXI9/nll18iKioKdnZ2qFWrFlauXIlnn322xGdQICEhAevWrUPjxo2RlpaG
+2rVrIywsDO7u7lAqlQgPD0diYiI0Gg1eeOEFLF26FI6OjvDx8UH79u1x/vx5zJ07F1lZWQb3a+zv
+PiEhAevXr0fz5s3x559/QqlUIjg4GN26dSsS39ChQ7FgwQL06NEDhw4dwsKFC5GYmIjatWtj6dKl
+aN26NcaOHVvk/YSEhMDBwQEKhQLR0dGwt7cHAPz44484duwY4uLiULt27SLrGeLo6Ii2bdvi8uXL
+aN26NaKiovDTTz/B2dkZAGBjY4OhQ4ciJSUF27dvx/Lly01ur0YRVCU+++wz0b59e+Hj4yPmzZsn
+9uzZIxQKhRBCiHPnzomuXbuKmzdvCiGE+Pzzz8WyZcvEr7/+KmbOnCk0Go0QQojt27eLqVOnCiGE
++Oabb8Tbb7+t376Hh4e4c+eOEEKIgIAAERsbK4QQ4tGjRyIgIEAcOnRIpKWlCQ8PD5GYmCiEEPrn
+Bw4cEEII8dNPPwkvLy+hVCrFpk2bxHvvvSdUKpXo06ePOHLkiBBCiL/++kv06tVL/PrrryX2W9jG
+jRvFv/71L6FUKoVGoxELFy4Uy5YtE0IIERQUJD755BODn5O3t7f4/fffhRBCvPnmm2LRokX6sjlz
+5oj4+HghhBA5OTmia9euIjk5WWRlZYnOnTuL//3vf0IIIY4cOSImT55scHs//PCDuHjxoujRo4e4
+fv26EEKIkydPCi8vL5GdnS02bdok+vTpI7Kzs4UQQkydOlVs3LixUt5fwecdExMjhBAiODhYeHt7
+i+zsbPHo0SPh5eUlzpw5I9LT00VAQIDIy8sTQgjx3XffiUGDBgkhhP57Kfze9u7dKyZNmiSEEEKt
+VoslS5aIq1evGvxsly9fLoTQfY/dunUTFy5cEFeuXBGDBg0Sd+/eFUIIceHCBeHl5SVyc3NFfHy8
+eP3114UQQuzdu1fMnDlTH4eXl5eIiooSQggxYsQI8dtvv4m9e/eKwMBAoVKphBBCREVFiSlTpggh
+hFi4cKH44osv9HHOmzdPfPTRR0II3e8oMjJSCCFEcnKyaNu2rXj06FGJ9+Dh4SG2bt0qhND93XTu
+3FncuXNHREdHCz8/P5Gbm6uPr+AzKfjeizP2eyr4no4dOyaEEOLw4cOid+/eQgghQkJCxIIFC4RW
+qxV37twRL7/8sti0aVOJbRf+3Aq2d/jwYSGEEEePHhV9+vQp8n2q1WrRpk0bkZmZqf+sCz5bY+Lj
+48Xzzz+v/3v+8ssvxbBhw4QQQkRERIiwsDCh1WqFEEL8+9//1n/33t7e4sMPP9R/D4b2a+rvPj4+
+XrRu3Vr/9/bpp5+KsWPHloivIAYhdH8TXl5e4j//+Y/QaDTCy8tL3Lp1y+D7SU9PN/h+TR03ih+H
+Ll26JLp37y5+++03cfjwYTF8+HCD68XGxgpfX18hRNG/rZqMNfUqMnHiRIwaNQqJiYlITEzExx9/
+jI8//hjR0dE4deoUevbsqa/pFq6hODs7IyoqCmlpaUhISEDdunVN7kehUCAxMREPHjzAxo0b9ctS
+U1PRvn172NrawtPTs8j2fX19AQCvvPIK5HI5zp8/ry+/evUq8vPz9bWhxo0bo3///vjPf/5jtJ8Q
+AE6cOIE5c+bAzs4OABAQEIAZM2aU4RPTKdxqEBYWhhMnTmDbtm24fPkyHj16BIVCgV9//RWtWrVC
+69atAQD9+/fXx2tIfHw8unXrhubNmwMAunfvjgYNGuj73l966SU4OjoC0NUMHzx4UGnvz87ODj4+
+PgCAFi1aoGPHjvp9NWrUCA8ePECnTp2wdu1aHDx4ENeuXdO31BjTuXNnrF+/HgEBAejRowfGjx8P
+V1dXg6/19/cHoPsee/bsqW9puHXrVpHfnUwmw/Xr14us6+3tjTVr1kCtVuOXX37BtGnTEBcXh969
+e+POnTto164dPv30UyQnJ2PEiBEAAK1Wi7y8PADATz/9hOTkZERHRwNAifEGffr0AQC0adMGSqUS
+CoUCtWrVKvEe3nzzTQDA888/Dw8PDyQmJuLEiRMYPnw4HBwcAADjxo3Dtm3boFQqjX5uxn5P9erV
+g52dHV555RUAut/A/fv3AQCnTp3C4sWLIZPJ0KBBA/Tr18/o9guzs7PDq6++qo/7zp07Rcrlcjle
+e+01+Pv7o3fv3vDy8tL/XZry/PPP6/9GRowYgZUrV+LevXv46aefkJ2drR9LoFKp8OSTT+rXK1jH
+2H6vXLli9O++a9euaNKkif7v7YUXXsDevXtLxNavXz/MnTsXQUFBOH36NCZMmIC4uDjUrVsXLVq0
+QMOGDUus4+LigqZNm5p934aMHz8eNjY20Gq1qFOnDhYsWID27dsjIyMDarXa4DpKpRIymaxc+6uu
+mNSrwJkzZ3D27FlMmTIF3t7e8Pb2xty5c+Hr64u4uDjI5fIiP6xHjx7hxo0bSEtLQ0hICCZOnIg+
+ffqgZcuWOHDggMl9abVaCCEQFRWFOnXqAADu3r2LWrVq4d69e7C3t4et7T9fe/H+fK1WW2SZVqst
+sQ8hhNE/EmPrabVaqFQqk+sYUnCQBoCxY8fi+eefR69evTBgwAD89ttvEEKU+PyEEDh//jyef/55
+g9sUBm53UPg91a5dW79cJpMZfH1535+dnV2RWAtOCgr7448/MH36dEyYMAFeXl548cUX8d577xnd
+ZvPmzfHjjz8iISEB8fHxmDhxIpYuXVqiuRlAkSZ5IQRsbW2h0WjQvXt3bNiwQV+WkZGBRo0a4fTp
+0/plzs7OeOGFF3D8+HFkZ2djyJAh2Lx5M2JiYtC3b1/IZDJotVpMmTIFb7zxBgDdQbPgpEir1WLj
+xo1wd3cHADx8+LDIZ1GQwAuWGfrcAZT4fcrl8hKv1Wq1Zn+jxn5PgO57Kfisih/0C++rtONhCn/P
+xpJIeHg4Lly4gJMnT+pP+Ldu3Wpyu8X3X/D3oNVqsXjxYv2JSW5uLvLz8/WvK/x3ZWi/c+bMKbGv
+sv6NPPfcc1CpVIiNjYWrqyu8vb0xZ84c2NraGj3pLhxXWRXuUy/M09MT165dQ1ZWVokTiYSEBJOV
+k5qIo9+rQIMGDbB169YiB8isrCzk5eXBw8MDXbt2xalTp3Dr1i0AQFRUFN5//33ExcXB29sbb7zx
+Btq1a4eYmBhoNBoAuj/mwgetgueOjo7w9PTE559/DkB34BwzZgxiY2MNxnb37l2cOHECgK5f1c7O
+Dh4eHvpyNzc32NnZ4ejRowCAzMxMHDlyBD169DAYR4FevXohKioKKpUKWq0Wu3btgpeXV7k/wwcP
+HiAlJQXz5s1D//79kZmZievXr0Or1aJDhw64dOmS/mqC2NhYzJ8/32h83bp1Q1xcHNLS0gDoal8Z
+GRno0KFDqeOp7PdXWGJiItq2bYuJEyfipZdeQmxsrP57N+TLL7/EokWL0LNnT8yfPx89e/Y0emVF
+QY3q5s2bOHnyJLp3767/PC5dugQA+PnnnzF48GDk5+dDLpcXOVnp27cvPvjgA3Tv3h2Ojo5wc3PD
+xx9/rK+F9uzZE9HR0cjJyQEAbNy4EQsWLNCX7dixA0IIKJVKTJs2DTt37izz57Nv3z4AupOfK1eu
+4MUXX0TPnj3x7bff6setREZG4sUXX9T3yRZn6vdkSq9evRAdHQ2tVosHDx4Y/bsq/rmZc/fuXbzy
+yiuoV68eJkyYgMDAwCItZsakpqYiNTUVALB792506tQJTzzxBHr27Ildu3ZBqVRCq9Vi2bJl+OCD
+D0q9X3N/96XVt29fhIeHw8vLC+7u7sjJycHBgwf1v5eyMHasMadx48YICAjA3Llziwwu/uabb3D0
+6FG89dZbZd5mdcaaehVwc3PD5s2bsX79evz111+oVasWnJycsHLlSrRs2RIAMH/+fEyZMgUA0LBh
+Q4SGhiInJwfz5s2Dr68v5HI5unTpoh+A1LFjR2zYsAEzZszA5s2b0a9fP7zxxhvYsmULwsPDsWrV
+Kvj6+kKpVGLQoEEYPHgw0tPTS8RWq1Yt7N+/H+Hh4ahduzY2b95c5Ozfzs4OW7ZswerVqxEREQGN
+RoMZM2boB8UU3m/hk4Fp06Zh7dq1GDp0KNRqNdq3b49ly5aV+zN0dnbG22+/jWHDhqFevXqoX78+
+OnXqhGvXrqF79+4IDw9HUFCQfuDb+vXrAegOKnPmzMHq1av123r22WexfPly/Otf/4JGo0Ht2rWx
+bds2ODk5lTqeyn5/hQ0aNAhHjx7FwIEDYWdnh+7du+PBgwf6RFnc0KFD8d///hcDBw5EnTp10KRJ
+E4wbN87ga/Pz8zFs2DCoVCosXboUbm5uAHSXZs2dO1dfe9+6dSscHBzQqlUryOVyjBw5Env27EHf
+vn2xatUqzJs3DwD0yaNTp04AgFGjRiEzMxOjR4+GTCaDi4sLwsLCAOguLQsJCYGvry9UKhV69Oih
+/82Xxa+//oqvv/4aWq0W69evh7OzM0aOHImMjAyMGjUKWq0Wrq6uCA8PN7oNU7+ngm4ZQ2bOnInl
+y5djwIABaNCgQZHffGGFP7eC36IpDRo0wLRp0zBhwgTUrl0bcrm8yG/WmKeeegobNmzQD+pct24d
+AGD69OlYu3Ythg0bBo1Gg9atW2PhwoWl3q+pv/uEhASzcRXo168fPv30U/3JQI8ePXD+/Hl9V2Ny
+cjKWLl2K/fv3G1z/rbfegr+/P/r06YOXX34Zq1atAgBMnTq11DEAwLvvvos9e/Zg2rRpUCqVUCqV
+aNeuHaKiosrd3F9dyYSxNi6SvPT0dPj6+uLs2bPWDoWoVJ577jmcOnXKYDPr4yYhIQGrVq3Cd999
+Z+1QqBphTZ2IqJoKDAw0er07r3EnQ1hTJyIikggOlCMiIpIIJnUiIiKJqNF96o8ePUJKSgoaNmxY
+rvnTiYiIahKNRoOsrCy0bdu2yHwBBWp0Uk9JSTE7BzAREZHU7Nq1y+CNr2p0Ui+YHWjXrl2SussO
+ERGRIX/99RfGjh1rcJpdoIYn9YIm96effhrNmjWzcjRERERVw1iXMwfKERERSQSTOhERkUQwqRMR
+EUkEkzoREZFEMKkTERFJBJM6ERGRRFgsqWu1WgQHB8PPzw8BAQG4du1akfLvvvsOo0aNgr+/P4KD
+g6HVas2uQ0REpFAAly7pHitDQkICOnfujIyMDP2y8PBwfPvttwZff//+fRw8eLDE8vT0dHTq1AkB
+AQEICAiAn58fPvjgA315fHw8xo0bh4CAAPj7++Pzzz9HwT3VFi5ciBMnTlT4vVgsqcfExECpVGL3
+7t149913ERYWpi979OgRNmzYgC+++AJRUVHIycnB8ePHTa5DRESPN7UaCAwE2rQBPDx0j4GBuuUV
+ZW9vj0WLFqE0Ny49f/48jh07ZrDs2WefRWRkJCIjI/HVV18hISEBqampuHDhAtauXYvw8HBERkZi
+586duHTpEj799NOKB1+IxZL6mTNn0KtXLwCAp6cnUlJS9GX29vaIiopCnTp1AABqtRq1atUyuQ4R
+ET3e5s0DNm4Erl4FtFrd48aNuuUV1a1bNzg7O2PXrl1Fln/22WcYMWIE/Pz88P777wMAtm3bhvj4
+eOzevdvkNvPz86FUKlGnTh1ERUVh6tSpaNSoEQDA1tYWCxcuNLuNsrJYUs/JyYGjo6P+uVwuh/rv
+0ykbGxs89dRTAIDIyEgoFAp4eXmZXMcqKruNh4iIykWhAPbtM1y2f3/lHKZXrFiBHTt26Lt+c3Nz
+8cMPPyAqKgpRUVG4du0ajh8/jnfeeQfdunWDn59fiW1cvHhR3/w+bdo0jBs3Dq6urkhLS0OLFi2K
+vNbR0RF5eXnQarUVD/5vFpsm1tHREbm5ufrnWq0Wtra2RZ6///77uHLlCiIiIiCTycyuU2XUat2p
+3/79wPXrQIsWwJAhQHg4YI14iIgecxkZQFqa4bK0NF25u3vF9lG/fn0sXrwYQUFB6NSpE/Lz89Gh
+QwfY2dkBALp06YI///wTHTp00K8zdepUKBQKeHh4YOLEifrm9+IaN26MGzdu4IUXXtAvy8nJgb29
+PWxsKq9+bbGaeqdOnfSd/klJSfDw8ChSHhwcjPz8fGzZskXfDG9unSpjyTYeIiIqMxcXXf3KkObN
+deWVwcfHB25ubti7dy9q1aqF33//HWq1GkIIJCYmws3NDTY2Nvra9fbt2xEZGYlly5aZ3O6YMWOw
+detWZGVlAQBUKhVCQkLg7+9fOYH/zWLVzn79+iEuLg7+/v4QQiA0NBQHDx6EQqFA27ZtER0djS5d
+umD8+PEAgHHjxhlcp8qZa+MJDQUcHKo2JiKix5yDg67BdOPGkmVDhlTuYXnJkiWIj49H3bp1MWDA
+AIwZMwZarRadO3dG3759cevWLVy4cAE7duzAhAkTSrXNNm3aYM6cOZgzZw40Gg3UajX69euHKVOm
+VF7gAGSiNEP9qqn09HT06dMHsbGxlXeXtkuXdMMqDfVxyOXA+fMVb+MhIqIyK9wzmpamq6E/bj2j
+5vLeY/IxlEFBG8/VqyXLKrONh4iIysTWFtiwQddgmpGhOxyz4bQozihXXEEbjyGV3cZDRERl5uCg
+azDl4bgk1tQNCQ/XPRpq4yEiIqqmmNQNYRsPERHVQEzqphS08RAREdUA7FMnIiKSCNbUiYioZlEo
+KrVrNCEhAYGBgXj22WcB6OZs9/X1RUBAAH744Qfs3LkTNjY2UKvV8PPzw9ChQwEAAQEBWLFiBdyr
+UYsukzoREdUMFpzCu1u3bli/fj0AQKlU4rXXXsOTTz6J3bt3Y9u2bXBycsKjR48wa9Ys1KpVCwMG
+DKiMd1Tp2PxOREQ1QxVN4Z2TkwMbGxt8/fXXmDdvHpycnAAAtWvXRlBQUIk7uVUnrKkTEVH1Z+Ep
+vOPj4xEQEACZTAY7OzssW7YMa9euLXFntebNm+PmzZvl3o+lMakTEVH1Z+HbtBVufi+wY8cO3Lhx
+A87OzvplV69ehUs1nlmUze9ERFT9VdVt2goJCAjAunXrkJOTA0B3f/V169Zh7Nixlb6vysKaOhER
+VX9VeZu2v/n4+CAnJwdTpkyBTCaDVqvFyJEjMXDgwErfV2VhUicioprBQlN4d+3aFV27djVYNnjw
+YAwePNhgWWRkZIX2awlM6kREVDNwCm+zmNSJiKhm4RTeRnGgHBERkUQwqRMREUkEkzoREZFEMKkT
+ERFJBJM6ERGRRDCpExERSQSTOhERkUQwqRMREUkEkzoREZFEMKkTERFJBJM6ERGRRDCpExERSQST
+OhERkUQwqRMREUkEkzoREZFEMKkTERFJBJM6ERGRRDCpExERSQSTOhERkUQwqRMREUkEkzoREZFE
+MKkTERFJBJM6ERGRRDCpExERSQSTOhERkUQwqRMREUkEkzoREZFEMKkTERFJBJM6ERGRRDCpExER
+SQSTOhERkUQwqRMREUkEkzoREZFEMKkTERFJBJM6ERGRRDCpExERSQSTOhERkUQwqRMREUkEkzoR
+EZFEMKkTERFJhK2lNqzVarFixQqcP38e9vb2WL16NVxdXYu8Ji8vDxMnTkRISAjc3d0BAMOGDYOj
+oyMAoFmzZlizZo2lQiQiIpIUiyX1mJgYKJVK7N69G0lJSQgLC8PWrVv15cnJyVi+fDkyMzP1y/Lz
+8yGEQGRkpKXCIiIikiyLNb+fOXMGvXr1AgB4enoiJSWlSLlSqcTmzZvRsmVL/bLU1FTk5eVh0qRJ
+GDduHJKSkiwVHhERkeRYrKaek5Ojb0YHALlcDrVaDVtb3S47d+5cYp3atWtj8uTJGDVqFK5evYq3
+3noLhw8f1q9DRERExlksWzo6OiI3N1f/XKvVmk3Obm5ucHV1hUwmg5ubG+rVq4esrCy4uLhYKkwi
+IiLJsFjze6dOnXDixAkAQFJSEjw8PMyuEx0djbCwMABAZmYmcnJy0LBhQ0uFSEREJCkWq6n369cP
+cXFx8Pf3hxACoaGhOHjwIBQKBfz8/AyuM3LkSCxatAhjxoyBTCZDaGgom96JiIhKyWIZ08bGBitX
+riyyrOCytcIKj3S3t7fHv//9b0uFREREJGmcfIaIiEgimNSJiIgkgkmdiIhIIpjUiYiIJIJJnYiI
+SCKY1ImIiCSCSZ2IiEgimNSJiIgkgkmdiIhIIpjUiYiIJIJJnYiISCKY1ImIiCSCSZ2IiEgimNSJ
+iIgkgkndyhQK4NIl3SMREVFFMKlbiVoNBAYCbdoAHh66x8BA3XIiIqLysLV2AI+refOAjRv/eX71
+6j/PN2ywSkhERFTDsaZuBQoFsG+f4bL9+9kUT0RE5cOkXkHl6RPPyADS0gyXpaXpyomIiMqKSb2c
+KtIn7uICtGhhuKx5c105ERFRWTGpl1NBn/jVq4BW+0+f+Lx55td1cACGDDFcNmSIrpyIiKisjA6U
+O378OLy9vbHPSOfv0KFDLRZUdWeuTzw01HxiDg//5/Vpaboa+pAh/ywnIiIqK6NJPTk5Gd7e3khI
+SDBY/jgn9dL0ibu7m96Gra1ulHtoqO71Li6soRMRUcUYTeqzZs0CAKxZswYqlQpXrlyBRqNBq1at
+YGv7eF8JV9AnfvVqybKy9ok7OJg/ASAiIioNs9k5JSUFs2bNQr169aDVanH79m1s3rwZHTp0qIr4
+qqWCPvHC15kXYJ84ERFZi9mkvnr1aqxfv16fxJOSkrBq1SpER0dbPLjqjH3iRERU3ZhN6gqFokit
+3NPTE/n5+RYNqiZgnzgREVU3Zi9pc3Z2RkxMjP55TEwM6tWrZ9GgapKCPnEmdCIisjazNfVVq1Zh
+/vz5WLJkCYQQaNGiBdatW1cVsREREVEZmE3qzzzzDPbs2YPMzExotVq4cLozIiKiaslsUk9NTcWC
+BQuQmZkJIQRatmyJtWvXwtXVtSriIyIiolIy26e+ePFizJkzBwkJCfjvf/+LyZMnY9GiRVURGxER
+EZWB2aQuhIC3t7f+eb9+/aDgvUGJiIiqHbNJvUuXLtiyZQtu376Ne/fuYdeuXXB3d8fNmzdx8+bN
+qoiRiIiISsFsn3psbCwAlJhs5s0334RMJtOXExERkXWZTerHjh0zWhYVFVWpwRAREVH5Veh+6rt3
+766sOIggamDAAAAgAElEQVSIiKiCKpTUhRCVFQcRERFVUIWSukwmq6w4iIiIqIIqlNSJiIio+mBS
+JyIikogKJXUnJ6fKioOIiIgqyOwlbXl5eYiIiEB8fDw0Gg26du2KwMBAODg44IsvvqiKGImIiKgU
+zNbUV65ciUePHiE0NBRr166FWq3G8uXLqyI2IiIiKgOzNfU//vgDBw4c0D8PDg7GwIEDLRoUERER
+lV2pbujy8OFD/fOHDx9CLpdbNCgiIiIqO7M19QkTJmDUqFH6O7UdO3YMb731lsUDIyIiorIxm9RH
+jBiBtm3b4vTp09BqtYiIiMBzzz1XFbERERFRGZhN6jNnziyRyMePH4//+7//s2hgREREVDZGk/qM
+GTOQmpqKW7duoU+fPvrlGo0GTz/9dJUER0RERKVnNKmvXbsW9+/fR0hICJYuXfrPCra2ePLJJwEA
+WVlZaNiwoeWjJCIiIrOMJnVHR0c4Ojpi69atRld+++23sXfvXosERkRERGXDW68SERFJBG+9SkRE
+JBG8SxsREZFEMKkTERFJBPvUiYiIJMLo6PebN2+aXLFJkyZFLnUrTqvVYsWKFTh//jzs7e2xevVq
+uLq6FnlNXl4eJk6ciJCQELi7u5dqHSIiIjLMaFJ/8803IZPJDNbGZTIZYmNj0aVLF6MbjomJgVKp
+xO7du5GUlISwsLAil8clJydj+fLlyMzMLPU6REREZJzRpH7s2LEKbfjMmTPo1asXAMDT0xMpKSlF
+ypVKJTZv3owFCxaUeh0iIiIyzmhSj4iIwMyZM7Fo0SKD5WvWrDG54ZycHDg6Ouqfy+VyqNVq2Nrq
+dtm5c+cyr0NERETGGc2Wbdq0AQC89NJL5dqwo6MjcnNz9c+1Wq3Z5FyedYiIiEjHaMb08fEBAAwb
+Ngz3799HXl4ehBDQaDRIT083u+FOnTrh+PHjGDhwIJKSkuDh4WGRdYiIiEjHbDX4gw8+wK5du6BW
+q1G/fn1kZmaibdu22LNnj8n1+vXrh7i4OPj7+0MIgdDQUBw8eBAKhQJ+fn6lXoeIiIhKx2xS/+67
+7/Dzzz8jJCQE06ZNw82bN/H555+b3bCNjQ1WrlxZZJm7u3uJ10VGRppch4iIiErH7OQzjRo1gqOj
+I1q1aoXU1FR069YNt2/frorYiIiIqAzM1tQdHR2xb98+tGnTBjt37kSjRo3w8OHDqoiNiIiIysBs
+TT0kJAR3795F165d0bRpUwQHByMwMLAqYiMiIqIyMFtTb9y4MSZNmgQAWLhwocUDIiIiovIxm9R3
+7NiBLVu2IDs7u8jyc+fOWSwoIiIiKjuzSf2LL77Avn370KRJk6qIh4iIiMrJbJ+6u7s7nnrqqaqI
+hYiIiCrAbE09ICAAvr6+6NChA+RyuX65ubnfiYiIqGqZTeohISHw9fVF06ZNqyIeIiIiKiezSd3e
+3h7/+te/qiIWIiIiqgCzSb1Hjx4ICwvDyy+/DDs7O/3yF1980aKBERERUdmYTer/+9//AAB//PGH
+fplMJsMXX3xhuaiIiIiozMwm9cI3XCkuIiICM2fOrNSAiIiIqHzMXtJmyrFjxyorDiIiIqqgCiV1
+IURlxUFEREQVVKGkLpPJKisOIiIiqqAKJXUiIiKqPpjUiYiIJKJCSd3d3b2y4iAiIqIKMntJ240b
+N7Bz5048ePCgyMC4NWvWIDw83KLBERERUemZTeqBgYHo0qULunTpwoFxRERE1ZjZpK5WqxEUFFQV
+sRAREVEFmO1T79y5M44dOwalUlkV8RAREVE5ma2pHz58GDt37iyyTCaT4dy5cxYLioiIiMrObFL/
+5ZdfqiIOIiIiqiCzST0vLw8ffvghTp06BY1Gg27dumH27NlwcHCoivgkQ6EAMjIAFxeAHx0REVmC
+2T71lStXIi8vD6GhoVi7di1UKhWWL19eFbFJgloNBAYCbdoAHh66x8BA3XIiIqLKZLam/scff+DA
+gQP658HBwRg4cKBFg5KSefOAjRv/eX716j/PN2ywSkhERCRRZmvqQgg8fPhQ//zhw4eQy+UWDUoq
+FApg3z7DZfv368qJiIgqi9ma+oQJEzBy5Ej4+PhACIHjx4/j7bffrorYaryMDCAtzXBZWpqunDPt
+EhFRZTGb1EeMGIF27dohMTERWq0WEREReO6556oithrPxQVo0ULX5F5c8+a6ciIiospitPn9+PHj
+AIB9+/bhf//7H+rWrQsnJyecO3cO+4y1KVMRDg7AkCGGy4YM4Sh4IiKqXEZr6snJyfD29kZCQoLB
+8qFDh1osKCkpuOfN/v26JvfmzXUJnffCISKiymY0qc+aNQsAMGjQIHh5eRUpO3r0qGWjkhBbW90o
+99BQXqdORESWZTSpf//991Aqldi0aZM+wQO6G7xs374d/fv3r5IApcLBgYPiiIjIsowm9ZycHJw9
+exa5ublFmuDlcjnmzJlTJcERERFR6RlN6qNHj8bo0aNx6tQpeHh44Mknn0ReXh5u3boFV1fXqoyR
+iIiISsHs5DN//vknpkyZAgC4e/cu3nnnHezevdvigREREVHZmE3qX3/9NXbt2gUAaNq0Kb799tsS
+t2IlIiIi6zOb1FUqFezt7fXP7ezsLBoQERERlY/ZGeX69u2L8ePHY8CAAQB0l7P5+PhYPLAajfdZ
+JSIiKzCb1OfPn4/Dhw8jMTERtra2GDduHPr27VsVsdU8arXutmz79wPXr+vmiC2YacbW7EdNRERU
+IaXKNC1atMBTTz0FIQQ0Gg2io6MxcuRIS8dW8/A+q0REZEVmk3pQUBDOnj2LBw8eoGXLlkhNTUWn
+Tp2Y1Iszd5/V0FA2xRMRkUWZHSiXmJiIQ4cO4dVXX8WqVavw9ddfQ6lUVkVsNUtp7rNKRERkQWaT
+eqNGjWBnZwd3d3ecP38erVq1Qm5ublXEZnUKBXDpku7RrIL7rBrC+6wSEVEVMJvUGzdujO3bt6Nj
+x46IiorCoUOHoChVlqu51GogMBBo0wbw8NA9BgbqlhvF+6wSEZGVme1TDwkJwc8//4z27dujf//+
++O6777BixYoqCM16SjvercSVa7zPKhERWZHZmvqsWbPw+uuvAwACAgKwdetWdOvWzeKBWYu58W4K
+hYmaPP6+z+offwDnz+seN2zg5WxERFQlzGabR48eISMjAy6PSZ9waca7RUSYqcnzPqtERGQFRmvq
+33//PQDg1q1b8Pb2Rs+ePdGnTx/4+PigT58+VRZgVTM33s3Z2XxNnoiIyBqM1tQ3bdqE/v3748GD
+Bzh27BiEEJDJZFUZm1UUjHcrXBMvMGQI8OCB+Zo8K+lERGQNRpN6x44d0a5dOwghitTMC5L7uXPn
+qiRAaygY17ZvH5CeDjRrBgwdqluuVOpq8levllyPV64REZE1GW1+X7NmDc6dOwdvb2+cO3dO/y81
+NVXSCb0wIQCtVvdYgFeuERFRdWV2oNzWrVurIo5qpfglbdevFx0IxyvXiIioOjJ7SdvjpjSXtNny
+yjUiIqqGmNSLKcsU7gVXrrHJnYiIqgOL1S21Wi1WrFiB8+fPw97eHqtXr4arq6u+/NixY9i8eTNs
+bW0xYsQIjB49GgAwbNgwODo6AgCaNWuGNWvWWCpEgwouaeNAOCIiqmksltRjYmKgVCqxe/duJCUl
+ISwsTN8/r1KpsGbNGkRHR6NOnToYM2YMfHx84OTkBCEEIiMjLRWWWeYuaWOtnIiIqiuLJfUzZ86g
+V69eAABPT0+kpKToyy5duoQWLVrA2dkZANC5c2ckJiaiSZMmyMvLw6RJk6BWqzF37lx4enpaKkSj
+OBCOiIhqIosl9ZycHH0zOgDI5XKo1WrY2toiJycHTk5O+rK6desiJycHtWvXxuTJkzFq1ChcvXoV
+b731Fg4fPgzbKh6BVjAQLjS02A1biIiIqjGLZUtHR8ci913XarX65Fy8LDc3F05OTnBzc4Orqytk
+Mhnc3NxQr149ZGVlWW3eeU7hTkRENYnFRr936tQJJ06cAAAkJSXBw8NDX+bu7o5r167h/v37UCqV
+OH36NDp27Ijo6GiEhYUBADIzM5GTk4OGDRtaKkQiIiJJsVhNvV+/foiLi4O/vz+EEAgNDcXBgweh
+UCjg5+eHhQsXYvLkyRBCYMSIEWjcuDFGjhyJRYsWYcyYMZDJZAgNDa3ypnciIqKaSiZE4UlQa5b0
+9HT06dMHsbGxaNasmbXDISIisihzeY+TzxAREUkEkzoREZFEMKkTERFJBJM6ERGRRDCpG6FQAJcu
+6R6JiIhqAib1YtRqIDAQaNMG8PDQPQYG6pabwpMAIiKyNib1YubN093M5epVQKvVPW7cqFtuSHlP
+AoiIiCobk3ohCgWwb5/hsv37DdfCy3oSQEREZClM6oVkZOjuymZIWpquvLBSnwSwbZ6IiKoAk3oh
+Li5A3bqGy+rW1ZUXZvYkII1t80REVHU4sXopGZpM18UFaNFC1+ReXPPmQItN84AtG/9ZWNA2D+ju
+7UpERFSJWFMvJCMDyMkxXJabW7L53cEBGDLE8OtHDlTA7lAZO+iJiIgqgEm9EBcXwNXVcFmLFiWb
+3wEgPByYPRt45hlALtc9zp4NrJlVxg56IiKiCmJSL8RUzXvIEF15cba2upb0P/4Azp/XPW7YANg2
+/7tt3pDmzQ2fIRAREVUAk3oxxmre4eGm13NwANzdCyX+8pwhEBERVQAHyhVTUPMODdW1kLu4VCD/
+FpwJ7N+va3Jv3lyX0M2dIRAREZUDk7oRDg66hF6hxF6pZwhERESmsfndgEqf+rVE23zlsca8NpxL
+h4ioemJSN6AmTP1qjTnnOc89EVH1xqReTHnmf7cGa5x41ISTHSKixxmTejFlnf/dGqxx4lFTTnaI
+iB5nTOrFuNSAy8utceJRE052iIged0zqxdSEy8utceJRE052iIged0zqBoSFAZ6euslnAN2jp6du
+eXVgjROPmnCyQ0T0uON16gYsXAgkJf3zXKPRPV+4sPJurqZQVOzSdWvMa8O5dIiIqjfW1IsxNyDs
+9u2KXaNdWZeFGZ1z3oKnadbYJxERlR6TejGmBoRdu6Zrhq9IMq7sy8IsOK+NRffJCWyIiCofk3ox
+Li66ZmVDhABu3Ch/MuZlYZzAhojIkpjUi3FwAOrXL/3ry5KMeVkYJ7AhIrIkJvViFArg3r3Sv74s
+ydjUZWF16wING5Z+vwZV8zZttlQQEVkWk3oxpmrThjRrVvprtE1dFvbwIRAcXPr9FlFD2rTZUkFE
+ZFlM6sWYqk0bUr9+2QaMrVwJODkZLit3bbWGtGlzAhsiIstiUi/GVG3akHv3ypaIs7KA3FzDZcVr
+q6VqTa9BbdqcwIaIyLKY1A0IDwemT9c1rcvlQNOmxl+bnl62ZuPS1FbVamDGDF1LeqtWZlrTa1ib
+dng4MHs28Mwzus/2mWd0zzmBDRFRxTGpF6NW61qtv/9ed/na008DAwcCrq6GX1/WZmNztVV7e+DF
+F4EtW3T7F8JMa3oNa9PmBDZERJbDpF5M4e7pguvSP/4YcHY2/PryNBubqq3Onl10itrCDLam19A2
+bWtMmkNEJHWsHxViqns6JUX3KJfrxqK1aAEMHVq+ZuOC2mpoaNH53xUKXeI25vp13evd3YsVcFJ2
+IiICk3oRprqntVrdo0aje3z99Yrf3KWgtlp4/6a6wF1cjLSmGztLICKixwqb3wspy+Vs339fjoHl
+Zoazm9u/2dZ0tmkTET3WmNQLKcvlbGlpwOXLpi850+fwh6WbHMbU/j09dX39RERU9ar5hJ16TOrF
+mJocpjAHB10TvKEcXXyCt6+alX5ymOKD6Jo1011el5jIEeJERFWthkzYqcc0UYypyWEKy87W/QP+
+ydGArmu7YAQ9ANSBAj7ZJiaHCQ0t0lxeFd3jCgW73omISqPw8RwoebyvblhTL8Zcv3azZqaneb19
+u+gIehdkoDnKPjmMJbrHy3vGWVOanYiIKlMNmrBTj0m9GFP92m++Cfzwg+lpXn//vegI+gy4IA3V
+Y3KYUk8R/3cWVz9U1KhmJyKiylTDJuwEwKRuUEG/tqsrIJPp+rYB4Oefga1bdbnYkObNgfbti9b0
+8+CAfaikyWEqUGUu1Rlnsar8g2Zt4LoxEGlX1dX5PjFERBZRwybsBMCkblBBv/aAAbpZ5QquTU9L
+003fWq+e4fWGDAGeeqpkTX8+wrEes3H7iWfKN+F5JYzUKNUZZ7Gq/JPZVzEHG/E+imbx6trsRI8x
+9hGRBdTECTuZ1I1QKIBduwyXXb6sG5FuaJpXhQKYNq1oefNnbHFt9gbUSyvnhOdlvLWqoeOb2TNO
+Z+NV+SHYjzr4Z2PVtdmpWmPSsYyaNjSZapwadxMqUYOlpaUJDw8PkZaWVunbTk4WQldPN/wvOVmI
+3FwhLl7UPapUQsyeLcQzzwhhY6N7nD5diNRUXXm55eYK4epqOIgWLYps3FAMs2frlguh+38d5IqW
+uCjqIFe/mdmzhe6N2NgY3I8SctESF/WLnnmmgu/pcWLuS6GKmT3b8N/G7NnWjqzoAYJqvOrydZrL
+e0zqRpw9az6pF2axY4uJZCsAISZM0CcIkzGoVEI9c7a47fSMUMFGXMYz4hOn2WLOTJVu9dxcXcIx
+sIFLeKbIScD06dXjx10jVOekU82U+aBp6oTXmmeePJEjCzKX99j8bsTHHxsvc3ICWrb853lFLnsw
+2ypr7hq7HTuAefNw+zYQHW08BtXseZBHbMST2VdhCy3ccBWTszfiA5t5ul4AE51Hx52GQCl3gKur
+bma7Q4eqUUtndW7WronXw1hBuVvQq+vQ5DJ2lxFVqio+yahUlqqpm6oAAEK8807R15uqTMvluvLi
+ynQyb6y29/e/rCeeEe4uuUZf4oBcoWxi5A0VrtEUDkou1weV+0AlLl7U1dCrTaWzJtSGyvLDqC5t
+e1ZQ7sYME61LVqupV9fWA5IMNr+Xg7kW79TUoq83dWxxchLiwYOS+yjTgUylEmL8eKMBFe/zLv6v
+JS4KNcpw1mEgwVS7Y1VNaNYuTdKpCScnFlTh31V1+x2U5wyfJK2yz9fZ/F4OLi5A3bqGy554ouR1
+6qYue8jOBoKDiy4rc6usra3uWjojzfBpaI4MGL9gMgMuuCkvw8WWBqazq1YtnTWlWbs018M85k21
+Ff5dVbehyTXxwmayCGtdmMGkXkYajS5nFO/KNXUjmOJ5plwHMgcHYNgww9vHEOTB+AWTeXDAtxrj
+yUUBB7Pd0tXqWFWtzjDMMJV0asrJiQVV+HdVMKnEH+W8XLSy1cQLm8kirHW+zqRuQEYGkJNjuCw3
+F3BzA55+GmjVSnf2NWMGkJBgfJ3ieabcB7JiCULr+gw+dZqN+TBfK4lwDYdqetHkopk5G3O14WbP
+JAtuADNwoOFtGztWWWwMW7U6wzDDVNKpZicn1hhzWGk50BI3Syiv6tZ6QFXOqufrldPKbx2WHCj3
+1FMmx6YZ/CeTGV7u6lqyP8VYV2Dxy8WK98fk5gpxKTlXKJJ1C82MoSvZxVhog6ZiEKJkd6+rqxCe
+nrrHQuPoSnT/Vkk3cXXrSy2PajLQy9rd+kbGZ9b8YQWP8eDHx50lh1ZYbaCcRqMRy5YtE6NHjxZv
+vvmmuHr1apHy2NhYMXz4cDF69Gixe/fuUq1TnCWS+p9/lj2Zm/vn5FTyIFX8QFY4YRZPoIaeFxz4
+8vKKbqdFC90JiVz+zw/I01P3usJMDVCSyXQj/GfOLN2JR3FVkm+lkgmqwclJNQhBCMEcSNJhyfN1
+qyX1I0eOiKCgICGEEGfPnhXvFLoOTKlUir59+4r79++L/Px8MXz4cJGVlWVyHUMskdQrO6GbO0gW
+HMiMXS5W2m2a207xfZsb4V9wMlLWH2WVj5Kv6ZnAyicn1e6qBiKJsNTJstVGv585cwa9evUCAHh6
+eiIlJUVfdunSJbRo0QLOzs6wt7dH586dkZiYaHKdqrB3r2W3b6gvxcFB1wV86FDFtmluO8X37eKi
+uze8KdnZhpeb6u6t8m7i6tSXWh5WHuhVzbr1iSTDWkMrLJbUc3Jy4OjoqH8ul8uh/nsEVk5ODpwK
+DRWvW7cucnJyTK5TFTZtsuz2jR0kTR1Yy7LNshygHRwAb+/y7dPUWLSaNIatWrHSyQm/LyLLsNb5
+usWSuqOjI3Jzc/XPtVotbP9+N8XLcnNz4eTkZHKdqjBrlmW3b+wgaW4m2NJus6wH6E2bgELnUCUY
+u0TP1KhkXtFTs/D7IrKsqj5ft1hS79SpE06cOAEASEpKgoeHh77M3d0d165dw/3796FUKnH69Gl0
+7NjR5DpVwchl4EYFBBS9xeoTTxhPhIDxg6SpA6s5hbdZ1gP0E08Akycb3/aECeVrPuIVPTULvy8i
+CalYl71xBSPZ/fz8xOjRo8XFixfFgQMHRFRUlBDin9Hvw4YNEzt37jS6jinWGv3u5KQbGV4wlqnw
+WK3cXN00stOnl23sk6nR8Iael+ZystLsW6XSvZfCg+KeeML4+yuLmj6G7XHD74uo+jOX92RCCGHt
+E4vySk9PR58+fRAbG4tm5kZ9ldHevbrm6VmzgFdfBS5fBvLygDp1dHdoK01TSsGkLS4upW96Kb6O
+ueeVtW+FQvcegdK/PyIiqlrm8p6V5lKs/oYNK9oc37Zt2bdR0JdSkXXMPa+sfTs4lO89EhFR9cFp
+YomIiCSCSZ2IiEgimNSJiIgkgkmdiIhIIpjUiYiIJIJJnYiISCKY1ImIiCSCSZ2IiEgimNSJiIgk
+gkmdiIhIIpjUiYiIJIJJnYiISCKY1ImIiCSCSZ2IiEgimNSJiIgkgkmdiIhIIpjUiYiIJIJJnYiI
+SCKY1ImIiCSCSZ2IiEgimNSJiIgkgkmdiIhIImytHUBFaDQaAMBff/1l5UiIiIgsryDfFeS/4mp0
+Us/KygIAjB071sqREBERVZ2srCy4urqWWC4TQggrxFMpHj16hJSUFDRs2BByudza4RAREVmURqNB
+VlYW2rZti9q1a5cor9FJnYiIiP7BgXJEREQSwaROREQkEUzqREREEsGkTkREJBFM6sVotVoEBwfD
+z88PAQEBuHbtmrVDkiyVSoX58+fjjTfewMiRIxEbG2vtkCTvzp07eOWVV3Dp0iVrhyJ527dvh5+f
+H4YPH449e/ZYOxzJUqlUePfdd+Hv74833njjsf9tM6kXExMTA6VSid27d+Pdd99FWFiYtUOSrAMH
+DqBevXr48ssv8cknn2DVqlXWDknSVCoVgoODDV4GQ5UrISEBZ8+exVdffYXIyEhOkGVBP//8M9Rq
+NaKiojBjxgxs2LDB2iFZFZN6MWfOnEGvXr0AAJ6enkhJSbFyRNL12muvYfbs2QAAIQTnGrCwtWvX
+wt/fH40aNbJ2KJL3yy+/wMPDAzNmzMA777yD3r17WzskyXJzc4NGo4FWq0VOTg5sbWv0nGoV9ni/
+ewNycnLg6Oiofy6Xy6FWqx/7H4ol1K1bF4DuM581axYCAwOtHJF0ffvtt2jQoAF69eqFjz76yNrh
+SN69e/dw8+ZNbNu2Denp6Zg2bRoOHz4MmUxm7dAkx8HBATdu3MCAAQNw7949bNu2zdohWRVr6sU4
+OjoiNzdX/1yr1TKhW1BGRgbGjRuHIUOGwNfX19rhSNY333yDkydPIiAgAOfOnUNQUJB+mmWqfPXq
+1UPPnj1hb2+Pli1bolatWrh79661w5KkHTt2oGfPnjhy5Aj279+PhQsXIj8/39phWQ2TejGdOnXC
+iRMnAABJSUnw8PCwckTSdfv2bUyaNAnz58/HyJEjrR2OpO3atQs7d+5EZGQkWrdujbVr16Jhw4bW
+DkuyOnfujP/85z8QQiAzMxN5eXmoV6+etcOSpCeeeAJOTk4AAGdnZ6jVaqM3O3kcsApaTL9+/RAX
+Fwd/f38IIRAaGmrtkCRr27ZtePjwIbZs2YItW7YAAD7++GMO5KIaz9vbG4mJiRg5ciSEEAgODuaY
+EQuZMGECFi9ejDfeeAMqlQpz5syBg4ODtcOyGs79TkREJBFsficiIpIIJnUiIiKJYFInIiKSCCZ1
+IiIiiWBSJyIikggmdSILWrRoEV599VV899135d7G7t279etv3LixWt34JjY2Fhs3bgQA+Pj4ID09
+3eTrK+PzsKTq9vkSlRUvaSOyoOeffx6///477O3ty72NhQsX4qWXXsLw4cMrMbLK5+Pjgy+++ALN
+mjUz+prK+DyIyDhOPkNkIe+88w6EEOjRowecnZ3RqFEj1KpVCx9++CEWL16MzMxM3Lp1C126dMG6
+desAAOHh4YiJiYFcLoefnx9atWqFY8eOIT4+Hg0bNsShQ4f0Cf6bb77B559/DplMhjZt2mDZsmWo
+W7cuevbsiVdffRVnzpyBXC7Hhg0b0Lx5c6NxBgQEoHXr1jh16hQePXqEpUuXIjIyEhcvXsSECRMw
+YcIEZGZmYvHixcjOzkZWVhZef/11zJs3D99++y3++9//lupuhgWfx6hRo7Bq1SosWLAA9evXR61a
+tfDZZ58hNDQUp06dgkwmw+DBg/H2228jISEB27ZtgxAC169fx6uvvgonJyfExMQAAD766CM89dRT
+Rvfp4+MDHx8fnD59GgAQGhqKF154AVeuXEFwcDDu378PBwcHLFmyBO3bt68xJ1BERgkishgPDw+R
+lpamfxRCiIMHD4otW7YIIYTIz88Xffv2FcnJyeL7778X/v7+Ij8/X+Tk5IjBgweLW7duiaCgIPHN
+N98IIYT+/6mpqaJv377i7t27QgghVqxYIcLCwvT7/PHHH4UQQqxZs0asWbPGZIxvvvmmCAkJEUII
+ERERIfr27SsUCoVIT08XXbp0EUII8cknn4hvv/1WCCHEw4cPRceOHcWdO3fEN998I4KCgoQQQnh7
+e+vfo6nPQwhR4jPZuXOnmD59ulCr1UKhUIgRI0aI48ePi/j4eNGxY0dx8+ZNoVAohKenp/jqq6+E
+EEEhsDYAAANXSURBVEIsXLhQ7Nixw+T+vL29RUREhBBCiNjYWDFo0CAhhBAjRowQR44cEUIIcfbs
+WdG7d2+Rn59f5LMmqonYp05UBZ588kl9s/SgQYPg5eWFHTt2YPXq1bh//z4UCgUSExMxYMAA2Nvb
+o27duti/f7/R+dkTExPh7e2N+vXrAwD8/PwQHx+vLy+4fXCrVq3w4MEDs/G9/PLLAIAmTZqgQ4cO
+qFOnDpo2bYqHDx8CACZPngwXFxd8+umnCAkJgUqlQl5eXvk/EBT9TBISEjBs2DDI5XLUqVMHvr6+
+OHXqFADAw8MDLi4uqFOnDurXr4/u3bvrYy2Iz5TRo0cD0NXaMzMz8ddff+H69evo378/AN0tlp2d
+nXH58uUKvR+i6oDN70RVoPB89pGRkThy5AhGjx6NHj164MKFCxBClLgbYHp6Oho0aGBwe1qttshz
+IQTUarX+ea1atQAAMpkMohTDZuzs7PT/N3RXwrCwMKSlpWHQoEHo27cvTp48WartmlL4MzH0fgpu
+ylE4NgBlnkO98PvRarXQaDQlYi+8P6KajDV1oioWFxcHPz8/DB48GDKZDKmpqdBqtXjxxRfx448/
+6mvBU6ZMQWZmJuRyeYmE89JLL+HYsWO4f/8+AODrr79G165dLRrz5MmTMWDAAGRkZCAzM7NEIq6I
+bt26Yd++fdBoNMjLy8PBgwcr7f0cOnQIAPDjjz/C3d0dTZs2RfPmzXH06FEAursx3r59G61ataqU
+/RFZE2vqRFVs/PjxWLFiBT777DPUrVsXHTt2RHp6OkaNGoWUlBQMHz4cWq0W48aNg5ubG3r06IEP
+PvhAf3tJQDeKfOrUqQgICIBKpUKbNm3w3nvvWSzmqVOnYsGCBXjiiSfw5JNPom3btmYvXysLPz8/
+XL16FUOGDIFKpcLgwYPRr18/JCQkVHjbv/76K6Kjo1GnTh39gL73338fK1asQEREBOzs7BAREcER
++SQJvKSNiCSrNJfZEUkJa+pEj4F3330XFy9eLLHcx8cHs2fPrrT9nD59GqtWrTJY9tFHH6Fx48aV
+tq8CAQEBBgfM+fv7V/q+iKo71tSJiIgkggPliIiIJIJJnYiISCKY1ImIiCSCSZ2IiEgimNSJiIgk
+gkmdiIhIIv4fFRJ3NHiid/QAAAAASUVORK5CYII=
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>From the above figure, the difference between POs and non-POI points can be clearly classified. The red dots representing <strong>POIs are more distinct, have higher values and are more separate from the non-POI blue points</strong>.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h2 id="II.-Feature-Processing">II. Feature Processing<a class="anchor-link" href="#II.-Feature-Processing">&#182;</a></h2><p><strong>Question 2: What features did you end up using your POI identifier, and what selection process did you use to pick them? Did you have to do any scaling? Why or why not? As part of the assignment, you should attempt to engineer your feature that does not come ready-made in the dataset – explain what feature you tried to make, and the rationale behind it.</strong></p>
+<ul>
+<li><p>A pipeline was created, and we decided to try <code>SelectKBest</code> in a range of 8 to 11 features and use it on 5 different algorithms. Most of the algorithms required 9 features as determined by <code>GridSearchCV</code>. <br><br></p>
+</li>
+<li><p>Feature Preprocessing (including feature scaling) was done in <a id="feature_p">this section</a>.<br><br></p>
+</li>
+<li><p>Additional features were created during the exploratory data analysis i.e. <a id="new_features_2">'fraction_mail_from_poi', 'fraction_mail_to_poi'</a> &amp; <a id="new_features_1">'bonus-to-salary_ratio'</a>.<br><br></p>
+</li>
+<li><p>The features selected for the classifier using <code>SelectKBest</code> described in <a id="#feature_sel">this</a> section.</p>
+</li>
+</ul>
+<h3 id="Preparing-for-Feature-Processing">Preparing for Feature Processing<a class="anchor-link" href="#Preparing-for-Feature-Processing">&#182;</a></h3>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[138]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Clean all &#39;inf&#39; values which we got if the person&#39;s from_messages = 0</span>
+<span class="n">enron_df_new</span> <span class="o">=</span> <span class="n">enron_df_new</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;inf&#39;</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
+<span class="n">enron_df_new</span> <span class="o">=</span> <span class="n">enron_df_new</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
+
+<span class="c1"># Converting the above modified dataframe to a dictionary</span>
+<span class="n">enron_dict</span> <span class="o">=</span> <span class="n">enron_df_new</span><span class="o">.</span><span class="n">to_dict</span><span class="p">(</span><span class="s1">&#39;index&#39;</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Features of modified data_dictionary:-&quot;</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Total number of datapoints: &quot;</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">enron_dict</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Total number of features: &quot;</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">enron_dict</span><span class="p">[</span><span class="s1">&#39;METTS MARK&#39;</span><span class="p">]))</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Features of modified data_dictionary:-
+Total number of datapoints:  141
+Total number of features:  24
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[139]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Store to my_dataset for easy export below.</span>
+<span class="n">dataset</span> <span class="o">=</span> <span class="n">enron_dict</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h4 id="Features-Choose-to-be-Used-in-the-POI-identifier">Features Choose to be Used in the POI identifier<a class="anchor-link" href="#Features-Choose-to-be-Used-in-the-POI-identifier">&#182;</a></h4><p>Out of the all features available, (given and created above), the following 24 features would be used. The given features can be divided into two types: financial features and email features.</p>
+<ul>
+<li><p><strong>17 Financial Features:</strong> 
+<code>['salary', 'bonus', 'long_term_incentive', 'bonus-to-salary_ratio', 'expenses','restricted_stock_deferred', 'restricted_stock', 'deferred_income','total_payments','other','shared_receipt_with_poi', 'loan_advances', 'director_fees', 'exercised_stock_options', 'deferral_payments', 'total_stock_value', 'restricted_stock']</code><br><br></p>
+</li>
+<li><p><strong>6 Email Features:</strong> <code>['fraction_mail_from_poi', 'fraction_mail_to_poi', 'from_poi_to_this_person', 'from_this_person_to_poi', 'to_messages', 'from_messages']</code><br><br></p>
+</li>
+<li><p><strong>POI:</strong> Which is the target variable.</p>
+</li>
+</ul>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[158]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Features_list is a list of strings, each of which is a feature name.</span>
+<span class="c1"># The first feature must be &quot;poi&quot; (target variable).</span>
+
+<span class="n">features_list</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;poi&#39;</span><span class="p">,</span> <span class="s1">&#39;salary&#39;</span><span class="p">,</span> <span class="s1">&#39;bonus&#39;</span><span class="p">,</span> <span class="s1">&#39;long_term_incentive&#39;</span><span class="p">,</span> <span class="s1">&#39;bonus-to-salary_ratio&#39;</span><span class="p">,</span> <span class="s1">&#39;deferral_payments&#39;</span><span class="p">,</span> <span class="s1">&#39;expenses&#39;</span><span class="p">,</span> 
+                 <span class="s1">&#39;restricted_stock_deferred&#39;</span><span class="p">,</span> <span class="s1">&#39;restricted_stock&#39;</span><span class="p">,</span> <span class="s1">&#39;deferred_income&#39;</span><span class="p">,</span><span class="s1">&#39;fraction_mail_from_poi&#39;</span><span class="p">,</span> <span class="s1">&#39;total_payments&#39;</span><span class="p">,</span>
+                 <span class="s1">&#39;other&#39;</span><span class="p">,</span> <span class="s1">&#39;fraction_mail_to_poi&#39;</span><span class="p">,</span> <span class="s1">&#39;from_poi_to_this_person&#39;</span><span class="p">,</span> <span class="s1">&#39;from_this_person_to_poi&#39;</span><span class="p">,</span> <span class="s1">&#39;to_messages&#39;</span><span class="p">,</span> 
+                 <span class="s1">&#39;from_messages&#39;</span><span class="p">,</span> <span class="s1">&#39;shared_receipt_with_poi&#39;</span><span class="p">,</span> <span class="s1">&#39;loan_advances&#39;</span><span class="p">,</span> <span class="s1">&#39;director_fees&#39;</span><span class="p">,</span> <span class="s1">&#39;exercised_stock_options&#39;</span><span class="p">,</span>
+                <span class="s1">&#39;total_stock_value&#39;</span><span class="p">]</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[159]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Extract features and labels from dataset for local testing</span>
+<span class="n">data</span> <span class="o">=</span> <span class="n">featureFormat</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">features_list</span><span class="p">,</span> <span class="n">sort_keys</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+<span class="n">labels</span><span class="p">,</span> <span class="n">features</span> <span class="o">=</span> <span class="n">targetFeatureSplit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h3 id="Outline-of-Steps-for-Feature-Scaling">Outline of Steps for Feature Scaling<a class="anchor-link" href="#Outline-of-Steps-for-Feature-Scaling">&#182;</a></h3><p><strong>1. Feature Scaling:</strong> <code>MinMaxScaler</code> is used which scales features to lie between zero and one. MinMaxScaler transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e., between zero and one. It is also limited to be used with algorithms that involve distance measures to avoid loss of information.</p>
+<p><strong>2. Feature Selection</strong>: Feature selection/dimensionality reduction on sample sets is essential to improve estimators’ accuracy scores, boost performance &amp; simplification of the model. In this project, <code>SelectKBest</code> to find the 'K' best or high-scoring features. Objects of these functions, take as input a scoring function that returns univariate scores and p-values. Here, <code>f_classif</code> is used as the scoring function which computes the ANOVA F-value between labels and features for classification tasks.</p>
+<p><strong>3. Pipeline:</strong> Sequentially apply feature processing steps such as scaling, selection, and classification. Sklearn's <code>GridSearchCV</code> module automates this process by performing a grid search over a range of parameter values for an estimator.</p>
+<p><strong>4. Principle Component Analysis (PCA):</strong> PCA was tried, but it did not improve f1, precision or recall for the selected classification algorithms. Hence, it was not used and has not been described below to keep the notebook to-the-point.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[210]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Split data into training and testing datasets</span>
+<span class="kn">from</span> <span class="nn">sklearn</span> <span class="k">import</span> <span class="n">cross_validation</span>
+<span class="n">features_train</span><span class="p">,</span> <span class="n">features_test</span><span class="p">,</span> \
+<span class="n">labels_train</span><span class="p">,</span> <span class="n">labels_test</span> <span class="o">=</span> <span class="n">cross_validation</span><span class="o">.</span><span class="n">train_test_split</span><span class="p">(</span><span class="n">features</span><span class="p">,</span> <span class="n">labels</span><span class="p">,</span> 
+                                                              <span class="n">test_size</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span><span class="p">)</span>
+
+<span class="c1"># Stratified ShuffleSplit cross-validator</span>
+<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="k">import</span> <span class="n">StratifiedShuffleSplit</span>
+<span class="n">sss</span> <span class="o">=</span> <span class="n">StratifiedShuffleSplit</span><span class="p">(</span><span class="n">n_splits</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">random_state</span> <span class="o">=</span> <span class="mi">42</span><span class="p">)</span>
+
+<span class="c1"># Importing modules for feature scaling and selection</span>
+<span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="k">import</span> <span class="n">MinMaxScaler</span>
+<span class="kn">from</span> <span class="nn">sklearn.feature_selection</span> <span class="k">import</span> <span class="n">SelectKBest</span><span class="p">,</span> <span class="n">f_classif</span>
+<span class="kn">from</span> <span class="nn">sklearn.pipeline</span> <span class="k">import</span> <span class="n">Pipeline</span>
+<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="k">import</span> <span class="n">GridSearchCV</span>
+
+<span class="c1"># Defining features to be used via the pipeline</span>
+<span class="c1">## 1. Feature scaling</span>
+<span class="n">scaler</span> <span class="o">=</span> <span class="n">MinMaxScaler</span><span class="p">()</span>
+
+<span class="c1">## 2. Feature Selection</span>
+<span class="n">skb</span> <span class="o">=</span> <span class="n">SelectKBest</span><span class="p">(</span><span class="n">f_classif</span><span class="p">)</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h2 id="III.-Choosing-the-Algorithm">III. Choosing the Algorithm<a class="anchor-link" href="#III.-Choosing-the-Algorithm">&#182;</a></h2><p>For this project, the following algorithms were selected.</p>
+<ol>
+<li>Logistic Regression</li>
+<li>KNN (K-Nearest Neighbour)</li>
+<li>Gaussian Naive Bayes Classifier</li>
+</ol>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[220]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.neighbors</span> <span class="k">import</span> <span class="n">KNeighborsClassifier</span>
+<span class="kn">from</span> <span class="nn">sklearn.naive_bayes</span> <span class="k">import</span> <span class="n">GaussianNB</span>
+<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">LogisticRegression</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h3 id="Logistic-Regression">Logistic Regression<a class="anchor-link" href="#Logistic-Regression">&#182;</a></h3>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[212]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Classifier 1: Logistic Regression</span>
+<span class="n">lr_clf</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">()</span>
+
+<span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">steps</span><span class="o">=</span><span class="p">[(</span><span class="s2">&quot;SKB&quot;</span><span class="p">,</span> <span class="n">skb</span><span class="p">),</span> <span class="p">(</span><span class="s2">&quot;LogisticRegression&quot;</span><span class="p">,</span> <span class="n">lr_clf</span><span class="p">)])</span>
+
+<span class="n">param_grid</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;SKB__k&quot;</span><span class="p">:</span> <span class="nb">range</span><span class="p">(</span><span class="mi">9</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span>
+              <span class="s1">&#39;LogisticRegression__tol&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="n">e</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="n">e</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="n">e</span><span class="o">-</span><span class="mi">4</span><span class="p">],</span>
+              <span class="s1">&#39;LogisticRegression__penalty&#39;</span><span class="p">:</span> <span class="p">[</span><span class="s1">&#39;l1&#39;</span><span class="p">,</span> <span class="s1">&#39;l2&#39;</span><span class="p">]</span>
+             <span class="p">}</span>
+
+<span class="n">grid</span> <span class="o">=</span> <span class="n">GridSearchCV</span><span class="p">(</span><span class="n">pipeline</span><span class="p">,</span> <span class="n">param_grid</span><span class="p">,</span> <span class="n">verbose</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">cv</span> <span class="o">=</span> <span class="n">sss</span><span class="p">,</span> <span class="n">scoring</span> <span class="o">=</span> <span class="s1">&#39;f1&#39;</span><span class="p">)</span>
+
+<span class="n">t0</span> <span class="o">=</span> <span class="n">time</span><span class="p">()</span>
+<span class="c1"># clf = clf.fit(features_train, labels_train)</span>
+<span class="n">grid</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">features</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Training Time: &quot;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">time</span><span class="p">()</span><span class="o">-</span><span class="n">t0</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="s2">&quot;s&quot;</span><span class="p">)</span>
+
+<span class="c1"># Best algorithm</span>
+<span class="n">clf</span> <span class="o">=</span> <span class="n">grid</span><span class="o">.</span><span class="n">best_estimator_</span>
+
+<span class="n">t0</span> <span class="o">=</span> <span class="n">time</span><span class="p">()</span>
+<span class="c1"># Refit the best algorithm:</span>
+<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">features_train</span><span class="p">,</span> <span class="n">labels_train</span><span class="p">)</span>
+<span class="n">prediction</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">features_test</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Testing time: &quot;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">time</span><span class="p">()</span><span class="o">-</span><span class="n">t0</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="s2">&quot;s&quot;</span><span class="p">)</span>
+
+<span class="c1"># Evaluation Measures</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Accuracy of DT classifer is  : &quot;</span><span class="p">,</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">labels_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Precision of DT classifer is : &quot;</span><span class="p">,</span> <span class="n">precision_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">labels_test</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Recall of DT classifer is    : &quot;</span><span class="p">,</span> <span class="n">recall_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">labels_test</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;f1-score of DT classifer is  : &quot;</span><span class="p">,</span> <span class="n">f1_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">labels_test</span><span class="p">))</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Training Time:  8.796 s
+Testing time:  0.002 s
+Accuracy of DT classifer is  :  0.809523809524
+Precision of DT classifer is :  0.333333333333
+Recall of DT classifer is    :  0.333333333333
+f1-score of DT classifer is  :  0.333333333333
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h3 id="KNN-Classifier">KNN Classifier<a class="anchor-link" href="#KNN-Classifier">&#182;</a></h3>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[216]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Classifier 2: KNN Classifier</span>
+
+<span class="n">clf_knn</span> <span class="o">=</span> <span class="n">KNeighborsClassifier</span><span class="p">()</span>
+
+<span class="n">sss</span> <span class="o">=</span> <span class="n">StratifiedShuffleSplit</span><span class="p">(</span><span class="n">n_splits</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">random_state</span> <span class="o">=</span> <span class="mi">42</span><span class="p">)</span>
+<span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">steps</span> <span class="o">=</span> <span class="p">[(</span><span class="s2">&quot;scaling&quot;</span><span class="p">,</span> <span class="n">scaler</span><span class="p">),</span> <span class="p">(</span><span class="s2">&quot;SKB&quot;</span><span class="p">,</span> <span class="n">skb</span><span class="p">),</span>  <span class="p">(</span><span class="s2">&quot;knn&quot;</span><span class="p">,</span><span class="n">clf_knn</span><span class="p">)])</span>
+<span class="n">param_grid</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;SKB__k&quot;</span><span class="p">:[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">11</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">13</span><span class="p">,</span><span class="mi">14</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">17</span><span class="p">,</span> <span class="mi">18</span><span class="p">],</span> 
+              <span class="s2">&quot;knn__n_neighbors&quot;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">11</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">13</span><span class="p">,</span><span class="mi">15</span><span class="p">],</span>
+              <span class="p">}</span>
+
+<span class="n">grid</span> <span class="o">=</span> <span class="n">GridSearchCV</span><span class="p">(</span><span class="n">pipeline</span><span class="p">,</span> <span class="n">param_grid</span><span class="p">,</span> <span class="n">verbose</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">cv</span> <span class="o">=</span> <span class="n">sss</span><span class="p">,</span> <span class="n">scoring</span> <span class="o">=</span> <span class="s1">&#39;f1&#39;</span><span class="p">)</span>
+
+<span class="n">t0</span> <span class="o">=</span> <span class="n">time</span><span class="p">()</span>
+<span class="c1"># clf = clf.fit(features_train, labels_train)</span>
+<span class="n">grid</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">features</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Training time: &quot;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">time</span><span class="p">()</span><span class="o">-</span><span class="n">t0</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="s2">&quot;s&quot;</span><span class="p">)</span>
+
+<span class="c1"># Best Algorithm</span>
+<span class="n">clf</span> <span class="o">=</span> <span class="n">grid</span><span class="o">.</span><span class="n">best_estimator_</span>
+
+<span class="n">t0</span> <span class="o">=</span> <span class="n">time</span><span class="p">()</span>
+<span class="c1"># Refit the best algorithm:</span>
+<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">features_train</span><span class="p">,</span> <span class="n">labels_train</span><span class="p">)</span>
+<span class="n">prediction</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">features_test</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Testing time: &quot;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">time</span><span class="p">()</span><span class="o">-</span><span class="n">t0</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="s2">&quot;s&quot;</span><span class="p">)</span>
+
+<span class="c1"># Evaluation measures</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Accuracy of DT classifer is  : &quot;</span><span class="p">,</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">labels_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Precision of DT classifer is : &quot;</span><span class="p">,</span> <span class="n">precision_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">labels_test</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Recall of DT classifer is    : &quot;</span><span class="p">,</span> <span class="n">recall_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">labels_test</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;f1-score of DT classifer is  : &quot;</span><span class="p">,</span> <span class="n">f1_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">labels_test</span><span class="p">))</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Training time:  9.281 s
+Testing time:  0.002 s
+Accuracy of DT classifer is  :  0.880952380952
+Precision of DT classifer is :  0.333333333333
+Recall of DT classifer is    :  0.666666666667
+f1-score of DT classifer is  :  0.444444444444
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h3 id="Gaussian-Naive-Bayes">Gaussian Naive Bayes<a class="anchor-link" href="#Gaussian-Naive-Bayes">&#182;</a></h3>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[217]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">## Classifier 3: Gaussian Naive Bayes (GaussianNB) classifier</span>
+
+<span class="n">clf_gnb</span> <span class="o">=</span> <span class="n">GaussianNB</span><span class="p">()</span>
+
+<span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">steps</span> <span class="o">=</span> <span class="p">[(</span><span class="s2">&quot;SKB&quot;</span><span class="p">,</span> <span class="n">skb</span><span class="p">),</span> <span class="p">(</span><span class="s2">&quot;NaiveBayes&quot;</span><span class="p">,</span> <span class="n">clf_gnb</span><span class="p">)])</span>
+<span class="n">param_grid</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;SKB__k&quot;</span><span class="p">:[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">11</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">13</span><span class="p">,</span><span class="mi">14</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">16</span><span class="p">,</span><span class="mi">17</span><span class="p">,</span><span class="mi">18</span><span class="p">,</span><span class="mi">19</span><span class="p">]}</span>
+
+<span class="n">grid</span> <span class="o">=</span> <span class="n">GridSearchCV</span><span class="p">(</span><span class="n">pipeline</span><span class="p">,</span> <span class="n">param_grid</span><span class="p">,</span> <span class="n">verbose</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">cv</span> <span class="o">=</span> <span class="n">sss</span><span class="p">,</span> <span class="n">scoring</span> <span class="o">=</span> <span class="s1">&#39;f1&#39;</span><span class="p">)</span>
+
+<span class="n">t0</span> <span class="o">=</span> <span class="n">time</span><span class="p">()</span>
+<span class="n">grid</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">features</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Training time: &quot;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">time</span><span class="p">()</span><span class="o">-</span><span class="n">t0</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="s2">&quot;s&quot;</span><span class="p">)</span>
+
+<span class="c1"># Best Algorithm</span>
+<span class="n">clf</span> <span class="o">=</span> <span class="n">grid</span><span class="o">.</span><span class="n">best_estimator_</span>
+
+<span class="n">t0</span> <span class="o">=</span> <span class="n">time</span><span class="p">()</span>
+<span class="c1"># Refit the best algorithm:</span>
+<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">features_train</span><span class="p">,</span> <span class="n">labels_train</span><span class="p">)</span>
+<span class="n">prediction</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">features_test</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Testing time: &quot;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">time</span><span class="p">()</span><span class="o">-</span><span class="n">t0</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="s2">&quot;s&quot;</span><span class="p">)</span>
+
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Accuracy of GaussianNB classifer is  : &quot;</span><span class="p">,</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">labels_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Precision of GaussianNB classifer is : &quot;</span><span class="p">,</span> <span class="n">precision_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">labels_test</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Recall of GaussianNB classifer is    : &quot;</span><span class="p">,</span> <span class="n">recall_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">labels_test</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;f1-score of GaussianNB classifer is  : &quot;</span><span class="p">,</span> <span class="n">f1_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">,</span> <span class="n">labels_test</span><span class="p">))</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Training time:  0.666 s
+Testing time:  0.003 s
+Accuracy of GaussianNB classifer is  :  0.833333333333
+Precision of GaussianNB classifer is :  0.5
+Recall of GaussianNB classifer is    :  0.428571428571
+f1-score of GaussianNB classifer is  :  0.461538461538
+</pre>
+</div>
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p><strong>Question 3: What algorithm did you end up using? What other one(s) did you try? How did
+model performance differ between algorithms?</strong></p>
+<p>In total, three algorithms were tried viz. Gaussian Naïve Bayes, Logistic Regression, KNN (K-Nearest Neighbors). <em>Gaussian Naïve Bayes was the best performing model amongst all the models</em> based on the f1-score and the minimum requirement of 0.33 for precision and recall. KNN also comes close, but I chose Gaussian NB because of its precision.</p>
+<p><strong>Question 4: What does it mean to tune the parameters of an algorithm, and what can happen if you do not do this well? How did you tune the parameters of your particular algorithm?</strong></p>
+<p>The process of tuning the parameters involves setting the values of the algorithmic parameters to such optimal values that enable us to complete a machine learning task in the "best possible way."</p>
+<p>Not correctly tuning will result in the sub-optimum or poor performance of the algorithm while making the whole machine learning task very time-consuming. Also, algorithms are not explicitly tuned to any dataset. Therefore, iteratively tuning our algorithm to obtain an evaluation we are satisfied with is recommended.</p>
+<p>This project utilized three algorithms and used the <code>GridSearchCV</code> function to obtain the best parameters for them. Since there are no parameters to tune for Gaussian Naïve Bayes, they have not been specified. However, for completeness, the tuning parameters for KNN have been mentioned below.</p>
+<div class="highlight"><pre><span></span><span class="n">param_grid</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;SKB__k&quot;</span><span class="p">:[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">11</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">13</span><span class="p">,</span><span class="mi">14</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">17</span><span class="p">,</span> <span class="mi">18</span><span class="p">],</span> 
+              <span class="s2">&quot;knn__n_neighbors&quot;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">11</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">13</span><span class="p">,</span><span class="mi">15</span><span class="p">],</span>
+              <span class="p">}</span>
+
+<span class="n">grid</span> <span class="o">=</span> <span class="n">GridSearchCV</span><span class="p">(</span><span class="n">pipeline</span><span class="p">,</span> <span class="n">param_grid</span><span class="p">,</span> <span class="o">...</span> <span class="n">scoring</span> <span class="o">=</span> <span class="s1">&#39;f1&#39;</span><span class="p">)</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h3 id="Finding-out-the-Features-Selected-by-SelectKBest-for-GaussianNB-">Finding out the Features Selected by <code>SelectKBest</code> for GaussianNB <a id="#feature_sel" /><a class="anchor-link" href="#Finding-out-the-Features-Selected-by-SelectKBest-for-GaussianNB-">&#182;</a></h3>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[221]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Obtaining the boolean list showing selected features</span>
+<span class="n">features_selected_bool</span> <span class="o">=</span> <span class="n">grid</span><span class="o">.</span><span class="n">best_estimator_</span><span class="o">.</span><span class="n">named_steps</span><span class="p">[</span><span class="s1">&#39;SKB&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">get_support</span><span class="p">()</span>
+
+<span class="c1"># Finding the features selected by SelectKBest</span>
+<span class="n">features_selected_list</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">features_list</span><span class="p">[</span><span class="mi">1</span><span class="p">:],</span> <span class="n">features_selected_bool</span><span class="p">)</span> <span class="k">if</span> <span class="n">y</span><span class="p">]</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Total number of features selected by SelectKBest algorithm: &quot;</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">features_selected_list</span><span class="p">))</span>
+
+<span class="c1"># Finding the score of features </span>
+<span class="n">feature_scores</span> <span class="o">=</span>  <span class="n">grid</span><span class="o">.</span><span class="n">best_estimator_</span><span class="o">.</span><span class="n">named_steps</span><span class="p">[</span><span class="s1">&#39;SKB&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">scores_</span>
+
+<span class="c1"># Finding the score of features selected by selectKBest</span>
+<span class="n">feature_selected_scores</span> <span class="o">=</span> <span class="n">feature_scores</span><span class="p">[</span><span class="n">features_selected_bool</span><span class="p">]</span>
+
+<span class="c1"># Creating a pandas dataframe and arranging the features based on their scores and ranking them </span>
+<span class="n">imp_features_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;Features_Selected&#39;</span><span class="p">:</span><span class="n">features_selected_list</span><span class="p">,</span> <span class="s1">&#39;Features_score&#39;</span><span class="p">:</span><span class="n">feature_selected_scores</span><span class="p">})</span>
+<span class="n">imp_features_df</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="s1">&#39;Features_score&#39;</span><span class="p">,</span> <span class="n">ascending</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> <span class="n">inplace</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+<span class="n">Rank</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">features_selected_list</span><span class="p">)</span><span class="o">+</span><span class="mi">1</span><span class="p">)))</span>
+<span class="n">imp_features_df</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="n">Rank</span><span class="p">,</span> <span class="n">inplace</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
+
+<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;The following table shows the feature selected along with its corresponding scores.&quot;</span><span class="p">)</span>
+<span class="n">imp_features_df</span>
+</pre></div>
+
+</div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area"><div class="prompt"></div>
+<div class="output_subarea output_stream output_stdout output_text">
+<pre>Total number of features selected by SelectKBest algorithm:  12
+The following table shows the feature selected along with its corresponding scores.
+</pre>
+</div>
+</div>
+
+<div class="output_area"><div class="prompt output_prompt">Out[221]:</div>
+
+<div class="output_html rendered_html output_subarea output_execute_result">
+<div>
+<table border="1" class="dataframe">
+  <thead>
+    <tr style="text-align: right;">
+      <th></th>
+      <th>Features_Selected</th>
+      <th>Features_score</th>
+    </tr>
+  </thead>
+  <tbody>
+    <tr>
+      <th>1</th>
+      <td>deferred_income</td>
+      <td>13.287587</td>
+    </tr>
+    <tr>
+      <th>2</th>
+      <td>bonus</td>
+      <td>12.438591</td>
+    </tr>
+    <tr>
+      <th>3</th>
+      <td>salary</td>
+      <td>12.225775</td>
+    </tr>
+    <tr>
+      <th>4</th>
+      <td>exercised_stock_options</td>
+      <td>11.166453</td>
+    </tr>
+    <tr>
+      <th>5</th>
+      <td>fraction_mail_from_poi</td>
+      <td>10.598733</td>
+    </tr>
+    <tr>
+      <th>6</th>
+      <td>total_stock_value</td>
+      <td>10.191784</td>
+    </tr>
+    <tr>
+      <th>7</th>
+      <td>long_term_incentive</td>
+      <td>10.164526</td>
+    </tr>
+    <tr>
+      <th>8</th>
+      <td>bonus-to-salary_ratio</td>
+      <td>9.869367</td>
+    </tr>
+    <tr>
+      <th>9</th>
+      <td>total_payments</td>
+      <td>9.361047</td>
+    </tr>
+    <tr>
+      <th>10</th>
+      <td>other</td>
+      <td>9.141458</td>
+    </tr>
+    <tr>
+      <th>11</th>
+      <td>shared_receipt_with_poi</td>
+      <td>8.649023</td>
+    </tr>
+    <tr>
+      <th>12</th>
+      <td>loan_advances</td>
+      <td>7.658627</td>
+    </tr>
+  </tbody>
+</table>
+</div>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered">
+<div class="prompt input_prompt">
+</div>
+<div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h2 id="IV.-Evaluation">IV. Evaluation<a class="anchor-link" href="#IV.-Evaluation">&#182;</a></h2><p><strong>Question 5: What is validation, and what’s a classic mistake you can make if you do it wrong? How did you validate your analysis?</strong></p>
+<p>Validation is usually performed to ensure that the machine learning algorithm we have selected, generalizes well. A classic mistake is over-fitting, where our model performs very well on the training dataset but significantly worse on the cross-validation and testing datasets.</p>
+<p>To overcome this mistake, we can perform cross0validation on the dataset. Although we can use the train_test_split, cross-validation technique, a better fit for our project would be to use the <code>StratifiedShuffleSplit</code> technique.</p>
+<ul>
+<li><p><code>StratifiedShuffleSplit</code> is used when there are few observations in a dataset being used for analysis. This technique randomly shuffles through our data, creating testing and training data.  The stratified shuffle split is also used to handle class imbalances in the data. This is important, especially since there are very few POIs in the data.<br><br></p>
+</li>
+<li><p><code>StratifiedShuffleSplit</code> creates train/validation subsets (as per the code above, it will create 100 of them). Internally, <code>GridSearchCV</code> estimates the models using the 100 train subsets and validate the model on the 100 validation subsets.</p>
+</li>
+</ul>
+<h4 id="Evaluation-Metrics">Evaluation Metrics<a class="anchor-link" href="#Evaluation-Metrics">&#182;</a></h4><p>In this project, while training, it was kept in mind to optimize the precision and recall. Hence, I used f1-score as the key measure for algorithms' performance as f1_score considers both the precision and the recall.</p>
+<p>The metrics have been summarized below as they are later used to draw inferences from the study.</p>
+<ul>
+<li><p><strong>Accuracy</strong> is the ratio of correctly predicted observation to the total observations.<br><br>
+$Accuracy = \frac{TP + TN}{TP+FP+FN+TN}$<br><br></p>
+</li>
+<li><p><strong>Precision</strong> is the ratio of correctly predicted positive observations to the total predicted positive observations.<br><br>
+$Precision = (\frac{TP}{TP + FP})$<br><br></p>
+</li>
+<li><p><strong>Recall</strong> is the ratio of correctly predicted positive observations to the all observations in actual class.<br><br>
+$Recall = (\frac{TP}{TP + FN})$<br><br></p>
+</li>
+<li><p><strong>F1-score</strong> is the weighted average of Precision and Recall. Therefore, this score takes both false positives and false negatives into account.<br><br>
+$f1 = 2.(\frac{precision.recall}{precision + recall})$<br><br></p>
+</li>
+</ul>
+<p><strong>Question 6: Give at least 2 evaluation metrics and your average performance for each of them. Explain an interpretation of your metrics that says something human-understandable about your  algorithm’s performance.</strong></p>
+<p>Metric values obtained after running the <strong><code>tester.py</code></strong> file :</p>
+<table>
+<thead><tr>
+<th>Algorithm used</th>
+<th>Accuracy</th>
+<th>Precision</th>
+<th>Recall</th>
+<th>f1 score</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td>Gaussian Naive Bayes</td>
+<td>0.852</td>
+<td>0.480</td>
+<td>0.387</td>
+<td>0.428</td>
+</tr>
+</tbody>
+</table>
+<h5 id="The-following-can-be-noted-from-the-obtained-values.">The following can be noted from the obtained values.<a class="anchor-link" href="#The-following-can-be-noted-from-the-obtained-values.">&#182;</a></h5><ul>
+<li><strong>Accuracy can be interpreted as </strong> 85.2% predictions on the entire test set have been made correctly. </li>
+</ul>
+<p>Accuracy, although a crucial metric can be misleading, mainly when dealing with imbalanced classes, or in other words, when the data is skewed towards one class. This is the case with the Enron set — since there are much more non-POIs than POI (you can just guess the more common class label for every point, which is not a very insightful strategy but still get decent Accuracy).</p>
+<ul>
+<li><strong>Precision can be interpreted as </strong>  if a person is being classified as a POI by the classifier, there is a 48.0% chance that the person is a POI.  </li>
+</ul>
+<p>Precision implies  that whenever a POI gets flagged in the test set, there's a lot of confidence that it’s very likely to be a real POI and not a false alarm.On the other hand, the tradeoff is that sometimes real POIs are missed, since the classifier is effectively reluctant to pull the trigger on edge cases.</p>
+<ul>
+<li><strong>Recall can be interpreted as:</strong> of all the actual POIs considered, 38.7% of all the POIs can be classified correctly as a POI by the classifier. </li>
+</ul>
+<p>38.7% might seem low, but this metric is particularly insightful for the Enron case. Since we are dealing with a criminal situation, we want our classifier to err on the side of guessing guilty – higher levels of scrutiny — so it makes sure as many people get flagged as POI, maybe at a cost of identifying some innocent people along the way. Boosting its Recall metric the classifier ensures that is correctly identifying every single POI. The tradeoff is that the algorithm will be biased towards "overdoing" it.</p>
+
+</div>
+</div>
+</div>
+    </div>
+  </div>
+</body>
+</html>

File diff suppressed because it is too large
+ 730 - 0
Identifying Fraud from Enron Email Dataset/Enron_Fraud.ipynb


+ 42 - 0
Identifying Fraud from Enron Email Dataset/README.md

@@ -0,0 +1,42 @@
+# P5: Identifying Fraud from Enron Email Dataset
+> With the help of machine learning techniques, a classification model is built to identify Enron Employees who may have committed fraud based on the public Enron financial and email dataset.
+
+In 2000, Enron was one of the largest companies in the United States. By 2002, it had collapsed into bankruptcy due to widespread corporate fraud. In the resulting federal investigation, a significant amount of typically confidential information entered into the public record, including tens of thousands of emails and detailed financial data for top executives.
+
+In this project, Enron employees who may have committed fraud are identified using machine learning algorithms on the email dataset. One of the challenges in this project was to optimize the algorithm for a small and skewed dataset, which made outlier removal highly crucial (done using EDA).
+
+#### The activities implemented in this project are:
+1. **Exploring the Enron Dataset:** This involves data cleaning, outlier removal and analyzing.
+
+2. **Feature Processing of the Enron Dataset:** Includes creation, scaling, selection and transforming of features.
+
+3. **Choosing the Algorithm(s):** Multiple classification models are trained and tuned.
+
+4. **Evaluation:** Involves validation and overall performance check.
+
+## Files
+- `Enron_61702_Insiderpay.pdf` – Reference data.
+
+- `Report.ipynb` – iPython Report for the project.
+
+- `Report.html` – HTML export of the Jupyter notebook.
+
+- `poi_id.py` – Main project file.
+
+- `tester.py` – Script to test the algorithm performance.
+
+- All other files in this directory are helper codes/data.
+
+###### Data Files
+- `my_classifier.pkl` – Developed classification model.
+- `my_dataset.pkl` – Modified dataset (during the analysis).
+- `my_feature_list.pkl` – List of features in classifier.
+- `final_project_dataset.pkl` – The dataset for the project.
+
+## Requirements
+This project requires **Python 3** with `NumPy`, `Pandas`, `Seaborn` and `scikit-learn`.
+
+It is recommended to use [Anaconda](https://www.continuum.io/downloads), a pre-packaged Python distribution that contains all of the necessary libraries and software for this project.
+
+## License
+[Modified MIT License © Pranav Suri](/License.txt)

+ 125 - 0
Identifying Fraud from Enron Email Dataset/feature_format.py

@@ -0,0 +1,125 @@
+"""
+    A general tool for converting data from the
+    dictionary format to an (n x k) python list
+    that's ready for training an sklearn algorithm.
+
+    n: no. of key-value pairs in dictonary
+    k: no. of features being extracted
+
+    dictionary keys are names of persons in dataset
+    dictionary values are dictionaries, where each
+        key-value pair in the dict is the name
+        of a feature, and its value for that person.
+
+    In addition to converting a dictionary to a numpy
+    array, you may want to separate the labels from the
+    features - this is what targetFeatureSplit is for.
+
+    So, if you want to have the poi label as the target,
+    and the features you want to use are the person's
+    salary and bonus, here's what you would do:
+
+    feature_list = ["poi", "salary", "bonus"]
+    data_array = featureFormat(data_dictionary, feature_list)
+    label, features = targetFeatureSplit(data_array)
+
+    The line above (targetFeatureSplit) assumes that the
+    label is the first item in feature_list.
+"""
+
+import numpy as np
+
+def featureFormat( dictionary, features, remove_NaN=True,
+                    remove_all_zeroes=True, remove_any_zeroes=False,
+                    sort_keys = False):
+    """ Convert dictionary to numpy array of features.
+
+        remove_NaN = True will convert "NaN" string to 0.0
+
+        remove_all_zeroes = True will omit any data points for which
+            all the features you seek are 0.0
+
+        remove_any_zeroes = True will omit any data points for which
+            any of the features you seek are 0.0
+
+        sort_keys = True sorts keys by alphabetical order. Setting the value as
+            a string opens the corresponding pickle file with a preset key
+            order (this is used for Python 3 compatibility, and sort_keys
+            should be left as False for the course mini-projects).
+
+        NOTE: first feature is assumed to be 'poi' and is not checked for
+            removal for zero or missing values.
+    """
+
+    return_list = []
+
+    # Key order - first branch is for Python 3 compatibility on mini-projects,
+    # second branch is for compatibility on final project.
+    if isinstance(sort_keys, str):
+        import pickle
+        keys = pickle.load(open(sort_keys, "rb"))
+    elif sort_keys:
+        keys = sorted(dictionary.keys())
+    else:
+        keys = dictionary.keys()
+
+    for key in keys:
+        tmp_list = []
+        for feature in features:
+            try:
+                dictionary[key][feature]
+            except KeyError:
+                print("error: key ", feature, " not present")
+                return
+            value = dictionary[key][feature]
+            if value=="NaN" and remove_NaN:
+                value = 0
+            tmp_list.append( float(value) )
+
+        # Logic for deciding whether or not to add the data point.
+        append = True
+        # Exclude 'poi' class as criteria.
+        if features[0] == 'poi':
+            test_list = tmp_list[1:]
+        else:
+            test_list = tmp_list
+        ### If all features are zero and you want to remove
+        ### data points that are all zero, do that here
+        if remove_all_zeroes:
+            append = False
+            for item in test_list:
+                if item != 0 and item != "NaN":
+                    append = True
+                    break
+        ### If any features for a given data point are zero
+        ### and you want to remove data points with any zeroes,
+        ### handle that here.
+        if remove_any_zeroes:
+            if 0 in test_list or "NaN" in test_list:
+                append = False
+        ### Append the data point if flagged for addition.
+        if append:
+            return_list.append( np.array(tmp_list) )
+
+    return np.array(return_list)
+
+def targetFeatureSplit( data ):
+    """
+        Given a numpy array like the one returned from
+        featureFormat, separate out the first feature
+        and put it into its own list (this should be the
+        quantity you want to predict)
+
+        return targets and features as separate lists
+
+        (sklearn can generally handle both lists and numpy arrays as
+        input formats when training/predicting)
+    """
+
+    target = []
+    features = []
+    for item in data:
+        target.append( item[0] )
+        features.append( item[1:] )
+
+    return target, features

+ 6707 - 0
Identifying Fraud from Enron Email Dataset/final_project_dataset.pkl

@@ -0,0 +1,6707 @@
+(dp0
+S'METTS MARK'
+p1
+(dp2
+S'salary'
+p3
+I365788
+sS'to_messages'
+p4
+I807
+sS'deferral_payments'
+p5
+S'NaN'
+p6
+sS'total_payments'
+p7
+I1061827
+sS'loan_advances'
+p8
+g6
+sS'bonus'
+p9
+I600000
+sS'email_address'
+p10
+S'mark.metts@enron.com'
+p11
+sS'restricted_stock_deferred'
+p12
+g6
+sS'deferred_income'
+p13
+g6
+sS'total_stock_value'
+p14
+I585062
+sS'expenses'
+p15
+I94299
+sS'from_poi_to_this_person'
+p16
+I38
+sS'exercised_stock_options'
+p17
+g6
+sS'from_messages'
+p18
+I29
+sS'other'
+p19
+I1740
+sS'from_this_person_to_poi'
+p20
+I1
+sS'poi'
+p21
+I00
+sS'long_term_incentive'
+p22
+g6
+sS'shared_receipt_with_poi'
+p23
+I702
+sS'restricted_stock'
+p24
+I585062
+sS'director_fees'
+p25
+g6
+ssS'BAXTER JOHN C'
+p26
+(dp27
+g3
+I267102
+sg4
+g6
+sg5
+I1295738
+sg7
+I5634343
+sg8
+g6
+sg9
+I1200000
+sg10
+g6
+sg12
+g6
+sg13
+I-1386055
+sg14
+I10623258
+sg15
+I11200
+sg16
+g6
+sg17
+I6680544
+sg18
+g6
+sg19
+I2660303
+sg20
+g6
+sg21
+I00
+sg22
+I1586055
+sg23
+g6
+sg24
+I3942714
+sg25
+g6
+ssS'ELLIOTT STEVEN'
+p28
+(dp29
+g3
+I170941
+sg4
+g6
+sg5
+g6
+sg7
+I211725
+sg8
+g6
+sg9
+I350000
+sg10
+S'steven.elliott@enron.com'
+p30
+sg12
+g6
+sg13
+I-400729
+sg14
+I6678735
+sg15
+I78552
+sg16
+g6
+sg17
+I4890344
+sg18
+g6
+sg19
+I12961
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I1788391
+sg25
+g6
+ssS'CORDES WILLIAM R'
+p31
+(dp32
+g3
+g6
+sg4
+I764
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'bill.cordes@enron.com'
+p33
+sg12
+g6
+sg13
+g6
+sg14
+I1038185
+sg15
+g6
+sg16
+I10
+sg17
+I651850
+sg18
+I12
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I58
+sg24
+I386335
+sg25
+g6
+ssS'HANNON KEVIN P'
+p34
+(dp35
+g3
+I243293
+sg4
+I1045
+sg5
+g6
+sg7
+I288682
+sg8
+g6
+sg9
+I1500000
+sg10
+S'kevin.hannon@enron.com'
+p36
+sg12
+g6
+sg13
+I-3117011
+sg14
+I6391065
+sg15
+I34039
+sg16
+I32
+sg17
+I5538001
+sg18
+I32
+sg19
+I11350
+sg20
+I21
+sg21
+I01
+sg22
+I1617011
+sg23
+I1035
+sg24
+I853064
+sg25
+g6
+ssS'MORDAUNT KRISTINA M'
+p37
+(dp38
+g3
+I267093
+sg4
+g6
+sg5
+g6
+sg7
+I628522
+sg8
+g6
+sg9
+I325000
+sg10
+S'kristina.mordaunt@enron.com'
+p39
+sg12
+g6
+sg13
+g6
+sg14
+I208510
+sg15
+I35018
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I1411
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I208510
+sg25
+g6
+ssS'MEYER ROCKFORD G'
+p40
+(dp41
+g3
+g6
+sg4
+I232
+sg5
+I1848227
+sg7
+I1848227
+sg8
+g6
+sg9
+g6
+sg10
+S'rockford.meyer@enron.com'
+p42
+sg12
+g6
+sg13
+g6
+sg14
+I955873
+sg15
+g6
+sg16
+I0
+sg17
+I493489
+sg18
+I28
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I22
+sg24
+I462384
+sg25
+g6
+ssS'MCMAHON JEFFREY'
+p43
+(dp44
+g3
+I370448
+sg4
+I2355
+sg5
+g6
+sg7
+I4099771
+sg8
+g6
+sg9
+I2600000
+sg10
+S'jeffrey.mcmahon@enron.com'
+p45
+sg12
+g6
+sg13
+g6
+sg14
+I1662855
+sg15
+I137108
+sg16
+I58
+sg17
+I1104054
+sg18
+I48
+sg19
+I297353
+sg20
+I26
+sg21
+I00
+sg22
+I694862
+sg23
+I2228
+sg24
+I558801
+sg25
+g6
+ssS'HAEDICKE MARK E'
+p46
+(dp47
+g3
+I374125
+sg4
+I4009
+sg5
+I2157527
+sg7
+I3859065
+sg8
+g6
+sg9
+I1150000
+sg10
+S'mark.haedicke@enron.com'
+p48
+sg12
+I-329825
+sg13
+I-934484
+sg14
+I803094
+sg15
+I76169
+sg16
+I180
+sg17
+I608750
+sg18
+I1941
+sg19
+I52382
+sg20
+I61
+sg21
+I00
+sg22
+I983346
+sg23
+I1847
+sg24
+I524169
+sg25
+g6
+ssS'PIPER GREGORY F'
+p49
+(dp50
+g3
+I197091
+sg4
+I1238
+sg5
+I1130036
+sg7
+I1737629
+sg8
+g6
+sg9
+I400000
+sg10
+S'greg.piper@enron.com'
+p51
+sg12
+I-409554
+sg13
+I-33333
+sg14
+I880290
+sg15
+I43057
+sg16
+I61
+sg17
+I880290
+sg18
+I222
+sg19
+I778
+sg20
+I48
+sg21
+I00
+sg22
+g6
+sg23
+I742
+sg24
+I409554
+sg25
+g6
+ssS'HUMPHREY GENE E'
+p52
+(dp53
+g3
+I130724
+sg4
+I128
+sg5
+I2964506
+sg7
+I3100224
+sg8
+g6
+sg9
+g6
+sg10
+S'gene.humphrey@enron.com'
+p54
+sg12
+g6
+sg13
+g6
+sg14
+I2282768
+sg15
+I4994
+sg16
+I10
+sg17
+I2282768
+sg18
+I17
+sg19
+g6
+sg20
+I17
+sg21
+I00
+sg22
+g6
+sg23
+I119
+sg24
+g6
+sg25
+g6
+ssS'NOLES JAMES L'
+p55
+(dp56
+g3
+g6
+sg4
+g6
+sg5
+I774401
+sg7
+I774401
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+I-94556
+sg13
+g6
+sg14
+I368705
+sg15
+g6
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I463261
+sg25
+g6
+ssS'BLACHMAN JEREMY M'
+p57
+(dp58
+g3
+I248546
+sg4
+I2475
+sg5
+g6
+sg7
+I2014835
+sg8
+g6
+sg9
+I850000
+sg10
+S'jeremy.blachman@enron.com'
+p59
+sg12
+g6
+sg13
+g6
+sg14
+I954354
+sg15
+I84208
+sg16
+I25
+sg17
+I765313
+sg18
+I14
+sg19
+I272
+sg20
+I2
+sg21
+I00
+sg22
+I831809
+sg23
+I2326
+sg24
+I189041
+sg25
+g6
+ssS'SUNDE MARTIN'
+p60
+(dp61
+g3
+I257486
+sg4
+I2647
+sg5
+g6
+sg7
+I1545059
+sg8
+g6
+sg9
+I700000
+sg10
+S'marty.sunde@enron.com'
+p62
+sg12
+g6
+sg13
+g6
+sg14
+I698920
+sg15
+g6
+sg16
+I37
+sg17
+g6
+sg18
+I38
+sg19
+I111122
+sg20
+I13
+sg21
+I00
+sg22
+I476451
+sg23
+I2565
+sg24
+I698920
+sg25
+g6
+ssS'GIBBS DANA R'
+p63
+(dp64
+g3
+g6
+sg4
+I169
+sg5
+I504610
+sg7
+I966522
+sg8
+g6
+sg9
+g6
+sg10
+S'dana.gibbs@enron.com'
+p65
+sg12
+g6
+sg13
+g6
+sg14
+I2218275
+sg15
+g6
+sg16
+I0
+sg17
+I2218275
+sg18
+I12
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+I461912
+sg23
+I23
+sg24
+g6
+sg25
+g6
+ssS'LOWRY CHARLES P'
+p66
+(dp67
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+I-153686
+sg13
+g6
+sg14
+I372205
+sg15
+g6
+sg16
+g6
+sg17
+I372205
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I153686
+sg25
+g6
+ssS'COLWELL WESLEY'
+p68
+(dp69
+g3
+I288542
+sg4
+I1758
+sg5
+I27610
+sg7
+I1490344
+sg8
+g6
+sg9
+I1200000
+sg10
+S'wes.colwell@enron.com'
+p70
+sg12
+g6
+sg13
+I-144062
+sg14
+I698242
+sg15
+I16514
+sg16
+I240
+sg17
+g6
+sg18
+I40
+sg19
+I101740
+sg20
+I11
+sg21
+I01
+sg22
+g6
+sg23
+I1132
+sg24
+I698242
+sg25
+g6
+ssS'MULLER MARK S'
+p71
+(dp72
+g3
+I251654
+sg4
+I136
+sg5
+I842924
+sg7
+I3202070
+sg8
+g6
+sg9
+I1100000
+sg10
+S's..muller@enron.com'
+p73
+sg12
+g6
+sg13
+I-719000
+sg14
+I1416848
+sg15
+g6
+sg16
+I12
+sg17
+I1056320
+sg18
+I16
+sg19
+I947
+sg20
+I0
+sg21
+I00
+sg22
+I1725545
+sg23
+I114
+sg24
+I360528
+sg25
+g6
+ssS'JACKSON CHARLENE R'
+p74
+(dp75
+g3
+I288558
+sg4
+I258
+sg5
+g6
+sg7
+I551174
+sg8
+g6
+sg9
+I250000
+sg10
+S'charlene.jackson@enron.com'
+p76
+sg12
+g6
+sg13
+g6
+sg14
+I725735
+sg15
+I10181
+sg16
+I25
+sg17
+I185063
+sg18
+I56
+sg19
+I2435
+sg20
+I19
+sg21
+I00
+sg22
+g6
+sg23
+I117
+sg24
+I540672
+sg25
+g6
+ssS'WESTFAHL RICHARD K'
+p77
+(dp78
+g3
+I63744
+sg4
+g6
+sg5
+g6
+sg7
+I762135
+sg8
+g6
+sg9
+g6
+sg10
+S'dick.westfahl@enron.com'
+p79
+sg12
+g6
+sg13
+I-10800
+sg14
+I384930
+sg15
+I51870
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I401130
+sg20
+g6
+sg21
+I00
+sg22
+I256191
+sg23
+g6
+sg24
+I384930
+sg25
+g6
+ssS'WALTERS GARETH W'
+p80
+(dp81
+g3
+g6
+sg4
+g6
+sg5
+I53625
+sg7
+I87410
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I1030329
+sg15
+I33785
+sg16
+g6
+sg17
+I1030329
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'WALLS JR ROBERT H'
+p82
+(dp83
+g3
+I357091
+sg4
+I671
+sg5
+g6
+sg7
+I1798780
+sg8
+g6
+sg9
+I850000
+sg10
+S'rob.walls@enron.com'
+p84
+sg12
+g6
+sg13
+g6
+sg14
+I5898997
+sg15
+I50936
+sg16
+I17
+sg17
+I4346544
+sg18
+I146
+sg19
+I2
+sg20
+I0
+sg21
+I00
+sg22
+I540751
+sg23
+I215
+sg24
+I1552453
+sg25
+g6
+ssS'KITCHEN LOUISE'
+p85
+(dp86
+g3
+I271442
+sg4
+I8305
+sg5
+g6
+sg7
+I3471141
+sg8
+g6
+sg9
+I3100000
+sg10
+S'louise.kitchen@enron.com'
+p87
+sg12
+g6
+sg13
+g6
+sg14
+I547143
+sg15
+I5774
+sg16
+I251
+sg17
+I81042
+sg18
+I1728
+sg19
+I93925
+sg20
+I194
+sg21
+I00
+sg22
+g6
+sg23
+I3669
+sg24
+I466101
+sg25
+g6
+ssS'CHAN RONNIE'
+p88
+(dp89
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+I-32460
+sg13
+I-98784
+sg14
+g6
+sg15
+g6
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I32460
+sg25
+I98784
+ssS'BELFER ROBERT'
+p90
+(dp91
+g3
+g6
+sg4
+g6
+sg5
+I-102500
+sg7
+I102500
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+I44093
+sg13
+g6
+sg14
+I-44093
+sg15
+g6
+sg16
+g6
+sg17
+I3285
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I3285
+ssS'SHANKMAN JEFFREY A'
+p92
+(dp93
+g3
+I304110
+sg4
+I3221
+sg5
+g6
+sg7
+I3038702
+sg8
+g6
+sg9
+I2000000
+sg10
+S'jeffrey.shankman@enron.com'
+p94
+sg12
+g6
+sg13
+g6
+sg14
+I2072035
+sg15
+I178979
+sg16
+I94
+sg17
+I1441898
+sg18
+I2681
+sg19
+I1191
+sg20
+I83
+sg21
+I00
+sg22
+I554422
+sg23
+I1730
+sg24
+I630137
+sg25
+g6
+ssS'WODRASKA JOHN'
+p95
+(dp96
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I189583
+sg8
+g6
+sg9
+g6
+sg10
+S'john.wodraska@enron.com'
+p97
+sg12
+g6
+sg13
+g6
+sg14
+g6
+sg15
+g6
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I189583
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'BERGSIEKER RICHARD P'
+p98
+(dp99
+g3
+I187922
+sg4
+I383
+sg5
+g6
+sg7
+I618850
+sg8
+g6
+sg9
+I250000
+sg10
+S'rick.bergsieker@enron.com'
+p100
+sg12
+g6
+sg13
+I-485813
+sg14
+I659249
+sg15
+I59175
+sg16
+I4
+sg17
+g6
+sg18
+I59
+sg19
+I427316
+sg20
+I0
+sg21
+I00
+sg22
+I180250
+sg23
+I233
+sg24
+I659249
+sg25
+g6
+ssS'URQUHART JOHN A'
+p101
+(dp102
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I228656
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+I-36666
+sg14
+g6
+sg15
+I228656
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I36666
+ssS'BIBI PHILIPPE A'
+p103
+(dp104
+g3
+I213625
+sg4
+I1607
+sg5
+g6
+sg7
+I2047593
+sg8
+g6
+sg9
+I1000000
+sg10
+S'philippe.bibi@enron.com'
+p105
+sg12
+g6
+sg13
+g6
+sg14
+I1843816
+sg15
+I38559
+sg16
+I23
+sg17
+I1465734
+sg18
+I40
+sg19
+I425688
+sg20
+I8
+sg21
+I00
+sg22
+I369721
+sg23
+I1336
+sg24
+I378082
+sg25
+g6
+ssS'RIEKER PAULA H'
+p106
+(dp107
+g3
+I249201
+sg4
+I1328
+sg5
+I214678
+sg7
+I1099100
+sg8
+g6
+sg9
+I700000
+sg10
+S'paula.rieker@enron.com'
+p108
+sg12
+g6
+sg13
+I-100000
+sg14
+I1918887
+sg15
+I33271
+sg16
+I35
+sg17
+I1635238
+sg18
+I82
+sg19
+I1950
+sg20
+I48
+sg21
+I01
+sg22
+g6
+sg23
+I1258
+sg24
+I283649
+sg25
+g6
+ssS'WHALEY DAVID A'
+p109
+(dp110
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I98718
+sg15
+g6
+sg16
+g6
+sg17
+I98718
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'BECK SALLY W'
+p111
+(dp112
+g3
+I231330
+sg4
+I7315
+sg5
+g6
+sg7
+I969068
+sg8
+g6
+sg9
+I700000
+sg10
+S'sally.beck@enron.com'
+p113
+sg12
+g6
+sg13
+g6
+sg14
+I126027
+sg15
+I37172
+sg16
+I144
+sg17
+g6
+sg18
+I4343
+sg19
+I566
+sg20
+I386
+sg21
+I00
+sg22
+g6
+sg23
+I2639
+sg24
+I126027
+sg25
+g6
+ssS'HAUG DAVID L'
+p114
+(dp115
+g3
+g6
+sg4
+I573
+sg5
+g6
+sg7
+I475
+sg8
+g6
+sg9
+g6
+sg10
+S'david.haug@enron.com'
+p116
+sg12
+g6
+sg13
+g6
+sg14
+I2217299
+sg15
+I475
+sg16
+I4
+sg17
+g6
+sg18
+I19
+sg19
+g6
+sg20
+I7
+sg21
+I00
+sg22
+g6
+sg23
+I471
+sg24
+I2217299
+sg25
+g6
+ssS'ECHOLS JOHN B'
+p117
+(dp118
+g3
+I182245
+sg4
+g6
+sg5
+g6
+sg7
+I2692324
+sg8
+g6
+sg9
+I200000
+sg10
+S'john.echols@enron.com'
+p119
+sg12
+g6
+sg13
+g6
+sg14
+I1008941
+sg15
+I21530
+sg16
+g6
+sg17
+I601438
+sg18
+g6
+sg19
+I53775
+sg20
+g6
+sg21
+I00
+sg22
+I2234774
+sg23
+g6
+sg24
+I407503
+sg25
+g6
+ssS'MENDELSOHN JOHN'
+p120
+(dp121
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I148
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+I-103750
+sg14
+g6
+sg15
+I148
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I103750
+ssS'HICKERSON GARY J'
+p122
+(dp123
+g3
+I211788
+sg4
+I1320
+sg5
+g6
+sg7
+I2081796
+sg8
+g6
+sg9
+I1700000
+sg10
+S'gary.hickerson@enron.com'
+p124
+sg12
+g6
+sg13
+g6
+sg14
+I441096
+sg15
+I98849
+sg16
+I40
+sg17
+g6
+sg18
+I27
+sg19
+I1936
+sg20
+I1
+sg21
+I00
+sg22
+I69223
+sg23
+I900
+sg24
+I441096
+sg25
+g6
+ssS'CLINE KENNETH W'
+p125
+(dp126
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+I-472568
+sg13
+g6
+sg14
+I189518
+sg15
+g6
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I662086
+sg25
+g6
+ssS'LEWIS RICHARD'
+p127
+(dp128
+g3
+g6
+sg4
+I952
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'richard.lewis@enron.com'
+p129
+sg12
+g6
+sg13
+g6
+sg14
+I850477
+sg15
+g6
+sg16
+I10
+sg17
+I850477
+sg18
+I26
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I739
+sg24
+g6
+sg25
+g6
+ssS'HAYES ROBERT E'
+p130
+(dp131
+g3
+g6
+sg4
+I504
+sg5
+I7961
+sg7
+I7961
+sg8
+g6
+sg9
+g6
+sg10
+S'robert.hayes@enron.com'
+p132
+sg12
+g6
+sg13
+g6
+sg14
+I151418
+sg15
+g6
+sg16
+I16
+sg17
+g6
+sg18
+I12
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I50
+sg24
+I151418
+sg25
+g6
+ssS'KOPPER MICHAEL J'
+p133
+(dp134
+g3
+I224305
+sg4
+g6
+sg5
+g6
+sg7
+I2652612
+sg8
+g6
+sg9
+I800000
+sg10
+S'michael.kopper@enron.com'
+p135
+sg12
+g6
+sg13
+g6
+sg14
+I985032
+sg15
+I118134
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I907502
+sg20
+g6
+sg21
+I01
+sg22
+I602671
+sg23
+g6
+sg24
+I985032
+sg25
+g6
+ssS'LEFF DANIEL P'
+p136
+(dp137
+g3
+I273746
+sg4
+I2822
+sg5
+g6
+sg7
+I2664228
+sg8
+g6
+sg9
+I1000000
+sg10
+S'dan.leff@enron.com'
+p138
+sg12
+g6
+sg13
+g6
+sg14
+I360528
+sg15
+g6
+sg16
+I67
+sg17
+g6
+sg18
+I63
+sg19
+I3083
+sg20
+I14
+sg21
+I00
+sg22
+I1387399
+sg23
+I2672
+sg24
+I360528
+sg25
+g6
+ssS'LAVORATO JOHN J'
+p139
+(dp140
+g3
+I339288
+sg4
+I7259
+sg5
+g6
+sg7
+I10425757
+sg8
+g6
+sg9
+I8000000
+sg10
+S'john.lavorato@enron.com'
+p141
+sg12
+g6
+sg13
+g6
+sg14
+I5167144
+sg15
+I49537
+sg16
+I528
+sg17
+I4158995
+sg18
+I2585
+sg19
+I1552
+sg20
+I411
+sg21
+I00
+sg22
+I2035380
+sg23
+I3962
+sg24
+I1008149
+sg25
+g6
+ssS'BERBERIAN DAVID'
+p142
+(dp143
+g3
+I216582
+sg4
+g6
+sg5
+g6
+sg7
+I228474
+sg8
+g6
+sg9
+g6
+sg10
+S'david.berberian@enron.com'
+p144
+sg12
+g6
+sg13
+g6
+sg14
+I2493616
+sg15
+I11892
+sg16
+g6
+sg17
+I1624396
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I869220
+sg25
+g6
+ssS'DETMERING TIMOTHY J'
+p145
+(dp146
+g3
+I210500
+sg4
+g6
+sg5
+I875307
+sg7
+I1204583
+sg8
+g6
+sg9
+I425000
+sg10
+S'timothy.detmering@enron.com'
+p147
+sg12
+I-315068
+sg13
+I-775241
+sg14
+I2027865
+sg15
+I52255
+sg16
+g6
+sg17
+I2027865
+sg18
+g6
+sg19
+I1105
+sg20
+g6
+sg21
+I00
+sg22
+I415657
+sg23
+g6
+sg24
+I315068
+sg25
+g6
+ssS'WAKEHAM JOHN'
+p148
+(dp149
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I213071
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+g6
+sg15
+I103773
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I109298
+ssS'POWERS WILLIAM'
+p150
+(dp151
+g3
+g6
+sg4
+I653
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'ken.powers@enron.com'
+p152
+sg12
+g6
+sg13
+I-17500
+sg14
+g6
+sg15
+g6
+sg16
+I0
+sg17
+g6
+sg18
+I26
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I12
+sg24
+g6
+sg25
+I17500
+ssS'GOLD JOSEPH'
+p153
+(dp154
+g3
+I272880
+sg4
+g6
+sg5
+g6
+sg7
+I2146973
+sg8
+g6
+sg9
+I750000
+sg10
+S'joe.gold@enron.com'
+p155
+sg12
+g6
+sg13
+g6
+sg14
+I877611
+sg15
+g6
+sg16
+g6
+sg17
+I436515
+sg18
+g6
+sg19
+I819288
+sg20
+g6
+sg21
+I00
+sg22
+I304805
+sg23
+g6
+sg24
+I441096
+sg25
+g6
+ssS'BANNANTINE JAMES M'
+p156
+(dp157
+g3
+I477
+sg4
+I566
+sg5
+g6
+sg7
+I916197
+sg8
+g6
+sg9
+g6
+sg10
+S'james.bannantine@enron.com'
+p158
+sg12
+I-560222
+sg13
+I-5104
+sg14
+I5243487
+sg15
+I56301
+sg16
+I39
+sg17
+I4046157
+sg18
+I29
+sg19
+I864523
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I465
+sg24
+I1757552
+sg25
+g6
+ssS'DUNCAN JOHN H'
+p159
+(dp160
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I77492
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+I-25000
+sg14
+I371750
+sg15
+g6
+sg16
+g6
+sg17
+I371750
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I102492
+ssS'SHAPIRO RICHARD S'
+p161
+(dp162
+g3
+I269076
+sg4
+I15149
+sg5
+g6
+sg7
+I1057548
+sg8
+g6
+sg9
+I650000
+sg10
+S'richard.shapiro@enron.com'
+p163
+sg12
+g6
+sg13
+g6
+sg14
+I987001
+sg15
+I137767
+sg16
+I74
+sg17
+I607837
+sg18
+I1215
+sg19
+I705
+sg20
+I65
+sg21
+I00
+sg22
+g6
+sg23
+I4527
+sg24
+I379164
+sg25
+g6
+ssS'SHERRIFF JOHN R'
+p164
+(dp165
+g3
+I428780
+sg4
+I3187
+sg5
+g6
+sg7
+I4335388
+sg8
+g6
+sg9
+I1500000
+sg10
+S'john.sherriff@enron.com'
+p166
+sg12
+g6
+sg13
+g6
+sg14
+I3128982
+sg15
+g6
+sg16
+I28
+sg17
+I1835558
+sg18
+I92
+sg19
+I1852186
+sg20
+I23
+sg21
+I00
+sg22
+I554422
+sg23
+I2103
+sg24
+I1293424
+sg25
+g6
+ssS'SHELBY REX'
+p167
+(dp168
+g3
+I211844
+sg4
+I225
+sg5
+g6
+sg7
+I2003885
+sg8
+g6
+sg9
+I200000
+sg10
+S'rex.shelby@enron.com'
+p169
+sg12
+g6
+sg13
+I-4167
+sg14
+I2493616
+sg15
+I22884
+sg16
+I13
+sg17
+I1624396
+sg18
+I39
+sg19
+I1573324
+sg20
+I14
+sg21
+I01
+sg22
+g6
+sg23
+I91
+sg24
+I869220
+sg25
+g6
+ssS'LEMAISTRE CHARLES'
+p170
+(dp171
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I87492
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+I-25000
+sg14
+I412878
+sg15
+g6
+sg16
+g6
+sg17
+I412878
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I112492
+ssS'DEFFNER JOSEPH M'
+p172
+(dp173
+g3
+I206121
+sg4
+I714
+sg5
+g6
+sg7
+I1208649
+sg8
+g6
+sg9
+I600000
+sg10
+S'joseph.deffner@enron.com'
+p174
+sg12
+g6
+sg13
+g6
+sg14
+I159211
+sg15
+I41626
+sg16
+I115
+sg17
+I17378
+sg18
+I74
+sg19
+I25553
+sg20
+I4
+sg21
+I00
+sg22
+I335349
+sg23
+I552
+sg24
+I141833
+sg25
+g6
+ssS'KISHKILL JOSEPH G'
+p175
+(dp176
+g3
+I174246
+sg4
+g6
+sg5
+g6
+sg7
+I704896
+sg8
+g6
+sg9
+g6
+sg10
+S'joe.kishkill@enron.com'
+p177
+sg12
+g6
+sg13
+I-51042
+sg14
+I1034346
+sg15
+I116335
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I465357
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I1034346
+sg25
+g6
+ssS'WHALLEY LAWRENCE G'
+p178
+(dp179
+g3
+I510364
+sg4
+I6019
+sg5
+g6
+sg7
+I4677574
+sg8
+g6
+sg9
+I3000000
+sg10
+S'greg.whalley@enron.com'
+p180
+sg12
+g6
+sg13
+g6
+sg14
+I6079137
+sg15
+I57838
+sg16
+I186
+sg17
+I3282960
+sg18
+I556
+sg19
+I301026
+sg20
+I24
+sg21
+I00
+sg22
+I808346
+sg23
+I3920
+sg24
+I2796177
+sg25
+g6
+ssS'MCCONNELL MICHAEL S'
+p181
+(dp182
+g3
+I365038
+sg4
+I3329
+sg5
+g6
+sg7
+I2101364
+sg8
+g6
+sg9
+I1100000
+sg10
+S'mike.mcconnell@enron.com'
+p183
+sg12
+g6
+sg13
+g6
+sg14
+I3101279
+sg15
+I81364
+sg16
+I92
+sg17
+I1623010
+sg18
+I2742
+sg19
+I540
+sg20
+I194
+sg21
+I00
+sg22
+I554422
+sg23
+I2189
+sg24
+I1478269
+sg25
+g6
+ssS'PIRO JIM'
+p184
+(dp185
+g3
+g6
+sg4
+I58
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'jim.piro@enron.com'
+p186
+sg12
+g6
+sg13
+g6
+sg14
+I47304
+sg15
+g6
+sg16
+I0
+sg17
+g6
+sg18
+I16
+sg19
+g6
+sg20
+I1
+sg21
+I00
+sg22
+g6
+sg23
+I3
+sg24
+I47304
+sg25
+g6
+ssS'DELAINEY DAVID W'
+p187
+(dp188
+g3
+I365163
+sg4
+I3093
+sg5
+g6
+sg7
+I4747979
+sg8
+g6
+sg9
+I3000000
+sg10
+S'david.delainey@enron.com'
+p189
+sg12
+g6
+sg13
+g6
+sg14
+I3614261
+sg15
+I86174
+sg16
+I66
+sg17
+I2291113
+sg18
+I3069
+sg19
+I1661
+sg20
+I609
+sg21
+I01
+sg22
+I1294981
+sg23
+I2097
+sg24
+I1323148
+sg25
+g6
+ssS'SULLIVAN-SHAKLOVITZ COLLEEN'
+p190
+(dp191
+g3
+I162779
+sg4
+g6
+sg5
+I181993
+sg7
+I999356
+sg8
+g6
+sg9
+I100000
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I1362375
+sg15
+g6
+sg16
+g6
+sg17
+I1362375
+sg18
+g6
+sg19
+I162
+sg20
+g6
+sg21
+I00
+sg22
+I554422
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'WROBEL BRUCE'
+p192
+(dp193
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I139130
+sg15
+g6
+sg16
+g6
+sg17
+I139130
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'LINDHOLM TOD A'
+p194
+(dp195
+g3
+I236457
+sg4
+g6
+sg5
+I204075
+sg7
+I875889
+sg8
+g6
+sg9
+I200000
+sg10
+S'tod.lindholm@enron.com'
+p196
+sg12
+g6
+sg13
+g6
+sg14
+I3064208
+sg15
+I57727
+sg16
+g6
+sg17
+I2549361
+sg18
+g6
+sg19
+I2630
+sg20
+g6
+sg21
+I00
+sg22
+I175000
+sg23
+g6
+sg24
+I514847
+sg25
+g6
+ssS'MEYER JEROME J'
+p197
+(dp198
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I2151
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+I-38346
+sg14
+g6
+sg15
+I2151
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I38346
+ssS'LAY KENNETH L'
+p199
+(dp200
+g3
+I1072321
+sg4
+I4273
+sg5
+I202911
+sg7
+I103559793
+sg8
+I81525000
+sg9
+I7000000
+sg10
+S'kenneth.lay@enron.com'
+p201
+sg12
+g6
+sg13
+I-300000
+sg14
+I49110078
+sg15
+I99832
+sg16
+I123
+sg17
+I34348384
+sg18
+I36
+sg19
+I10359729
+sg20
+I16
+sg21
+I01
+sg22
+I3600000
+sg23
+I2411
+sg24
+I14761694
+sg25
+g6
+ssS'BUTTS ROBERT H'
+p202
+(dp203
+g3
+I261516
+sg4
+g6
+sg5
+g6
+sg7
+I1271582
+sg8
+g6
+sg9
+I750000
+sg10
+S'bob.butts@enron.com'
+p204
+sg12
+g6
+sg13
+I-75000
+sg14
+I417619
+sg15
+I9410
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I150656
+sg20
+g6
+sg21
+I00
+sg22
+I175000
+sg23
+g6
+sg24
+I417619
+sg25
+g6
+ssS'OLSON CINDY K'
+p205
+(dp206
+g3
+I329078
+sg4
+I1184
+sg5
+I77716
+sg7
+I1321557
+sg8
+g6
+sg9
+I750000
+sg10
+S'cindy.olson@enron.com'
+p207
+sg12
+g6
+sg13
+g6
+sg14
+I2606763
+sg15
+I63791
+sg16
+I20
+sg17
+I1637034
+sg18
+I52
+sg19
+I972
+sg20
+I15
+sg21
+I00
+sg22
+I100000
+sg23
+I856
+sg24
+I969729
+sg25
+g6
+ssS'MCDONALD REBECCA'
+p208
+(dp209
+g3
+g6
+sg4
+I894
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'rebecca.mcdonald@enron.com'
+p210
+sg12
+g6
+sg13
+g6
+sg14
+I1691366
+sg15
+g6
+sg16
+I54
+sg17
+I757301
+sg18
+I13
+sg19
+g6
+sg20
+I1
+sg21
+I00
+sg22
+g6
+sg23
+I720
+sg24
+I934065
+sg25
+g6
+ssS'CUMBERLAND MICHAEL S'
+p211
+(dp212
+g3
+I184899
+sg4
+g6
+sg5
+g6
+sg7
+I807956
+sg8
+g6
+sg9
+I325000
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I207940
+sg15
+I22344
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I713
+sg20
+g6
+sg21
+I00
+sg22
+I275000
+sg23
+g6
+sg24
+I207940
+sg25
+g6
+ssS'GAHN ROBERT S'
+p213
+(dp214
+g3
+I192008
+sg4
+g6
+sg5
+I73122
+sg7
+I900585
+sg8
+g6
+sg9
+I509870
+sg10
+g6
+sg12
+g6
+sg13
+I-1042
+sg14
+I318607
+sg15
+I50080
+sg16
+g6
+sg17
+I83237
+sg18
+g6
+sg19
+I76547
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I235370
+sg25
+g6
+ssS'BADUM JAMES P'
+p215
+(dp216
+g3
+g6
+sg4
+g6
+sg5
+I178980
+sg7
+I182466
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I257817
+sg15
+I3486
+sg16
+g6
+sg17
+I257817
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'HERMANN ROBERT J'
+p217
+(dp218
+g3
+I262663
+sg4
+g6
+sg5
+g6
+sg7
+I1297461
+sg8
+g6
+sg9
+I700000
+sg10
+S'robert.hermann@enron.com'
+p219
+sg12
+g6
+sg13
+I-280000
+sg14
+I668132
+sg15
+I48357
+sg16
+g6
+sg17
+I187500
+sg18
+g6
+sg19
+I416441
+sg20
+g6
+sg21
+I00
+sg22
+I150000
+sg23
+g6
+sg24
+I480632
+sg25
+g6
+ssS'FALLON JAMES B'
+p220
+(dp221
+g3
+I304588
+sg4
+I1755
+sg5
+g6
+sg7
+I3676340
+sg8
+g6
+sg9
+I2500000
+sg10
+S'jim.fallon@enron.com'
+p222
+sg12
+g6
+sg13
+g6
+sg14
+I2332399
+sg15
+I95924
+sg16
+I42
+sg17
+I940257
+sg18
+I75
+sg19
+I401481
+sg20
+I37
+sg21
+I00
+sg22
+I374347
+sg23
+I1604
+sg24
+I1392142
+sg25
+g6
+ssS'GATHMANN WILLIAM D'
+p223
+(dp224
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+I-72419
+sg13
+g6
+sg14
+I1945360
+sg15
+g6
+sg16
+g6
+sg17
+I1753766
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I264013
+sg25
+g6
+ssS'HORTON STANLEY C'
+p225
+(dp226
+g3
+g6
+sg4
+I2350
+sg5
+I3131860
+sg7
+I3131860
+sg8
+g6
+sg9
+g6
+sg10
+S'stanley.horton@enron.com'
+p227
+sg12
+g6
+sg13
+g6
+sg14
+I7256648
+sg15
+g6
+sg16
+I44
+sg17
+I5210569
+sg18
+I1073
+sg19
+g6
+sg20
+I15
+sg21
+I00
+sg22
+g6
+sg23
+I1074
+sg24
+I2046079
+sg25
+g6
+ssS'BOWEN JR RAYMOND M'
+p228
+(dp229
+g3
+I278601
+sg4
+I1858
+sg5
+g6
+sg7
+I2669589
+sg8
+g6
+sg9
+I1350000
+sg10
+S'raymond.bowen@enron.com'
+p230
+sg12
+g6
+sg13
+I-833
+sg14
+I252055
+sg15
+I65907
+sg16
+I140
+sg17
+g6
+sg18
+I27
+sg19
+I1621
+sg20
+I15
+sg21
+I01
+sg22
+I974293
+sg23
+I1593
+sg24
+I252055
+sg25
+g6
+ssS'GILLIS JOHN'
+p231
+(dp232
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I85641
+sg15
+g6
+sg16
+g6
+sg17
+I9803
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I75838
+sg25
+g6
+ssS'FITZGERALD JAY L'
+p233
+(dp234
+g3
+I199157
+sg4
+I936
+sg5
+g6
+sg7
+I1414857
+sg8
+g6
+sg9
+I350000
+sg10
+S'jay.fitzgerald@enron.com'
+p235
+sg12
+g6
+sg13
+g6
+sg14
+I1621236
+sg15
+I23870
+sg16
+I1
+sg17
+I664461
+sg18
+I16
+sg19
+I285414
+sg20
+I8
+sg21
+I00
+sg22
+I556416
+sg23
+I723
+sg24
+I956775
+sg25
+g6
+ssS'MORAN MICHAEL P'
+p236
+(dp237
+g3
+g6
+sg4
+I672
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'michael.moran@enron.com'
+p238
+sg12
+g6
+sg13
+g6
+sg14
+I221141
+sg15
+g6
+sg16
+I0
+sg17
+I59539
+sg18
+I19
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I127
+sg24
+I161602
+sg25
+g6
+ssS'REDMOND BRIAN L'
+p239
+(dp240
+g3
+I96840
+sg4
+I1671
+sg5
+g6
+sg7
+I111529
+sg8
+g6
+sg9
+g6
+sg10
+S'brian.redmond@enron.com'
+p241
+sg12
+g6
+sg13
+g6
+sg14
+I7890324
+sg15
+I14689
+sg16
+I204
+sg17
+I7509039
+sg18
+I221
+sg19
+g6
+sg20
+I49
+sg21
+I00
+sg22
+g6
+sg23
+I1063
+sg24
+I381285
+sg25
+g6
+ssS'BAZELIDES PHILIP J'
+p242
+(dp243
+g3
+I80818
+sg4
+g6
+sg5
+I684694
+sg7
+I860136
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I1599641
+sg15
+g6
+sg16
+g6
+sg17
+I1599641
+sg18
+g6
+sg19
+I874
+sg20
+g6
+sg21
+I00
+sg22
+I93750
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'BELDEN TIMOTHY N'
+p244
+(dp245
+g3
+I213999
+sg4
+I7991
+sg5
+I2144013
+sg7
+I5501630
+sg8
+g6
+sg9
+I5249999
+sg10
+S'tim.belden@enron.com'
+p246
+sg12
+g6
+sg13
+I-2334434
+sg14
+I1110705
+sg15
+I17355
+sg16
+I228
+sg17
+I953136
+sg18
+I484
+sg19
+I210698
+sg20
+I108
+sg21
+I01
+sg22
+g6
+sg23
+I5521
+sg24
+I157569
+sg25
+g6
+ssS'DIMICHELE RICHARD G'
+p247
+(dp248
+g3
+I262788
+sg4
+g6
+sg5
+g6
+sg7
+I2368151
+sg8
+g6
+sg9
+I1000000
+sg10
+S'richard.dimichele@enron.com'
+p249
+sg12
+g6
+sg13
+g6
+sg14
+I8317782
+sg15
+I35812
+sg16
+g6
+sg17
+I8191755
+sg18
+g6
+sg19
+I374689
+sg20
+g6
+sg21
+I00
+sg22
+I694862
+sg23
+g6
+sg24
+I126027
+sg25
+g6
+ssS'DURAN WILLIAM D'
+p250
+(dp251
+g3
+I210692
+sg4
+I904
+sg5
+g6
+sg7
+I2093263
+sg8
+g6
+sg9
+I750000
+sg10
+S'w.duran@enron.com'
+p252
+sg12
+g6
+sg13
+g6
+sg14
+I1640910
+sg15
+I25785
+sg16
+I106
+sg17
+I1451869
+sg18
+I12
+sg19
+I1568
+sg20
+I3
+sg21
+I00
+sg22
+I1105218
+sg23
+I599
+sg24
+I189041
+sg25
+g6
+ssS'THORN TERENCE H'
+p253
+(dp254
+g3
+I222093
+sg4
+I266
+sg5
+I16586
+sg7
+I911453
+sg8
+g6
+sg9
+g6
+sg10
+S'terence.thorn@enron.com'
+p255
+sg12
+g6
+sg13
+g6
+sg14
+I4817796
+sg15
+I46145
+sg16
+I0
+sg17
+I4452476
+sg18
+I41
+sg19
+I426629
+sg20
+I0
+sg21
+I00
+sg22
+I200000
+sg23
+I73
+sg24
+I365320
+sg25
+g6
+ssS'FASTOW ANDREW S'
+p256
+(dp257
+g3
+I440698
+sg4
+g6
+sg5
+g6
+sg7
+I2424083
+sg8
+g6
+sg9
+I1300000
+sg10
+S'andrew.fastow@enron.com'
+p258
+sg12
+g6
+sg13
+I-1386055
+sg14
+I1794412
+sg15
+I55921
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I277464
+sg20
+g6
+sg21
+I01
+sg22
+I1736055
+sg23
+g6
+sg24
+I1794412
+sg25
+g6
+ssS'FOY JOE'
+p259
+(dp260
+g3
+g6
+sg4
+I57
+sg5
+I181755
+sg7
+I181755
+sg8
+g6
+sg9
+g6
+sg10
+S'tracy.foy@enron.com'
+p261
+sg12
+g6
+sg13
+g6
+sg14
+I343434
+sg15
+g6
+sg16
+I0
+sg17
+I343434
+sg18
+I13
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I2
+sg24
+g6
+sg25
+g6
+ssS'CALGER CHRISTOPHER F'
+p262
+(dp263
+g3
+I240189
+sg4
+I2598
+sg5
+g6
+sg7
+I1639297
+sg8
+g6
+sg9
+I1250000
+sg10
+S'christopher.calger@enron.com'
+p264
+sg12
+g6
+sg13
+I-262500
+sg14
+I126027
+sg15
+I35818
+sg16
+I199
+sg17
+g6
+sg18
+I144
+sg19
+I486
+sg20
+I25
+sg21
+I01
+sg22
+I375304
+sg23
+I2188
+sg24
+I126027
+sg25
+g6
+ssS'RICE KENNETH D'
+p265
+(dp266
+g3
+I420636
+sg4
+I905
+sg5
+g6
+sg7
+I505050
+sg8
+g6
+sg9
+I1750000
+sg10
+S'ken.rice@enron.com'
+p267
+sg12
+g6
+sg13
+I-3504386
+sg14
+I22542539
+sg15
+I46950
+sg16
+I42
+sg17
+I19794175
+sg18
+I18
+sg19
+I174839
+sg20
+I4
+sg21
+I01
+sg22
+I1617011
+sg23
+I864
+sg24
+I2748364
+sg25
+g6
+ssS'KAMINSKI WINCENTY J'
+p268
+(dp269
+g3
+I275101
+sg4
+I4607
+sg5
+g6
+sg7
+I1086821
+sg8
+g6
+sg9
+I400000
+sg10
+S'vince.kaminski@enron.com'
+p270
+sg12
+g6
+sg13
+g6
+sg14
+I976037
+sg15
+I83585
+sg16
+I41
+sg17
+I850010
+sg18
+I14368
+sg19
+I4669
+sg20
+I171
+sg21
+I00
+sg22
+I323466
+sg23
+I583
+sg24
+I126027
+sg25
+g6
+ssS'LOCKHART EUGENE E'
+p271
+(dp272
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+g6
+sg15
+g6
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'COX DAVID'
+p273
+(dp274
+g3
+I314288
+sg4
+I102
+sg5
+g6
+sg7
+I1101393
+sg8
+g6
+sg9
+I800000
+sg10
+S'chip.cox@enron.com'
+p275
+sg12
+g6
+sg13
+I-41250
+sg14
+I495633
+sg15
+I27861
+sg16
+I0
+sg17
+I117551
+sg18
+I33
+sg19
+I494
+sg20
+I4
+sg21
+I00
+sg22
+g6
+sg23
+I71
+sg24
+I378082
+sg25
+g6
+ssS'OVERDYKE JR JERE C'
+p276
+(dp277
+g3
+I94941
+sg4
+g6
+sg5
+g6
+sg7
+I249787
+sg8
+g6
+sg9
+g6
+sg10
+S'jere.overdyke@enron.com'
+p278
+sg12
+g6
+sg13
+g6
+sg14
+I7307594
+sg15
+I18834
+sg16
+g6
+sg17
+I5266578
+sg18
+g6
+sg19
+I176
+sg20
+g6
+sg21
+I00
+sg22
+I135836
+sg23
+g6
+sg24
+I2041016
+sg25
+g6
+ssS'PEREIRA PAULO V. FERRAZ'
+p279
+(dp280
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I27942
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+I-101250
+sg14
+g6
+sg15
+I27942
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I101250
+ssS'STABLER FRANK'
+p281
+(dp282
+g3
+I239502
+sg4
+g6
+sg5
+g6
+sg7
+I1112087
+sg8
+g6
+sg9
+I500000
+sg10
+S'frank.stabler@enron.com'
+p283
+sg12
+g6
+sg13
+g6
+sg14
+I511734
+sg15
+I16514
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I356071
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I511734
+sg25
+g6
+ssS'SKILLING JEFFREY K'
+p284
+(dp285
+g3
+I1111258
+sg4
+I3627
+sg5
+g6
+sg7
+I8682716
+sg8
+g6
+sg9
+I5600000
+sg10
+S'jeff.skilling@enron.com'
+p286
+sg12
+g6
+sg13
+g6
+sg14
+I26093672
+sg15
+I29336
+sg16
+I88
+sg17
+I19250000
+sg18
+I108
+sg19
+I22122
+sg20
+I30
+sg21
+I01
+sg22
+I1920000
+sg23
+I2042
+sg24
+I6843672
+sg25
+g6
+ssS'BLAKE JR. NORMAN P'
+p287
+(dp288
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I1279
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+I-113784
+sg14
+g6
+sg15
+I1279
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I113784
+ssS'SHERRICK JEFFREY B'
+p289
+(dp290
+g3
+g6
+sg4
+I613
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'jeffrey.sherrick@enron.com'
+p291
+sg12
+g6
+sg13
+g6
+sg14
+I1832468
+sg15
+g6
+sg16
+I39
+sg17
+I1426469
+sg18
+I25
+sg19
+g6
+sg20
+I18
+sg21
+I00
+sg22
+g6
+sg23
+I583
+sg24
+I405999
+sg25
+g6
+ssS'PRENTICE JAMES'
+p292
+(dp293
+g3
+g6
+sg4
+g6
+sg5
+I564348
+sg7
+I564348
+sg8
+g6
+sg9
+g6
+sg10
+S'james.prentice@enron.com'
+p294
+sg12
+g6
+sg13
+g6
+sg14
+I1095040
+sg15
+g6
+sg16
+g6
+sg17
+I886231
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I208809
+sg25
+g6
+ssS'GRAY RODNEY'
+p295
+(dp296
+g3
+I6615
+sg4
+g6
+sg5
+I93585
+sg7
+I1146658
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+g6
+sg15
+g6
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I680833
+sg20
+g6
+sg21
+I00
+sg22
+I365625
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'THE TRAVEL AGENCY IN THE PARK'
+p297
+(dp298
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I362096
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+g6
+sg15
+g6
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I362096
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'UMANOFF ADAM S'
+p299
+(dp300
+g3
+I288589
+sg4
+I111
+sg5
+g6
+sg7
+I1130461
+sg8
+g6
+sg9
+I788750
+sg10
+S'adam.umanoff@enron.com'
+p301
+sg12
+g6
+sg13
+g6
+sg14
+g6
+sg15
+I53122
+sg16
+I12
+sg17
+g6
+sg18
+I18
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I41
+sg24
+g6
+sg25
+g6
+ssS'KEAN STEVEN J'
+p302
+(dp303
+g3
+I404338
+sg4
+I12754
+sg5
+g6
+sg7
+I1747522
+sg8
+g6
+sg9
+I1000000
+sg10
+S'steven.kean@enron.com'
+p304
+sg12
+g6
+sg13
+g6
+sg14
+I6153642
+sg15
+I41953
+sg16
+I140
+sg17
+I2022048
+sg18
+I6759
+sg19
+I1231
+sg20
+I387
+sg21
+I00
+sg22
+I300000
+sg23
+I3639
+sg24
+I4131594
+sg25
+g6
+ssS'TOTAL'
+p305
+(dp306
+g3
+I26704229
+sg4
+g6
+sg5
+I32083396
+sg7
+I309886585
+sg8
+I83925000
+sg9
+I97343619
+sg10
+g6
+sg12
+I-7576788
+sg13
+I-27992891
+sg14
+I434509511
+sg15
+I5235198
+sg16
+g6
+sg17
+I311764000
+sg18
+g6
+sg19
+I42667589
+sg20
+g6
+sg21
+I00
+sg22
+I48521928
+sg23
+g6
+sg24
+I130322299
+sg25
+I1398517
+ssS'FOWLER PEGGY'
+p307
+(dp308
+g3
+g6
+sg4
+I517
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'kulvinder.fowler@enron.com'
+p309
+sg12
+g6
+sg13
+g6
+sg14
+I1884748
+sg15
+g6
+sg16
+I0
+sg17
+I1324578
+sg18
+I36
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I10
+sg24
+I560170
+sg25
+g6
+ssS'WASAFF GEORGE'
+p310
+(dp311
+g3
+I259996
+sg4
+I400
+sg5
+I831299
+sg7
+I1034395
+sg8
+g6
+sg9
+I325000
+sg10
+S'george.wasaff@enron.com'
+p312
+sg12
+g6
+sg13
+I-583325
+sg14
+I2056427
+sg15
+g6
+sg16
+I22
+sg17
+I1668260
+sg18
+I30
+sg19
+I1425
+sg20
+I7
+sg21
+I00
+sg22
+I200000
+sg23
+I337
+sg24
+I388167
+sg25
+g6
+ssS'WHITE JR THOMAS E'
+p313
+(dp314
+g3
+I317543
+sg4
+g6
+sg5
+g6
+sg7
+I1934359
+sg8
+g6
+sg9
+I450000
+sg10
+S'thomas.white@enron.com'
+p315
+sg12
+g6
+sg13
+g6
+sg14
+I15144123
+sg15
+I81353
+sg16
+g6
+sg17
+I1297049
+sg18
+g6
+sg19
+I1085463
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I13847074
+sg25
+g6
+ssS'CHRISTODOULOU DIOMEDES'
+p316
+(dp317
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'diomedes.christodoulou@enron.com'
+p318
+sg12
+g6
+sg13
+g6
+sg14
+I6077885
+sg15
+g6
+sg16
+g6
+sg17
+I5127155
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I950730
+sg25
+g6
+ssS'ALLEN PHILLIP K'
+p319
+(dp320
+g3
+I201955
+sg4
+I2902
+sg5
+I2869717
+sg7
+I4484442
+sg8
+g6
+sg9
+I4175000
+sg10
+S'phillip.allen@enron.com'
+p321
+sg12
+I-126027
+sg13
+I-3081055
+sg14
+I1729541
+sg15
+I13868
+sg16
+I47
+sg17
+I1729541
+sg18
+I2195
+sg19
+I152
+sg20
+I65
+sg21
+I00
+sg22
+I304805
+sg23
+I1407
+sg24
+I126027
+sg25
+g6
+ssS'SHARP VICTORIA T'
+p322
+(dp323
+g3
+I248146
+sg4
+I3136
+sg5
+I187469
+sg7
+I1576511
+sg8
+g6
+sg9
+I600000
+sg10
+S'vicki.sharp@enron.com'
+p324
+sg12
+g6
+sg13
+g6
+sg14
+I494136
+sg15
+I116337
+sg16
+I24
+sg17
+I281073
+sg18
+I136
+sg19
+I2401
+sg20
+I6
+sg21
+I00
+sg22
+I422158
+sg23
+I2477
+sg24
+I213063
+sg25
+g6
+ssS'JAEDICKE ROBERT'
+p325
+(dp326
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I83750
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+I-44093
+sg13
+I-25000
+sg14
+I431750
+sg15
+g6
+sg16
+g6
+sg17
+I431750
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I44093
+sg25
+I108750
+ssS'WINOKUR JR. HERBERT S'
+p327
+(dp328
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I84992
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+I-25000
+sg14
+g6
+sg15
+I1413
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I108579
+ssS'BROWN MICHAEL'
+p329
+(dp330
+g3
+g6
+sg4
+I1486
+sg5
+g6
+sg7
+I49288
+sg8
+g6
+sg9
+g6
+sg10
+S'michael.brown@enron.com'
+p331
+sg12
+g6
+sg13
+g6
+sg14
+g6
+sg15
+I49288
+sg16
+I13
+sg17
+g6
+sg18
+I41
+sg19
+g6
+sg20
+I1
+sg21
+I00
+sg22
+g6
+sg23
+I761
+sg24
+g6
+sg25
+g6
+ssS'MCCLELLAN GEORGE'
+p332
+(dp333
+g3
+I263413
+sg4
+I1744
+sg5
+g6
+sg7
+I1318763
+sg8
+g6
+sg9
+I900000
+sg10
+S'george.mcclellan@enron.com'
+p334
+sg12
+g6
+sg13
+I-125000
+sg14
+I947861
+sg15
+I228763
+sg16
+I52
+sg17
+I506765
+sg18
+I49
+sg19
+I51587
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I1469
+sg24
+I441096
+sg25
+g6
+ssS'HUGHES JAMES A'
+p335
+(dp336
+g3
+g6
+sg4
+I719
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'james.hughes@enron.com'
+p337
+sg12
+g6
+sg13
+g6
+sg14
+I1118394
+sg15
+g6
+sg16
+I35
+sg17
+I754966
+sg18
+I34
+sg19
+g6
+sg20
+I5
+sg21
+I00
+sg22
+g6
+sg23
+I589
+sg24
+I363428
+sg25
+g6
+ssS'REYNOLDS LAWRENCE'
+p338
+(dp339
+g3
+I76399
+sg4
+g6
+sg5
+I51365
+sg7
+I394475
+sg8
+g6
+sg9
+I100000
+sg10
+g6
+sg12
+I-140264
+sg13
+I-200000
+sg14
+I4221891
+sg15
+I8409
+sg16
+g6
+sg17
+I4160672
+sg18
+g6
+sg19
+I202052
+sg20
+g6
+sg21
+I00
+sg22
+I156250
+sg23
+g6
+sg24
+I201483
+sg25
+g6
+ssS'PICKERING MARK R'
+p340
+(dp341
+g3
+I655037
+sg4
+I898
+sg5
+g6
+sg7
+I1386690
+sg8
+I400000
+sg9
+I300000
+sg10
+S'mark.pickering@enron.com'
+p342
+sg12
+g6
+sg13
+g6
+sg14
+I28798
+sg15
+I31653
+sg16
+I7
+sg17
+I28798
+sg18
+I67
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I728
+sg24
+g6
+sg25
+g6
+ssS'BHATNAGAR SANJAY'
+p343
+(dp344
+g3
+g6
+sg4
+I523
+sS'total_stock_value'
+p345
+S'NaN'
+p346
+sg5
+g6
+sg7
+I15456290
+sg8
+g6
+sg9
+g6
+sg10
+S'sanjay.bhatnagar@enron.com'
+p347
+sg12
+I15456290
+sg13
+g6
+sg15
+g6
+sg16
+I0
+sg17
+I2604490
+sg18
+I29
+sg19
+I137864
+sg20
+I1
+sg21
+I00
+sg22
+g6
+sg23
+I463
+sg24
+I-2604490
+sg25
+I137864
+ssS'CARTER REBECCA C'
+p348
+(dp349
+g3
+I261809
+sg4
+I312
+sg5
+g6
+sg7
+I477557
+sg8
+g6
+sg9
+I300000
+sg10
+S'rebecca.carter@enron.com'
+p350
+sg12
+I-307301
+sg13
+I-159792
+sg14
+g6
+sg15
+g6
+sg16
+I29
+sg17
+g6
+sg18
+I15
+sg19
+I540
+sg20
+I7
+sg21
+I00
+sg22
+I75000
+sg23
+I196
+sg24
+I307301
+sg25
+g6
+ssS'BUCHANAN HAROLD G'
+p351
+(dp352
+g3
+I248017
+sg4
+I1088
+sg5
+g6
+sg7
+I1054637
+sg8
+g6
+sg9
+I500000
+sg10
+S'john.buchanan@enron.com'
+p353
+sg12
+g6
+sg13
+g6
+sg14
+I1014505
+sg15
+I600
+sg16
+I0
+sg17
+I825464
+sg18
+I125
+sg19
+I1215
+sg20
+I0
+sg21
+I00
+sg22
+I304805
+sg23
+I23
+sg24
+I189041
+sg25
+g6
+ssS'YEAP SOON'
+p354
+(dp355
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I55097
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I192758
+sg15
+I55097
+sg16
+g6
+sg17
+I192758
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'MURRAY JULIA H'
+p356
+(dp357
+g3
+I229284
+sg4
+I2192
+sg5
+g6
+sg7
+I812194
+sg8
+g6
+sg9
+I400000
+sg10
+S'julia.murray@enron.com'
+p358
+sg12
+g6
+sg13
+g6
+sg14
+I597461
+sg15
+I57580
+sg16
+I11
+sg17
+I400478
+sg18
+I45
+sg19
+I330
+sg20
+I2
+sg21
+I00
+sg22
+I125000
+sg23
+I395
+sg24
+I196983
+sg25
+g6
+ssS'GARLAND C KEVIN'
+p359
+(dp360
+g3
+I231946
+sg4
+I209
+sg5
+g6
+sg7
+I1566469
+sg8
+g6
+sg9
+I850000
+sg10
+S'kevin.garland@enron.com'
+p361
+sg12
+g6
+sg13
+g6
+sg14
+I896153
+sg15
+I48405
+sg16
+I10
+sg17
+I636246
+sg18
+I44
+sg19
+I60814
+sg20
+I27
+sg21
+I00
+sg22
+I375304
+sg23
+I178
+sg24
+I259907
+sg25
+g6
+ssS'DODSON KEITH'
+p362
+(dp363
+g3
+I221003
+sg4
+I176
+sg5
+g6
+sg7
+I319941
+sg8
+g6
+sg9
+I70000
+sg10
+S'keith.dodson@enron.com'
+p364
+sg12
+g6
+sg13
+g6
+sg14
+g6
+sg15
+I28164
+sg16
+I10
+sg17
+g6
+sg18
+I14
+sg19
+I774
+sg20
+I3
+sg21
+I00
+sg22
+g6
+sg23
+I114
+sg24
+g6
+sg25
+g6
+ssS'YEAGER F SCOTT'
+p365
+(dp366
+g3
+I158403
+sg4
+g6
+sg5
+g6
+sg7
+I360300
+sg8
+g6
+sg9
+g6
+sg10
+S'scott.yeager@enron.com'
+p367
+sg12
+g6
+sg13
+g6
+sg14
+I11884758
+sg15
+I53947
+sg16
+g6
+sg17
+I8308552
+sg18
+g6
+sg19
+I147950
+sg20
+g6
+sg21
+I01
+sg22
+g6
+sg23
+g6
+sg24
+I3576206
+sg25
+g6
+ssS'HIRKO JOSEPH'
+p368
+(dp369
+g3
+g6
+sg4
+g6
+sg5
+I10259
+sg7
+I91093
+sg8
+g6
+sg9
+g6
+sg10
+S'joe.hirko@enron.com'
+p370
+sg12
+g6
+sg13
+g6
+sg14
+I30766064
+sg15
+I77978
+sg16
+g6
+sg17
+I30766064
+sg18
+g6
+sg19
+I2856
+sg20
+g6
+sg21
+I01
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'DIETRICH JANET R'
+p371
+(dp372
+g3
+I250100
+sg4
+I2572
+sg5
+g6
+sg7
+I1410464
+sg8
+g6
+sg9
+I600000
+sg10
+S'janet.dietrich@enron.com'
+p373
+sg12
+g6
+sg13
+g6
+sg14
+I1865087
+sg15
+I3475
+sg16
+I305
+sg17
+I1550019
+sg18
+I63
+sg19
+I473
+sg20
+I14
+sg21
+I00
+sg22
+I556416
+sg23
+I1902
+sg24
+I315068
+sg25
+g6
+ssS'DERRICK JR. JAMES V'
+p374
+(dp375
+g3
+I492375
+sg4
+I2181
+sg5
+g6
+sg7
+I550981
+sg8
+g6
+sg9
+I800000
+sg10
+S'james.derrick@enron.com'
+p376
+sg12
+I-1787380
+sg13
+I-1284000
+sg14
+I8831913
+sg15
+I51124
+sg16
+I64
+sg17
+I8831913
+sg18
+I909
+sg19
+I7482
+sg20
+I20
+sg21
+I00
+sg22
+I484000
+sg23
+I1401
+sg24
+I1787380
+sg25
+g6
+ssS'FREVERT MARK A'
+p377
+(dp378
+g3
+I1060932
+sg4
+I3275
+sg5
+I6426990
+sg7
+I17252530
+sg8
+I2000000
+sg9
+I2000000
+sg10
+S'mark.frevert@enron.com'
+p379
+sg12
+g6
+sg13
+I-3367011
+sg14
+I14622185
+sg15
+I86987
+sg16
+I242
+sg17
+I10433518
+sg18
+I21
+sg19
+I7427621
+sg20
+I6
+sg21
+I00
+sg22
+I1617011
+sg23
+I2979
+sg24
+I4188667
+sg25
+g6
+ssS'PAI LOU L'
+p380
+(dp381
+g3
+I261879
+sg4
+g6
+sg5
+g6
+sg7
+I3123383
+sg8
+g6
+sg9
+I1000000
+sg10
+S'lou.pai@enron.com'
+p382
+sg12
+g6
+sg13
+g6
+sg14
+I23817930
+sg15
+I32047
+sg16
+g6
+sg17
+I15364167
+sg18
+g6
+sg19
+I1829457
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I8453763
+sg25
+g6
+ssS'HAYSLETT RODERICK J'
+p383
+(dp384
+g3
+g6
+sg4
+I2649
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'rod.hayslett@enron.com'
+p385
+sg12
+g6
+sg13
+g6
+sg14
+I346663
+sg15
+g6
+sg16
+I35
+sg17
+g6
+sg18
+I1061
+sg19
+g6
+sg20
+I38
+sg21
+I00
+sg22
+g6
+sg23
+I571
+sg24
+I346663
+sg25
+g6
+ssS'BAY FRANKLIN R'
+p386
+(dp387
+g3
+I239671
+sg4
+g6
+sg5
+I260455
+sg7
+I827696
+sg8
+g6
+sg9
+I400000
+sg10
+S'frank.bay@enron.com'
+p388
+sg12
+I-82782
+sg13
+I-201641
+sg14
+I63014
+sg15
+I129142
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+I69
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+I145796
+sg25
+g6
+ssS'MCCARTY DANNY J'
+p389
+(dp390
+g3
+g6
+sg4
+I1433
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'danny.mccarty@enron.com'
+p391
+sg12
+g6
+sg13
+g6
+sg14
+I758931
+sg15
+g6
+sg16
+I25
+sg17
+I664375
+sg18
+I215
+sg19
+g6
+sg20
+I2
+sg21
+I00
+sg22
+g6
+sg23
+I508
+sg24
+I94556
+sg25
+g6
+ssS'FUGH JOHN L'
+p392
+(dp393
+g3
+g6
+sg4
+g6
+sg5
+I50591
+sg7
+I50591
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+I176378
+sg15
+g6
+sg16
+g6
+sg17
+I176378
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'SCRIMSHAW MATTHEW'
+p394
+(dp395
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+g6
+sg8
+g6
+sg9
+g6
+sg10
+S'matthew.scrimshaw@enron.com'
+p396
+sg12
+g6
+sg13
+g6
+sg14
+I759557
+sg15
+g6
+sg16
+g6
+sg17
+I759557
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+g6
+ssS'KOENIG MARK E'
+p397
+(dp398
+g3
+I309946
+sg4
+I2374
+sg5
+g6
+sg7
+I1587421
+sg8
+g6
+sg9
+I700000
+sg10
+S'mark.koenig@enron.com'
+p399
+sg12
+g6
+sg13
+g6
+sg14
+I1920055
+sg15
+I127017
+sg16
+I53
+sg17
+I671737
+sg18
+I61
+sg19
+I150458
+sg20
+I15
+sg21
+I01
+sg22
+I300000
+sg23
+I2271
+sg24
+I1248318
+sg25
+g6
+ssS'SAVAGE FRANK'
+p400
+(dp401
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I3750
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+I-121284
+sg14
+g6
+sg15
+g6
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I125034
+ssS'IZZO LAWRENCE L'
+p402
+(dp403
+g3
+I85274
+sg4
+I496
+sg5
+g6
+sg7
+I1979596
+sg8
+g6
+sg9
+g6
+sg10
+S'larry.izzo@enron.com'
+p404
+sg12
+g6
+sg13
+g6
+sg14
+I5819980
+sg15
+I28093
+sg16
+I28
+sg17
+I2165172
+sg18
+I19
+sg19
+I1553729
+sg20
+I5
+sg21
+I00
+sg22
+I312500
+sg23
+I437
+sg24
+I3654808
+sg25
+g6
+ssS'TILNEY ELIZABETH A'
+p405
+(dp406
+g3
+I247338
+sg4
+I460
+sg5
+g6
+sg7
+I399393
+sg8
+g6
+sg9
+I300000
+sg10
+S'elizabeth.tilney@enron.com'
+p407
+sg12
+g6
+sg13
+I-575000
+sg14
+I1168042
+sg15
+g6
+sg16
+I10
+sg17
+I591250
+sg18
+I19
+sg19
+I152055
+sg20
+I11
+sg21
+I00
+sg22
+I275000
+sg23
+I379
+sg24
+I576792
+sg25
+g6
+ssS'MARTIN AMANDA K'
+p408
+(dp409
+g3
+I349487
+sg4
+I1522
+sg5
+I85430
+sg7
+I8407016
+sg8
+g6
+sg9
+g6
+sg10
+S'a..martin@enron.com'
+p410
+sg12
+g6
+sg13
+g6
+sg14
+I2070306
+sg15
+I8211
+sg16
+I8
+sg17
+I2070306
+sg18
+I230
+sg19
+I2818454
+sg20
+I0
+sg21
+I00
+sg22
+I5145434
+sg23
+I477
+sg24
+g6
+sg25
+g6
+ssS'BUY RICHARD B'
+p411
+(dp412
+g3
+I330546
+sg4
+I3523
+sg5
+I649584
+sg7
+I2355702
+sg8
+g6
+sg9
+I900000
+sg10
+S'rick.buy@enron.com'
+p413
+sg12
+g6
+sg13
+I-694862
+sg14
+I3444470
+sg15
+g6
+sg16
+I156
+sg17
+I2542813
+sg18
+I1053
+sg19
+I400572
+sg20
+I71
+sg21
+I00
+sg22
+I769862
+sg23
+I2333
+sg24
+I901657
+sg25
+g6
+ssS'GRAMM WENDY L'
+p414
+(dp415
+g3
+g6
+sg4
+g6
+sg5
+g6
+sg7
+I119292
+sg8
+g6
+sg9
+g6
+sg10
+g6
+sg12
+g6
+sg13
+g6
+sg14
+g6
+sg15
+g6
+sg16
+g6
+sg17
+g6
+sg18
+g6
+sg19
+g6
+sg20
+g6
+sg21
+I00
+sg22
+g6
+sg23
+g6
+sg24
+g6
+sg25
+I119292
+ssS'CAUSEY RICHARD A'
+p416
+(dp417
+g3
+I415189
+sg4
+I1892
+sg5
+g6
+sg7
+I1868758
+sg8
+g6
+sg9
+I1000000
+sg10
+S'richard.causey@enron.com'
+p418
+sg12
+g6
+sg13
+I-235000
+sg14
+I2502063
+sg15
+I30674
+sg16
+I58
+sg17
+g6
+sg18
+I49
+sg19
+I307895
+sg20
+I12
+sg21
+I01
+sg22
+I350000
+sg23
+I1585
+sg24
+I2502063
+sg25
+g6
+ssS'TAYLOR MITCHELL S'
+p419
+(dp420
+g3
+I265214
+sg4
+I533
+sg5
+I227449
+sg7
+I1092663
+sg8
+g6
+sg9
+I600000
+sg10
+S'mitchell.taylor@enron.com'
+p421
+sg12
+g6
+sg13
+g6
+sg14
+I3745048
+sg15
+g6
+sg16
+I0
+sg17
+I3181250
+sg18
+I29
+sg19
+g6
+sg20
+I0
+sg21
+I00
+sg22
+g6
+sg23
+I300
+sg24
+I563798
+sg25
+g6
+ssS'DONAHUE JR JEFFREY M'
+p422
+(dp423
+g3
+I278601
+sg4
+I865
+sg5
+g6
+sg7
+I875760
+sg8
+g6
+sg9
+I800000
+sg10
+S'jeff.donahue@enron.com'
+p424
+sg12
+g6
+sg13
+I-300000
+sg14
+I1080988
+sg15
+I96268
+sg16
+I188
+sg17
+I765920
+sg18
+I22
+sg19
+I891
+sg20
+I11
+sg21
+I00
+sg22
+g6
+sg23
+I772
+sg24
+I315068
+sg25
+g6
+ssS'GLISAN JR BEN F'
+p425
+(dp426
+g3
+I274975
+sg4
+I873
+sg5
+g6
+sg7
+I1272284
+sg8
+g6
+sg9
+I600000
+sg10
+S'ben.glisan@enron.com'
+p427
+sg12
+g6
+sg13
+g6
+sg14
+I778546
+sg15
+I125978
+sg16
+I52
+sg17
+I384728
+sg18
+I16
+sg19
+I200308
+sg20
+I6
+sg21
+I01
+sg22
+I71023
+sg23
+I874
+sg24
+I393818
+sg25
+g6
+ss.

BIN
Identifying Fraud from Enron Email Dataset/my_classifier.pkl


BIN
Identifying Fraud from Enron Email Dataset/my_dataset.pkl


BIN
Identifying Fraud from Enron Email Dataset/my_feature_list.pkl


+ 94 - 0
Identifying Fraud from Enron Email Dataset/poi_email_addresses.py

@@ -0,0 +1,94 @@
+def poiEmails():
+    email_list = ["kenneth_lay@enron.net",    
+            "kenneth_lay@enron.com",
+            "klay.enron@enron.com",
+            "kenneth.lay@enron.com", 
+            "klay@enron.com",
+            "layk@enron.com",
+            "chairman.ken@enron.com",
+            "jeffreyskilling@yahoo.com",
+            "jeff_skilling@enron.com",
+            "jskilling@enron.com",
+            "effrey.skilling@enron.com",
+            "skilling@enron.com",
+            "jeffrey.k.skilling@enron.com",
+            "jeff.skilling@enron.com",
+            "kevin_a_howard.enronxgate.enron@enron.net",
+            "kevin.howard@enron.com",
+            "kevin.howard@enron.net",
+            "kevin.howard@gcm.com",
+            "michael.krautz@enron.com"
+            "scott.yeager@enron.com",
+            "syeager@fyi-net.com",
+            "scott_yeager@enron.net",
+            "syeager@flash.net",
+            "joe'.'hirko@enron.com", 
+            "joe.hirko@enron.com", 
+            "rex.shelby@enron.com", 
+            "rex.shelby@enron.nt", 
+            "rex_shelby@enron.net",
+            "jbrown@enron.com",
+            "james.brown@enron.com", 
+            "rick.causey@enron.com", 
+            "richard.causey@enron.com", 
+            "rcausey@enron.com",
+            "calger@enron.com",
+            "chris.calger@enron.com", 
+            "christopher.calger@enron.com", 
+            "ccalger@enron.com",
+            "tim_despain.enronxgate.enron@enron.net", 
+            "tim.despain@enron.com",
+            "kevin_hannon@enron.com", 
+            "kevin'.'hannon@enron.com", 
+            "kevin_hannon@enron.net", 
+            "kevin.hannon@enron.com",
+            "mkoenig@enron.com", 
+            "mark.koenig@enron.com",
+            "m..forney@enron.com",
+            "ken'.'rice@enron.com", 
+            "ken.rice@enron.com",
+            "ken_rice@enron.com", 
+            "ken_rice@enron.net",
+            "paula.rieker@enron.com",
+            "prieker@enron.com", 
+            "andrew.fastow@enron.com", 
+            "lfastow@pdq.net", 
+            "andrew.s.fastow@enron.com", 
+            "lfastow@pop.pdq.net", 
+            "andy.fastow@enron.com",
+            "david.w.delainey@enron.com", 
+            "delainey.dave@enron.com", 
+            "'delainey@enron.com", 
+            "david.delainey@enron.com", 
+            "'david.delainey'@enron.com", 
+            "dave.delainey@enron.com", 
+            "delainey'.'david@enron.com",
+            "ben.glisan@enron.com", 
+            "bglisan@enron.com", 
+            "ben_f_glisan@enron.com", 
+            "ben'.'glisan@enron.com",
+            "jeff.richter@enron.com", 
+            "jrichter@nwlink.com",
+            "lawrencelawyer@aol.com", 
+            "lawyer'.'larry@enron.com", 
+            "larry_lawyer@enron.com", 
+            "llawyer@enron.com", 
+            "larry.lawyer@enron.com", 
+            "lawrence.lawyer@enron.com",
+            "tbelden@enron.com", 
+            "tim.belden@enron.com", 
+            "tim_belden@pgn.com", 
+            "tbelden@ect.enron.com",
+            "michael.kopper@enron.com",
+            "dave.duncan@enron.com", 
+            "dave.duncan@cipco.org", 
+            "duncan.dave@enron.com",
+            "ray.bowen@enron.com", 
+            "raymond.bowen@enron.com", 
+            "'bowen@enron.com",
+            "wes.colwell@enron.com",
+            "dan.boyle@enron.com",
+            "cloehr@enron.com", 
+            "chris.loehr@enron.com"
+        ]
+    return email_list

+ 136 - 0
Identifying Fraud from Enron Email Dataset/poi_id.py

@@ -0,0 +1,136 @@
+# Ignored usage of deprecated modules for sklearn 0.18.
+# This would be updated in future when sklearn 0.20 releases.
+import warnings
+warnings.filterwarnings("ignore")
+
+import pickle
+
+from feature_format import featureFormat, targetFeatureSplit
+from tester import dump_classifier_and_data
+
+import pandas as pd
+import numpy as np
+
+from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
+from sklearn.grid_search import GridSearchCV
+
+from time import time
+
+### Task 1: Select what features you'll use.
+### features_list is a list of strings, each of which is a feature name.
+### The first feature must be "poi".
+features_list = ['poi', 'salary', 'bonus', 'long_term_incentive',
+                    'bonus-to-salary_ratio', 'deferral_payments', 'expenses',
+                    'restricted_stock_deferred', 'restricted_stock',
+                    'deferred_income', 'fraction_mail_from_poi',
+                    'total_payments', 'other', 'fraction_mail_to_poi',
+                    'from_poi_to_this_person', 'from_this_person_to_poi',
+                    'to_messages','from_messages', 'shared_receipt_with_poi',
+                    'loan_advances', 'director_fees',
+                    'exercised_stock_options', 'total_stock_value']
+
+### Load the dictionary containing the dataset
+with open("final_project_dataset.pkl", "rb") as data_file:
+    data_dict = pickle.load(data_file)
+
+# Converting the given pickled Enron data to a pandas dataframe
+enron_df = pd.DataFrame.from_records(list(data_dict.values()))
+
+# Set the index of df to be the employees series:
+employees = pd.Series(list(data_dict.keys()))
+enron_df.set_index(employees, inplace=True)
+
+# Coerce numeric values into floats or ints; also change NaN to zero:
+enron_df_new = enron_df.apply(lambda x : pd.to_numeric(x, errors = 'coerce')).copy().fillna(0)
+
+# Dropping column 'email_address' as not required in analysis
+enron_df_new.drop('email_address', axis = 1, inplace = True)
+
+### Task 2: Remove outliers
+enron_df_new.drop(['TOTAL', 'THE TRAVEL AGENCY IN THE PARK', 'FREVERT MARK A',
+    'MARTIN AMANDA K', 'BHATNAGAR SANJAY'], axis = 0, inplace = True)
+
+### Task 3: Create new feature(s)
+enron_df_new['bonus-to-salary_ratio'] = enron_df_new['bonus']/enron_df_new['salary']
+enron_df_new['fraction_mail_from_poi'] = enron_df_new['from_poi_to_this_person']/enron_df_new['from_messages']
+enron_df_new['fraction_mail_to_poi'] = enron_df_new['from_this_person_to_poi']/enron_df_new['to_messages']
+
+# Clean all 'inf' values which we got if the person's from_messages = 0
+enron_df_new = enron_df_new.replace('inf', 0)
+enron_df_new = enron_df_new.fillna(0)
+
+# Converting the above modified dataframe to a dictionary
+enron_dict = enron_df_new.to_dict('index')
+
+### Store to my_dataset for easy export below.
+my_dataset = enron_dict
+
+### Extract features and labels from dataset for local testing
+data = featureFormat(my_dataset, features_list, sort_keys = True)
+labels, features = targetFeatureSplit(data)
+
+### Task 4: Try a varity of classifiers
+### Please name your classifier clf for easy export below.
+### Note that if you want to do PCA or other multi-stage operations,
+### you'll need to use Pipelines. For more info:
+### http://scikit-learn.org/stable/modules/pipeline.html
+
+### split data into training and testing datasets
+from sklearn import cross_validation
+features_train, features_test, \
+    labels_train, labels_test = cross_validation.train_test_split(features, labels,
+                                    test_size=0.3,  random_state=42)
+
+# Stratified ShuffleSplit cross-validator
+from sklearn.model_selection import StratifiedShuffleSplit
+sss = StratifiedShuffleSplit(n_splits=1000, test_size=0.3,random_state = 42)
+
+# Importing modules for feature scaling and selection
+from sklearn.preprocessing import MinMaxScaler
+from sklearn.feature_selection import SelectKBest, f_classif
+from sklearn.decomposition import PCA
+from sklearn.pipeline import Pipeline
+from sklearn.model_selection import GridSearchCV
+
+# Defining functions to be used via the pipeline
+scaler = MinMaxScaler()
+skb = SelectKBest(f_classif)
+# pca = PCA()
+
+### Task 5: Tune your classifier to achieve better than .3 precision and recall
+### using our testing script. Check the tester.py script in the final project
+### folder for details on the evaluation method, especially the test_classifier
+### function. Because of the small size of the dataset, the script uses
+### stratified shuffle split cross validation.
+
+from sklearn.naive_bayes import GaussianNB
+clf_gnb = GaussianNB()
+
+pipeline = Pipeline(steps = [("SKB", skb), ("NaiveBayes",clf_gnb)])
+param_grid = {"SKB__k":[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]}
+
+grid = GridSearchCV(pipeline, param_grid, verbose = 0, cv = sss, scoring = 'f1')
+
+t0 = time()
+grid.fit(features, labels)
+print("Training time: ", round(time()-t0, 3), "s")
+
+# Best algorithm
+clf = grid.best_estimator_
+
+t0 = time()
+# Refit the best algorithm:
+clf.fit(features_train, labels_train)
+prediction = clf.predict(features_test)
+print("Testing time: ", round(time()-t0, 3), "s")
+
+print("Accuracy of GaussianNB classifer is  : ", accuracy_score(labels_test, prediction))
+print("Precision of GaussianNB classifer is : ", precision_score(prediction, labels_test))
+print("Recall of GaussianNB classifer is    : ", recall_score(prediction, labels_test))
+print("f1-score of GaussianNB classifer is  : ", f1_score(prediction, labels_test))
+
+### Task 6: Dump your classifier, dataset, and features_list so anyone can
+### check your results. You do not need to change anything below, but make sure
+### that the version of poi_id.py that you submit can be run on its own and
+### generates the necessary .pkl files for validating your results.
+dump_classifier_and_data(clf, my_dataset, features_list)

+ 37 - 0
Identifying Fraud from Enron Email Dataset/poi_names.txt

@@ -0,0 +1,37 @@
+http://usatoday30.usatoday.com/money/industries/energy/2005-12-28-enron-participants_x.htm
+
+(y) Lay, Kenneth
+(y) Skilling, Jeffrey
+(n) Howard, Kevin
+(n) Krautz, Michael
+(n) Yeager, Scott
+(n) Hirko, Joseph
+(n) Shelby, Rex
+(n) Bermingham, David
+(n) Darby, Giles
+(n) Mulgrew, Gary
+(n) Bayley, Daniel
+(n) Brown, James
+(n) Furst, Robert
+(n) Fuhs, William
+(n) Causey, Richard
+(n) Calger, Christopher
+(n) DeSpain, Timothy
+(n) Hannon, Kevin
+(n) Koenig, Mark
+(y) Forney, John
+(n) Rice, Kenneth
+(n) Rieker, Paula
+(n) Fastow, Lea
+(n) Fastow, Andrew
+(y) Delainey, David
+(n) Glisan, Ben
+(n) Richter, Jeffrey
+(n) Lawyer, Larry
+(n) Belden, Timothy
+(n) Kopper, Michael
+(n) Duncan, David
+(n) Bowen, Raymond
+(n) Colwell, Wesley
+(n) Boyle, Dan
+(n) Loehr, Christopher

+ 111 - 0
Identifying Fraud from Enron Email Dataset/tester.py

@@ -0,0 +1,111 @@
+# Ignored usage of deprecated modules for sklearn 0.18.
+# This would be updated in future when sklearn 0.20 releases.
+import warnings
+warnings.filterwarnings("ignore")
+
+""" a basic script for importing student's POI identifier,
+    and checking the results that they get from it
+
+    requires that the algorithm, dataset, and features list
+    be written to my_classifier.pkl, my_dataset.pkl, and
+    my_feature_list.pkl, respectively
+
+    that process should happen at the end of poi_id.py
+"""
+
+import pickle
+import sys
+from sklearn.cross_validation import StratifiedShuffleSplit
+#from sklearn.model_selection import StratifiedShuffleSplit
+sys.path.append("../tools/")
+from feature_format import featureFormat, targetFeatureSplit
+
+PERF_FORMAT_STRING = "\
+\tAccuracy: {:>0.{display_precision}f}\tPrecision: {:>0.{display_precision}f}\t\
+Recall: {:>0.{display_precision}f}\tF1: {:>0.{display_precision}f}\tF2: {:>0.{display_precision}f}"
+RESULTS_FORMAT_STRING = "\tTotal predictions: {:4d}\tTrue positives: {:4d}\tFalse positives: {:4d}\
+\tFalse negatives: {:4d}\tTrue negatives: {:4d}"
+
+def test_classifier(clf, dataset, feature_list, folds = 1000):
+    data = featureFormat(dataset, feature_list, sort_keys = True)
+    labels, features = targetFeatureSplit(data)
+    cv = StratifiedShuffleSplit(labels, folds, random_state = 42)
+    #cv = StratifiedShuffleSplit(n_splits=folds, test_size=0.3,random_state = 42)
+    true_negatives = 0
+    false_negatives = 0
+    true_positives = 0
+    false_positives = 0
+    for train_idx, test_idx in cv:
+        features_train = []
+        features_test  = []
+        labels_train   = []
+        labels_test    = []
+        for ii in train_idx:
+            features_train.append( features[ii] )
+            labels_train.append( labels[ii] )
+        for jj in test_idx:
+            features_test.append( features[jj] )
+            labels_test.append( labels[jj] )
+
+        ### fit the classifier using training set, and test on test set
+        clf.fit(features_train, labels_train)
+        predictions = clf.predict(features_test)
+        for prediction, truth in zip(predictions, labels_test):
+            if prediction == 0 and truth == 0:
+                true_negatives += 1
+            elif prediction == 0 and truth == 1:
+                false_negatives += 1
+            elif prediction == 1 and truth == 0:
+                false_positives += 1
+            elif prediction == 1 and truth == 1:
+                true_positives += 1
+            else:
+                print ("Warning: Found a predicted label not == 0 or 1.")
+                print ("All predictions should take value 0 or 1.")
+                print ("Evaluating performance for processed predictions:")
+                break
+    try:
+        total_predictions = true_negatives + false_negatives + false_positives + true_positives
+        accuracy = 1.0*(true_positives + true_negatives)/total_predictions
+        precision = 1.0*true_positives/(true_positives+false_positives)
+        recall = 1.0*true_positives/(true_positives+false_negatives)
+        f1 = 2.0 * true_positives/(2*true_positives + false_positives+false_negatives)
+        f2 = (1+2.0*2.0) * precision*recall/(4*precision + recall)
+        print (clf)
+        print (PERF_FORMAT_STRING.format(accuracy, precision, recall, f1, f2, display_precision = 5))
+        print (RESULTS_FORMAT_STRING.format(total_predictions, true_positives, false_positives, false_negatives, true_negatives))
+        print ("")
+    except:
+        print ("Got a divide by zero when trying out:", clf)
+        print ("Precision or recall may be undefined due to a lack of true positive predicitons.")
+
+CLF_PICKLE_FILENAME = "my_classifier.pkl"
+DATASET_PICKLE_FILENAME = "my_dataset.pkl"
+FEATURE_LIST_FILENAME = "my_feature_list.pkl"
+
+def dump_classifier_and_data(clf, dataset, feature_list):
+    with open(CLF_PICKLE_FILENAME, "wb") as clf_outfile:
+        pickle.dump(clf, clf_outfile)
+    with open(DATASET_PICKLE_FILENAME, "wb") as dataset_outfile:
+        pickle.dump(dataset, dataset_outfile)
+    with open(FEATURE_LIST_FILENAME, "wb") as featurelist_outfile:
+        pickle.dump(feature_list, featurelist_outfile)
+
+def load_classifier_and_data():
+    with open(CLF_PICKLE_FILENAME, "rb") as clf_infile:
+        clf = pickle.load(clf_infile)
+    with open(DATASET_PICKLE_FILENAME, "rb") as dataset_infile:
+        dataset = pickle.load(dataset_infile)
+    with open(FEATURE_LIST_FILENAME, "rb") as featurelist_infile:
+        feature_list = pickle.load(featurelist_infile)
+    return clf, dataset, feature_list
+
+def main():
+    ### Load up student's classifier, dataset, and feature_list.
+    clf, dataset, feature_list = load_classifier_and_data()
+
+    ### Run testing script
+    test_classifier(clf, dataset, feature_list)
+
+if __name__ == '__main__':
+    main()

BIN
Investigating Factors Affecting Red Wine Quality/Figs/Multivariate_Plots2-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/Univariate_Grid_Plot-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/Univariate_Plots-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/acid_quality-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/acidity_plot-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/acidity_quality_rating-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/acidity_rating-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/acidity_univariate-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/alcohol_acid_quality-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/alcohol_quality-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/alcohol_quality_sugar-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/alcohol_univariate-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/citric_acid_univariate-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/correlation_plots-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/fixed_acidity_plot-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/plot_1-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/plot_1a-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/plot_1b-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/plot_2-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/plot_3-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/quality_rating-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/quality_univariate-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/sulfur_univariate-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/sulphates_qplots-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/sulphates_quality-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/unnamed-chunk-2-1.png


BIN
Investigating Factors Affecting Red Wine Quality/Figs/unnamed-chunk-3-1.png


+ 23 - 0
Investigating Factors Affecting Red Wine Quality/README.md

@@ -0,0 +1,23 @@
+# P4: Exploratory Data Analysis
+> In this project, exploratory data analysis is conducted to explore the variables, structure, patterns, oddities, and underlying relationships of factors that affect red wine quality.
+
+When I worked on this project, it helped me learn a great deal about EDA i.e., to use plots to understand the distribution of a variable and to check for patterns and their relationships with other variables. Moreover, I learned to create a logical flow when building up from single-variable analysis to multivariate analysis.
+
+## Files
+- `wineQualityReds.csv` – This dataset is publicly available for research in the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/wine+quality).
+
+- `Red_Wine_Quality.rmd` – Main RMD project file containing the analysis.
+
+- `Red_Wine_Quality.html` – HTML file knitted from the project file.
+
+- `Red_Wine_Quality.R` - R code extract (with documentation).
+
+- `References.txt` – List of references.
+
+## Requirements
+This project was developed using **RStudio** Version 1.0.153 – © 2009-2017 RStudio, Inc (**R** Version 3.4.2).
+
+The required packages are `ggplot2`, `gridExtra`, `GGally`, `ggthemes`, `dplyr`, `knitr` and `memisc`.
+
+## License
+[Modified MIT License © Pranav Suri](/License.txt)

+ 863 - 0
Investigating Factors Affecting Red Wine Quality/Red_Wine_Quality.R

@@ -0,0 +1,863 @@
+#' What Makes A Good Wine?
+#' ========================================================
+#'
+#' In this project, a data set of red wine quality is explored based on its
+#' physicochemical properties. The objective is to find physicochemical properties
+#' that distinguish good quality wine from lower quality ones. An attempt to build
+#' linear model on wine quality is also shown.
+#'
+#' ### Dataset Description
+#' This tidy dataset contains 1,599 red wines with 11 variables on the chemical
+#' properties of the wine. Another variable attributing to the quality of wine is
+#' added; at least 3 wine experts did this rating. The preparation of the dataset
+#' has been described in [this link](https://goo.gl/HVxAzY).
+#'
+## ----global_options, include=FALSE---------------------------------------
+knitr::opts_chunk$set(fig.path='Figs/',
+                      echo=FALSE, warning=FALSE, message=FALSE)
+
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, packages------------------
+library(ggplot2)
+library(gridExtra)
+library(GGally)
+library(ggthemes)
+library(dplyr)
+library(memisc)
+
+#'
+#' First, the structure of the dataset is explored using ``summary`` and ``str``
+#' functions.
+## ----echo=FALSE, warning=FALSE, message=FALSE, Load_the_Data-------------
+wine <- read.csv("wineQualityReds.csv")
+str(wine)
+summary(wine)
+
+# Setting the theme for plotting.
+# theme_set(theme_minimal(10))
+
+# Converting 'quality' to ordered type.
+wine$quality <- ordered(wine$quality,
+                        levels=c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
+# Adding 'total.acidity'.
+wine$total.acidity <- wine$fixed.acidity + wine$volatile.acidity
+
+#'
+#' **The following observations are made/confirmed:**
+#'
+#' 1. There are 1599 samples of Red Wine properties and quality values.
+#'
+#' 2. No wine achieves either a terrible (0) or perfect (10) quality score.
+#'
+#' 3. Citric Acid had a minimum of 0.0. No other property values were precisely 0.
+#'
+#' 4. Residual Sugar measurement has a maximum that is nearly 20 times farther
+#' away from the 3rd quartile than the 3rd quartile is from the 1st. There is
+#' a chance of a largely skewed data or that the data has some outliers.
+#'
+#' 5. The 'quality' attribute is originally considered an integer;
+#' I have converted this field into an ordered factor which is much more
+#' a representative of the variable itself.
+#'
+#' 6. There are two attributes related to 'acidity' of wine i.e. 'fixed.acidity'
+#' and 'volatile.acidity'. Hence, a combined acidity variable is added
+#' using ``data$total.acidity <- data$fixed.acidity + data$volatile.acidity``.
+#'
+#' ## Univariate Plots Section
+#' To lead the univariate analysis, I’ve chosen to build a grid of histograms.
+#' These histograms represent the distributions of each variable in the dataset.
+#'
+## ----echo=FALSE, warning=FALSE, message=FALSE, Univariate_Grid_Plot------
+g_base <- ggplot(
+  data = wine,
+  aes(color=I('black'), fill=I('#990000'))
+)
+
+g1 <- g_base +
+  geom_histogram(aes(x = fixed.acidity), binwidth = 0.25) +
+  scale_x_continuous(breaks = seq(4, 16, 2)) +
+  coord_cartesian(xlim = c(4, 16))
+
+g2 <- g_base +
+  geom_histogram(aes(x = volatile.acidity), binwidth = 0.05) +
+  scale_x_continuous(breaks = seq(0, 2, 0.5)) +
+  coord_cartesian(xlim = c(0, 2))
+
+g3 <- g_base +
+  geom_histogram(aes(x = total.acidity), binwidth = 0.25) +
+  scale_x_continuous(breaks = seq(0, 18, 1)) +
+  coord_cartesian(xlim = c(4, 18))
+
+g4 <- g_base +
+  geom_histogram(aes(x = citric.acid), binwidth = 0.05) +
+  scale_x_continuous(breaks = seq(0, 1, 0.2)) +
+  coord_cartesian(xlim = c(0, 1))
+
+g5 <- g_base +
+  geom_histogram(aes(x = residual.sugar), binwidth = 0.5) +
+  scale_x_continuous(breaks = seq(0, 16, 2)) +
+  coord_cartesian(xlim = c(0, 16))
+
+g6 <- g_base +
+  geom_histogram(aes(x = chlorides), binwidth = 0.01) +
+  scale_x_continuous(breaks = seq(0, 0.75, 0.25)) +
+  coord_cartesian(xlim = c(0, 0.75))
+
+g7 <- g_base +
+  geom_histogram(aes(x = free.sulfur.dioxide), binwidth = 2.5) +
+  scale_x_continuous(breaks = seq(0, 75, 25)) +
+  coord_cartesian(xlim = c(0, 75))
+
+g8 <- g_base +
+  geom_histogram(aes(x = total.sulfur.dioxide), binwidth = 10) +
+  scale_x_continuous(breaks = seq(0, 300, 100)) +
+  coord_cartesian(xlim = c(0, 295))
+
+g9 <- g_base +
+  geom_histogram(aes(x = density), binwidth = 0.0005) +
+  scale_x_continuous(breaks = seq(0.99, 1.005, 0.005)) +
+  coord_cartesian(xlim = c(0.99, 1.005))
+
+g10 <- g_base +
+  geom_histogram(aes(x = pH), binwidth = 0.05) +
+  scale_x_continuous(breaks = seq(2.5, 4.5, 0.5)) +
+  coord_cartesian(xlim = c(2.5, 4.5))
+
+g11 <- g_base +
+  geom_histogram(aes(x = sulphates), binwidth = 0.05) +
+  scale_x_continuous(breaks = seq(0, 2, 0.5)) +
+  coord_cartesian(xlim = c(0, 2))
+
+g12 <- g_base +
+  geom_histogram(aes(x = alcohol), binwidth = 0.25) +
+  scale_x_continuous(breaks = seq(8, 15, 2)) +
+  coord_cartesian(xlim = c(8, 15))
+
+grid.arrange(g1, g2, g3, g4, g5, g6,
+             g7, g8, g9, g10, g11, g12, ncol=3)
+
+#'
+#' There are some really interesting variations in the distributions here. Looking
+#' closer at a few of the more interesting ones might prove quite valuable.
+#' Working from top-left to right, selected plots are analysed.
+#'
+## ----echo=FALSE, warning=FALSE, message=FALSE, single_variable_hist------
+base_hist <- ggplot(
+  data = wine,
+  aes(color=I('black'), fill=I('#990000'))
+)
+
+#'
+#' ### Acidity
+## ----echo=FALSE, acidity_plot--------------------------------------------
+ac1 <- base_hist +
+  geom_histogram(aes(x = fixed.acidity), binwidth = 0.25) +
+  scale_x_continuous(breaks = seq(4, 16, 2)) +
+  coord_cartesian(xlim = c(4, 16))
+
+ac2 <- base_hist +
+  geom_histogram(aes(x = volatile.acidity), binwidth = 0.05) +
+  scale_x_continuous(breaks = seq(0, 2, 0.5)) +
+  coord_cartesian(xlim = c(0, 2))
+
+grid.arrange(ac1, ac2, nrow=2)
+
+#'
+#' **Fixed acidity** is determined by aids that do not evaporate easily --
+#' tartaricacid. It contributes to many other attributes, including the taste, pH,
+#' color, and stability to oxidation, i.e., prevent the wine from tasting flat.
+#' On theother hand, **volatile acidity** is responsible for the sour taste in
+#' wine. A very high value can lead to sour tasting wine, a low value can make
+#' the wine seem heavy.
+#' (References: [1](http://waterhouse.ucdavis.edu/whats-in-wine/fixed-acidity),
+#' [2](http://waterhouse.ucdavis.edu/whats-in-wine/volatile-acidity).
+#'
+## ----echo=FALSE, warning=FALSE, message=FALSE, acidity_univariate--------
+ac1 <- base_hist +
+  geom_histogram(aes(x = fixed.acidity), binwidth = 0.25) +
+  scale_x_continuous(breaks = seq(4, 16, 2)) +
+  coord_cartesian(xlim = c(4, 16))
+
+ac2 <- base_hist +
+  geom_histogram(aes(x = volatile.acidity), binwidth = 0.05) +
+  scale_x_continuous(breaks = seq(0, 2, 0.5)) +
+  coord_cartesian(xlim = c(0, 2))
+
+ac3 <- base_hist +
+  geom_histogram(aes(x = total.acidity), binwidth = 0.25) +
+  scale_x_continuous(breaks = seq(0, 18, 2)) +
+  coord_cartesian(xlim = c(0, 18))
+
+grid.arrange(ac1, ac2, ac3, nrow=3)
+
+print("Summary statistics of Fixed Acidity")
+summary(wine$fixed.acidity)
+print("Summary statistics of Volatile Acidity")
+summary(wine$volatile.acidity)
+print("Summary statistics of Total Acidity")
+summary(wine$total.acidity)
+
+#'
+#' Of the wines we have in our dataset, we can see that most have a fixed acidity
+#' of 7.5. The median fixed acidity is 7.9, and the mean is 8.32. There is a
+#' slight skew in the data because a few wines possess a very high fixed acidity.
+#' The median volatile acidity is 0.52 g/dm^3, and the mean is 0.5278 g/dm^3. *It
+#' will be interesting to note which quality of wine is correlated to what level
+#' of acidity in the bivariate section.*
+#'
+#' ### Citric Acid
+#' Citric acid is part of the fixed acid content of most wines. A non-volatile
+#' acid, citric also adds much of the same characteristics as tartaric acid does.
+#' Again, here I would guess most good wines have a balanced amount of citric
+#' acid.
+#'
+## ----echo=FALSE, warning=FALSE, message=FALSE, citric_acid_univariate----
+base_hist +
+  geom_histogram(aes(x = citric.acid), binwidth = 0.05) +
+  scale_x_continuous(breaks = seq(0, 1, 0.2)) +
+  coord_cartesian(xlim = c(0, 1))
+
+print("Summary statistics of Citric Acid")
+summary(wine$citric.acid)
+print('Number of Zero Values')
+table(wine$citric.acid == 0)
+
+#'
+#' There is a very high count of zero in citric acid. To check if this is
+#' genuinely zero or merely a ‘not available’ value. A quick check using table
+#' function shows that there are 132 observations of zero values and no NA value
+#' in reported citric acid concentration. The citric acid concentration could be
+#' too low and insignificant hence was reported as zero.
+#'
+#' As far as content wise the wines have a median citric acid level of
+#' 0.26 g/dm^3, and a mean level of 0.271 g/dm^3.
+#'
+#' ### Sulfur-Dioxide & Sulphates
+#' **Free sulfur dioxide** is the free form of SO2 exists in equilibrium between
+#' molecular SO2 (as a dissolved gas) and bisulfite ion; it prevents microbial
+#' growth and the oxidation of wine. **Sulphates** is a wine additive which can
+#' contribute to sulfur dioxide gas (SO2) levels, which acts as an anti-microbial
+#' moreover, antioxidant -- *overall keeping the wine, fresh*.
+#'
+## ----echo=FALSE, warning=FALSE, message=FALSE, sulfur_univariate---------
+sul1 <- base_hist + geom_histogram(aes(x = free.sulfur.dioxide))
+sul2 <- base_hist + geom_histogram(aes(x = log10(free.sulfur.dioxide)))
+
+sul3 <- base_hist + geom_histogram(aes(x = total.sulfur.dioxide))
+sul4 <- base_hist + geom_histogram(aes(x = log10(total.sulfur.dioxide)))
+
+sul5 <- base_hist + geom_histogram(aes(x = sulphates))
+sul6 <- base_hist + geom_histogram(aes(x = log10(sulphates)))
+
+grid.arrange(sul1, sul2, sul3, sul4, sul5, sul6, nrow=3)
+
+#'
+#' The distributions of all three values are positively skewed with a long tail.
+#' Thelog-transformation results in a normal-behaving distribution for 'total
+#' sulfur dioxide' and 'sulphates'.
+#'
+#' ### Alcohol
+#' Alcohol is what adds that special something that turns rotten grape juice
+#' into a drink many people love. Hence, by intuitive understanding, it should
+#' be crucial in determining the wine quality.
+#'
+## ----echo=FALSE, warning=FALSE, message=FALSE, alcohol_univariate--------
+base_hist +
+  geom_histogram(aes(x = alcohol), binwidth = 0.25) +
+  scale_x_continuous(breaks = seq(8, 15, 2)) +
+  coord_cartesian(xlim = c(8, 15))
+
+print("Summary statistics for alcohol %age.")
+summary(wine$alcohol)
+
+#'
+#' The mean alcohol content for our wines is 10.42%, the median is 10.2%
+#'
+#' ### Quality
+## ----echo=FALSE,warning=FALSE, message=FALSE, quality_univariate---------
+qplot(x=quality, data=wine, geom='bar',
+      fill=I("#990000"),
+      col=I("black"))
+
+print("Summary statistics - Wine Quality.")
+summary(wine$quality)
+
+#'
+#' Overall wine quality, rated on a scale from 1 to 10, has a normal shape and
+#' very few exceptionally high or low-quality ratings.
+#'
+#' It can be seen that the minimum rating is 3 and 8 is the maximum for quality.
+#' Hence, a variable called ‘rating’ is created based on variable quality.
+#'
+#' * 8 to 7 are Rated A.
+#'
+#' * 6 to 5 are Rated B.
+#'
+#' * 3 to 4 are Rated C.
+#'
+## ----echo=FALSE, quality_rating------------------------------------------
+# Dividing the quality into 3 rating levels
+wine$rating <- ifelse(wine$quality < 5, 'C',
+                      ifelse(wine$quality < 7, 'B', 'A'))
+
+# Changing it into an ordered factor
+wine$rating <- ordered(wine$rating,
+                     levels = c('C', 'B', 'A'))
+
+summary(wine$rating)
+
+qr1 <- ggplot(aes(as.numeric(quality), fill=rating), data=wine) +
+  geom_bar() +
+  ggtitle ("Barchart of Quality with Rating") +
+  scale_x_continuous(breaks=seq(3,8,1)) +
+  xlab("Quality") +
+  theme_pander() + scale_colour_few()
+
+qr2 <- qplot(x=rating, data=wine, geom='bar',
+      fill=I("#990000"),
+      col=I("black")) +
+  xlab("Rating") +
+  ggtitle("Barchart of Rating") +
+  theme_pander()
+
+grid.arrange(qr1, qr2, ncol=2)
+
+#'
+#' The distribution of 'rating' is much higher on the 'B' rating wine as
+#' seen in quality distribution. This is likely to cause overplotting. Therefore,
+#' a comparison of only the 'C' and 'A' wines is done to find distinctive
+#' properties that separate these two. The comparison is made using summary
+#' statistics.
+#'
+## ----echo=FALSE, rating_comparison---------------------------------------
+print("Summary statistics of Wine with Rating 'A'")
+summary(subset(wine, rating=='A'))
+
+print("Summary statistics of Wine with Rating 'C'")
+summary(subset(wine, rating=='C'))
+
+#'
+#' On comparing the *mean statistic* of different attribute for 'A-rated' and
+#' 'C-rated' wines (A → C), the following %age change is noted.
+#'
+#' 1. `fixed.acidity`: mean reduced by 11%.
+#'
+#' 2. `volatile.acidity` - mean increased by 80%.
+#'
+#' 3. `citric.acidity` - mean increased by 117%.
+#'
+#' 4. `sulphates` - mean reduced by 20.3%
+#'
+#' 5. `alcohol` - mean reduced by 12.7%.
+#'
+#' 6. `residualsugar` and `chloride` showed a very low variation.
+#'
+#' These changes are, however, only suitable for estimation of important quality
+#' impacting variables and setting a way for further analysis. No conclusion
+#' can be drawn from it.
+#'
+#' ## Univariate Analysis - Summary
+#'
+#' ### Overview
+#' The red wine dataset features 1599 separate observations, each for a different
+#' red wine sample. As presented, each wine sample is provided as a single row in
+#' the dataset. Due to the nature of how some measurements are gathered, some
+#' values given represent *components* of a measurement total.
+#'
+#' For example, `data.fixed.acidity` and `data.volatile.acidity` are both obtained
+#' via separate measurement techniques, and must be summed to indicate the total
+#' acidity present in a wine sample. For these cases, I supplemented the data
+#' given by computing the total and storing in the data frame with a
+#' `data.total.*` variable.
+#'
+#' ### Features of Interest
+#' An interesting measurement here is the wine `quality`. It is the
+#' subjective measurement of how attractive the wine might be to a consumer. The
+#' goal here will is to try and correlate non-subjective wine properties with its
+#' quality.
+#'
+#' I am curious about a few trends in particular --  **Sulphates vs. Quality** as
+#' low sulphate wine has a reputation for not causing hangovers,
+#' **Acidity vs. Quality** - Given that it impacts many factors like pH,
+#' taste, color, it is compelling to see if it affects the quality.
+#' **Alcohol vs. Quality** - Just an interesting measurement.
+#'
+#' At first, the lack of an *age* metric was surprising since it is commonly
+#' a factor in quick assumptions of wine quality. However, since the actual effect
+#' of wine age is on the wine's measurable chemical properties, its exclusion here
+#' might not be necessary.
+#'
+#' ### Distributions
+#'  Many measurements that were clustered close to zero had a positive skew
+#' (you cannot have negative percentages or amounts). Others such as `pH` and
+#' `total.acidity` and `quality` had normal looking distributions.
+#'
+#' The distributions studied in this section were primarily used to identify the
+#' trends in variables present in the dataset. This helps in setting up a track
+#' for moving towards bivariate and multivariate analysis.
+#'
+#' ## Bivariate Plots Section
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, correlation_plots---------
+ggcorr(wine,
+       size = 2.2, hjust = 0.8,
+       low = "#4682B4", mid = "white", high = "#E74C3C")
+
+#'
+#' **Observations from the correlation matrix.**
+#'
+#' * Total Acidity is highly correlatable with fixed acidity.
+#'
+#' * pH appears correlatable with acidity, citric acid, chlorides, and residual
+#' sugars.
+#'
+#' * No single property appears to correlate with quality.
+#'
+#' Further, in this section, metrics of interest are evaluated to check their
+#' significance on the wine quality. Moreover, bivariate relationships between
+#' other variables are also studied.
+#'
+#' ### Acidity vs. Rating & Quality
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, acidity_rating------------
+
+aq1 <- ggplot(aes(x=rating, y=total.acidity), data = wine) +
+  geom_boxplot(fill = '#ffeeee') +
+  coord_cartesian(ylim=c(0, quantile(wine$total.acidity, 0.99))) +
+  geom_point(stat='summary', fun.y=mean,color='red') +
+  xlab('Rating') + ylab('Total Acidity')
+
+aq2 <- ggplot(aes(x=quality, y=total.acidity), data = wine) +
+  geom_boxplot(fill = '#ffeeee') +
+  coord_cartesian(ylim=c(0, quantile(wine$total.acidity, 0.99))) +
+  geom_point(stat='summary', fun.y=mean, color='red') +
+  xlab('Quality') + ylab('Total Acidity') +
+  geom_jitter(alpha=1/10, color='#990000') +
+  ggtitle("\n")
+
+grid.arrange(aq1, aq2, ncol=1)
+
+#'
+#' The boxplots depicting quality also depicts the distribution
+#' of various wines, and we can again see 5 and 6 quality wines have the most
+#' share. The blue dot is the mean, and the middle line shows the median.
+#'
+#' The box plots show how the acidity decreases as the quality of wine improve.
+#' However, the difference is not very noticeable. Since most wines tend to
+#' maintain a similar acidity level & given the fact that *volatile acidity* is
+#' responsible for the sour taste in wine, hence a density plot of the said
+#' attribute is plotted to investigate the data.
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, acidity_quality_rating----
+ggplot(aes(x = volatile.acidity, fill = quality, color = quality),
+       data = wine) +
+  geom_density(alpha=0.08)
+
+#'
+#' Red Wine of `quality` 7 and 8 have their peaks for `volatile.acidity` well
+#' below the 0.4 mark. Wine with `quality` 3 has the pick at the most right
+#' hand side (towards more volatile acidity). This shows that the better quality
+#' wines are lesser sour and in general have lesser acidity.
+#'
+#' ### Alcohol vs. Quality
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, alcohol_quality_sugar-----
+qas0 <- ggplot(aes(x=alcohol, y=as.numeric(quality)), data=wine) +
+  geom_jitter(alpha=1/12) +
+  geom_smooth() +
+  ggtitle("Alcohol Content vs. Quality") +
+  ylab("Quality") + xlab("Alcohol")
+
+qas1 <- ggplot(aes(x=alcohol), data=wine) +
+  geom_density(fill=I("#BB0000")) +
+  facet_wrap("quality") +
+  ggtitle("Alcohol Content for \nWine Quality Ratings") +
+  ylab("Density") + xlab("Alcohol")
+
+qas2 <- ggplot(aes(x=residual.sugar, y=alcohol), data=wine) +
+  geom_jitter(alpha=1/12) +
+  geom_smooth() +
+  ggtitle("Alcohol vs. Residual Sugar Content") +
+  ylab("Alcohol") + xlab("Residual Sugar")
+
+grid.arrange(qas1, arrangeGrob(qas0, qas2), ncol=2)
+
+#'
+#' The plot between residual sugar and alcohol content suggests that there is no
+#' erratic relation between sugar and alcohol content, which is surprising as
+#' alcohol is a byproduct of the yeast feeding off of sugar during the
+#' fermentation process. That inference could not be established here.
+#'
+#' Alcohol and quality appear to be somewhat correlatable. Lower quality wines
+#' tend to have lower alcohol content. This can be further studied using boxplots.
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE----------------------------
+
+quality_groups <- group_by(wine, alcohol)
+
+wine.quality_groups <- summarize(quality_groups,
+                          acidity_mean = mean(volatile.acidity),
+                          pH_mean = mean(pH),
+                          sulphates_mean = mean(sulphates),
+                          qmean = mean(as.numeric(quality)),
+                          n = n())
+
+wine.quality_groups <- arrange(wine.quality_groups, alcohol)
+
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, alcohol_quality-----------
+ggplot(aes(y=alcohol, x=factor(quality)), data = wine) +
+  geom_boxplot(fill = '#ffeeee')+
+  xlab('quality')
+
+#'
+#' The boxplots show an indication that higher quality wines have higher alcohol
+#' content. This trend is shown by all the quality grades from 3 to 8 except
+#' quality grade 5.
+#'
+#' **Does this mean that by adding more alcohol, we'd get better wine?**
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE----------------------------
+ggplot(aes(alcohol, qmean), data=wine.quality_groups) +
+  geom_smooth() +
+  ylab("Quality Mean") +
+  scale_x_continuous(breaks = seq(0, 15, 0.5)) +
+  xlab("Alcohol %")
+
+#'
+#' The above line plot indicates nearly a linear increase till 13% alcohol
+#' concetration, followed by a steep downwards trend. The graph has to be
+#' smoothened to remove variances and noise.
+#'
+#' ### Sulphates vs. Quality
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, sulphates_quality---------
+ggplot(aes(y=sulphates, x=quality), data=wine) +
+  geom_boxplot(fill="#ffeeee")
+
+#'
+#' Good wines have higher sulphates values than bad wines, though the difference
+#' is not that wide.
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, sulphates_qplots----------
+sq1 <- ggplot(aes(x=sulphates, y=as.numeric(quality)), data=wine) +
+  geom_jitter(alpha=1/10) +
+  geom_smooth() +
+  xlab("Sulphates") + ylab("Quality") +
+  ggtitle("Sulphates vs. Quality")
+
+sq2 <- ggplot(aes(x=sulphates, y=as.numeric(quality)),
+              data=subset(wine, wine$sulphates < 1)) +
+  geom_jitter(alpha=1/10) +
+  geom_smooth() +
+  xlab("Sulphates") + ylab("Quality") +
+  ggtitle("\nSulphates vs Quality without Outliers")
+
+grid.arrange(sq1, sq2, nrow = 2)
+
+#'
+#' There is a slight trend implying a relationship between sulphates and wine
+#' quality, mainly if extreme sulphate values are ignored, i.e., because
+#' disregarding measurements where sulphates > 1.0 is the same as disregarding
+#' the positive tail of the distribution, keeping just the normal-looking portion.
+#' However, the relationship is mathematically, still weak.
+#'
+#' ## Bivariate Analysis - Summary
+#'
+#' There is no apparent and mathematically strong correlation between any wine
+#' property and the given quality. Alcohol content is a strong contender, but even
+#' so, the correlation was not particularly strong.
+#'
+#' Most properties have roughly normal distributions, with some skew in one tail.
+#' Scatterplot relationships between these properties often showed a slight trend
+#' within the bulk of property values. However, as soon as we leave the
+#' expected range, the trends reverse. For example, Alcohol Content or
+#' Sulphate vs. Quality. The trend is not a definitive one, but it is seen in
+#' different variables.
+#'
+#' Possibly, obtaining an outlier property (say sulphate content) is particularly
+#' challenging to do in the wine making process. Alternatively, there is a change
+#' that the wines that exhibit outlier properties are deliberately of a
+#' non-standard variety. In that case, it could be that wine judges have a harder
+#' time agreeing on a quality rating.
+#'
+#' ## Multivariate Plots Section
+#'
+#' This section includes visualizations that take bivariate analysis a step
+#' further, i.e., understand the earlier patterns better or to strengthen the
+#' arguments that were presented in the previous section.
+#'
+#' ### Alcohol, Volatile Acid & Wine Rating
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, alcohol_acid_quality------
+ggplot(wine, aes(x=alcohol, y=volatile.acidity, color=quality)) +
+  geom_jitter(alpha=0.8, position = position_jitter()) +
+  geom_smooth(method="lm", se = FALSE, size=1) +
+  scale_color_brewer(type='seq',
+                   guide=guide_legend(title='Quality')) +
+  theme_pander()
+
+#'
+#' Earlier inspections suggested that the volatile acidity and alcohol had high
+#' correlations values of negative and positive. Alcohol seems to vary more than
+#' volatile acidity when we talk about quality, nearly every Rating A wine has
+#' less than 0.6 volatile acidity.
+#'
+#' ### Understanding the Significance of Acidity
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, acid_quality--------------
+ggplot(subset(wine, rating=='A'|rating=='C'),
+       aes(x=volatile.acidity, y=citric.acid)) +
+  geom_point() +
+  geom_jitter(position=position_jitter(), aes(color=rating)) +
+  geom_vline(xintercept=c(0.6), linetype='dashed', size=1, color='black') +
+  geom_hline(yintercept=c(0.5), linetype='dashed', size=1, color='black') +
+  scale_x_continuous(breaks = seq(0, 1.6, .1)) +
+  theme_pander() + scale_colour_few()
+
+#'
+#' Nearly every wine has volatile acidity less than 0.8. As discussed earlier the
+#' A rating wines all have volatile.acidity of less than 0.6. For wines with
+#' rating B, the volatile acidity is between 0.4 and 0.8. Some C rating wine have
+#' a volatile acidity value of more than 0.8
+#'
+#' Most A rating wines have citric acid value of 0.25 to 0.75 while the B rating
+#' wines have citric acid value below 0.50.
+#'
+#' ### Understanding the Significance of Sulphates
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE----------------------------
+ggplot(subset(wine, rating=='A'|rating=='C'), aes(x = alcohol, y = sulphates)) +
+    geom_jitter(position = position_jitter(), aes(color=rating)) +
+  geom_hline(yintercept=c(0.65), linetype='dashed', size=1, color='black') +
+  theme_pander() + scale_colour_few() +
+  scale_y_continuous(breaks = seq(0, 2, .2))
+
+#'
+#' It is incredible to see that nearly all wines lie below 1.0 sulphates level.
+#' Due to overplotting, wines with rating B have been removed. It can be seen
+#' rating A wines mostly have sulphate values between 0.5 and 1 and the best rated
+#' wines have sulphate values between 0.6 and 1. Alcohol has the same values as
+#' seen before.
+#'
+#' ### Density & Sugar
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, Multivariate_Plots2-------
+da1 <- ggplot(aes(x=density, y=total.acidity, color=as.numeric(quality)),
+              data=wine) +
+  geom_point(position='jitter') +
+  geom_smooth() +
+  labs(x="Total Acidity", y="Density", color="Quality") +
+  ggtitle("Density vs. Acidity Colored by Wine Quality Ratings")
+
+cs2 <- ggplot(aes(x=residual.sugar, y=density, color=as.numeric(quality)),
+              data=wine) +
+  geom_point(position='jitter') +
+  geom_smooth() +
+  labs(x="Residual Sugar", y="Density", color="Quality") +
+  ggtitle("\nSugar vs. Chlorides colored by Wine Quality Ratings")
+
+grid.arrange(da1, cs2)
+
+#'
+#' Higher quality wines appear to have a slight correlation with higher acidity
+#' across all densities. Moreover, there are abnormally high and low quality wines
+#' coincident with higher-than-usual sugar content.
+#'
+#' ## Multivariate Analysis - Summary
+#' Based on the investigation, it can be said that higher `citric.acid` and
+#' lower `volatile.acidity` contribute towards better wines. Also, better wines
+#' tend to have higher alcohol content.
+#'
+#' There were surprising results with `suplhates` and `alcohol` graphs.
+#' Sulphates had a better correlation with quality than citric acid, still the
+#' distribution was not that distinct between the different quality wines. Further
+#' nearly all wines had a sulphate content of less than 1, irrespective of the
+#' alcohol content; suplhate is a byproduct of fermantation just like
+#' alcohol.
+#'
+#' Based on the analysis presented, it can be noted because wine rating is a
+#' subjective measure, it is why statistical correlation values are not a very
+#' suitable metric to find important factors. This was realized half-way through
+#' the study. The graphs aptly depict that there is a suitable range and it is
+#' some combination of chemical factors that contribute to the flavour of wine.
+#'
+#' ## Final Plots and Summary
+#'
+#' ### Plot One
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, plot_2--------------------
+qr1 <- ggplot(aes(as.numeric(quality), fill=rating), data=wine) +
+  geom_bar() +
+  ggtitle ("Barchart of Quality with Rating") +
+  scale_x_continuous(breaks=seq(3,8,1)) +
+  xlab("Quality") +
+  theme_pander() + scale_colour_few()
+
+qr2 <- qplot(x=rating, data=wine, geom='bar',
+      fill=I("#990000"),
+      col=I("black")) +
+  xlab("Rating") +
+  ggtitle("Barchart of Rating") +
+  theme_pander()
+
+grid.arrange(qr1, qr2, ncol=2)
+
+#'
+#' #### Description One
+#' The plot is from the univariate section, which introduced the idea of
+#' this analysis. As in the analysis, there are plenty of visualizations which
+#' only plot data-points from A and C rated wines. A first comparison of only
+#' the 'C' and 'A' wines helped find distinctive properties that separate these
+#' two.
+#'
+#' It also suggests that it is likely that the critics can be highly subjective as
+#' they do not rate any wine with a measure of 1, 2 or 9, 10. With most wines
+#' being mediocre, the wines that had the less popular rating must've caught the
+#' attention of the wine experts, hence, the idea was derived to compare these two
+#' rating classes.
+#'
+#' ### Plot Two
+#'
+## ---- echo=FALSE, warning=FALSE, message=FALSE, plot_1a------------------
+ggplot(aes(x=alcohol), data=wine) +
+  geom_density(fill=I("#BB0000")) +
+  facet_wrap("quality") +
+  ggtitle("Alcohol Content for Wine Quality Ratings") +
+  labs(x="Alcohol [%age]", y="") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10))
+
+#'
+## ----echo=FALSE, message=FALSE, warning=FALSE, plot_1b-------------------
+fp1 <- ggplot(aes(y=alcohol, x=quality), data = wine)+
+  geom_boxplot() +
+  xlab('Quality') +
+  ylab("Alcohol in % by Volume") +
+  labs(x="Quality", y="Alcohol [%age]") +
+  ggtitle("Boxplot of Alcohol and Quality") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10))
+
+fp2 <-ggplot(aes(alcohol, qmean), data=wine.quality_groups) +
+  geom_smooth() +
+  scale_x_continuous(breaks = seq(0, 15, 0.5)) +
+  ggtitle("\nLine Plot of Quality Mean & Alcohol Percentage") +
+  labs(x="Alcohol [%age]", y="Quality (Mean)") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10))
+
+grid.arrange(fp1, fp2)
+
+#'
+#' #### Description Two
+#'
+#' These are plots taken from bivariate analysis section discussing the effect of
+#' alcohol percentage on quality.
+#'
+#' The first visualization was especially appealing to me because of the way that
+#' you can almost see the distribution shift from left to right as wine ratings
+#' increase. Again, just showing a general tendency instead of a substantial
+#' significance in judging wine quality.
+#'
+#' The above boxplots show a steady rise in the level of alcohol. An interesting
+#' trend of a decrement of quality above 13%, alcohol gave way to further analysis
+#' which shows that a general correlation measure might not be suitable for the
+#' study.
+#'
+#' The plot that follows set the basis for which I carried out the complete
+#' analysis. Rather than emphasizing on mathematical correlation measures, the
+#' inferences drawn were based on investigating the visualizations. This felt
+#' suitable due to the subjectivity in the measure of wine quality.
+#'
+#' ### Plot Three
+#'
+## ----echo=FALSE, messages=FALSE, warning=FALSE, plot_3-------------------
+fp3 <- ggplot(subset(wine, rating=='A'|rating=='C'),
+              aes(x = volatile.acidity, y = citric.acid)) +
+  geom_point() +
+  geom_jitter(position=position_jitter(), aes(color=rating)) +
+  geom_vline(xintercept=c(0.6), linetype='dashed', size=1, color='black') +
+  geom_hline(yintercept=c(0.5), linetype='dashed', size=1, color='black') +
+  scale_x_continuous(breaks = seq(0, 1.6, .1)) +
+  theme_pander() + scale_colour_few() +
+  ggtitle("Wine Rating vs. Acids") +
+  labs(x="Volatile Acidity (g/dm^3)", y="Citric Acid (g/dm^3)") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10),
+        legend.title = element_text(size=10))
+
+fp4 <- ggplot(subset(wine, rating=='A'|rating=='C'),
+              aes(x = alcohol, y = sulphates)) +
+  geom_jitter(position = position_jitter(), aes(color=rating)) +
+  geom_hline(yintercept=c(0.65), linetype='dashed', size=1, color='black') +
+  theme_pander() + scale_colour_few() +
+  scale_y_continuous(breaks = seq(0,2,.2)) +
+  ggtitle("\nSulphates, Alcohol & Wine-Rating") +
+  labs(x="Alcohol [%]", y="Sulphates (g/dm^3)") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10),
+        legend.title = element_text(size=10))
+
+grid.arrange(fp3, fp4, nrow=2)
+
+#'
+#' #### Description Three
+#' These plots served as finding distinguishing boundaries for given attributes,
+#' i.e., `sulphates`, `citric.acid`, `alcohol`, `volatile.acidity`. The
+#' conclusions drawn from these plots are that sulphates should be high but less
+#' than 1 with an alcohol concentration around 12-13%, along with less (< 0.6)
+#' volatile acidity. It can be viewed nearlyas a depiction of a classification
+#' methodology without application of any machine learning algorithm. Moreover,
+#' these plots strengthened the arguments laid in the earlier analysis of the data.
+#'
+#' ------
+#'
+#' ## Reflection
+#' In this project, I was able to examine relationship between *physicochemical*
+#' properties and identify the key variables that determine red wine quality,
+#' which are alcohol content volatile acidity and sulphate levels.
+#'
+#' The dataset is quite interesting, though limited in large-scale implications.
+#' I believe if this dataset held only one additional variable it would be vastly
+#' more useful to the layman. If *price* were supplied along with this data
+#' one could target the best wines within price categories, and what aspects
+#' correlated to a high performing wine in any price bracket.
+#'
+#' Overall, I was initially surprised by the seemingly dispersed nature of the
+#' wine data. Nothing was immediately correlatable to being an inherent quality
+#' of good wines. However, upon reflection, this is a sensible finding. Wine
+#' making is still something of a science and an art, and if there was one
+#' single property or process that continually yielded high quality wines, the
+#' field wouldn't be what it is.
+#'
+#' According to the study, it can be concluded that the best kind of wines are the
+#' ones with an alcohol concentration of about 13%, with low volatile acidity &
+#' high sulphates level (with an upper cap of 1.0 g/dm^3).
+#'
+#' ### Future Work & Limitations
+#' With my amateurish knowledge of wine-tasting, I tried my best to relate it to
+#' how I would rate a bottle of wine at dining. However, in the future, I would
+#' like to do some research into the winemaking process. Some winemakers might
+#' actively try for some property values or combinations, and be finding those
+#' combinations (of 3 or more properties) might be the key to truly predicting
+#' wine quality. This investigation was not able to find a robust generalized
+#' model that would consistently be able to predict wine quality with any degree
+#' of certainty.
+#'
+#' If I were to continue further into this specific dataset, I would aim to
+#' train a classifier to correctly predict the wine category, in order to better
+#' grasp the minuteness of what makes a good wine.
+#'
+#' Additionally, having the wine type would be helpful for further analysis.
+#' Sommeliers might prefer certain types of wines to have different
+#' properties and behaviors. For example, a Port (as sweet desert wine)
+#' surely is rated differently from a dark and robust abernet Sauvignon,
+#' which is rated differently from a bright and fruity Syrah. Without knowing
+#' the type of wine, it is entirely possible that we are almost literally
+#' comparing apples to oranges and can't find a correlation.

File diff suppressed because it is too large
+ 15 - 0
Investigating Factors Affecting Red Wine Quality/Red_Wine_Quality.html


+ 862 - 0
Investigating Factors Affecting Red Wine Quality/Red_Wine_Quality.rmd

@@ -0,0 +1,862 @@
+What Makes A Good Wine?
+========================================================
+
+In this project, a data set of red wine quality is explored based on its 
+physicochemical properties. The objective is to find physicochemical properties
+that distinguish good quality wine from lower quality ones. An attempt to build
+linear model on wine quality is also shown.
+
+### Dataset Description
+This tidy dataset contains 1,599 red wines with 11 variables on the chemical 
+properties of the wine. Another variable attributing to the quality of wine is 
+added; at least 3 wine experts did this rating. The preparation of the dataset 
+has been described in [this link](https://goo.gl/HVxAzY).
+
+```{r global_options, include=FALSE}
+knitr::opts_chunk$set(fig.path='Figs/',
+                      echo=FALSE, warning=FALSE, message=FALSE)
+```
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, packages}
+library(ggplot2)
+library(gridExtra)
+library(GGally)
+library(ggthemes)
+library(dplyr)
+library(memisc)
+```
+
+First, the structure of the dataset is explored using ``summary`` and ``str`` 
+functions.  
+```{r echo=FALSE, warning=FALSE, message=FALSE, Load_the_Data}
+wine <- read.csv("wineQualityReds.csv")
+str(wine)
+summary(wine)
+
+# Setting the theme for plotting.
+# theme_set(theme_minimal(10))
+
+# Converting 'quality' to ordered type.
+wine$quality <- ordered(wine$quality, 
+                        levels=c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
+# Adding 'total.acidity'.
+wine$total.acidity <- wine$fixed.acidity + wine$volatile.acidity
+```
+
+**The following observations are made/confirmed:** 
+
+1. There are 1599 samples of Red Wine properties and quality values.
+
+2. No wine achieves either a terrible (0) or perfect (10) quality score.
+
+3. Citric Acid had a minimum of 0.0. No other property values were precisely 0.
+
+4. Residual Sugar measurement has a maximum that is nearly 20 times farther
+away from the 3rd quartile than the 3rd quartile is from the 1st. There is
+a chance of a largely skewed data or that the data has some outliers.
+
+5. The 'quality' attribute is originally considered an integer;
+I have converted this field into an ordered factor which is much more
+a representative of the variable itself.
+
+6. There are two attributes related to 'acidity' of wine i.e. 'fixed.acidity' 
+and 'volatile.acidity'. Hence, a combined acidity variable is added 
+using ``data$total.acidity <- data$fixed.acidity + data$volatile.acidity``.
+
+## Univariate Plots Section
+To lead the univariate analysis, I’ve chosen to build a grid of histograms. 
+These histograms represent the distributions of each variable in the dataset.
+
+```{r echo=FALSE, warning=FALSE, message=FALSE, Univariate_Grid_Plot}
+g_base <- ggplot(
+  data = wine,
+  aes(color=I('black'), fill=I('#990000'))
+) 
+
+g1 <- g_base +
+  geom_histogram(aes(x = fixed.acidity), binwidth = 0.25) + 
+  scale_x_continuous(breaks = seq(4, 16, 2)) + 
+  coord_cartesian(xlim = c(4, 16))
+
+g2 <- g_base +
+  geom_histogram(aes(x = volatile.acidity), binwidth = 0.05) + 
+  scale_x_continuous(breaks = seq(0, 2, 0.5)) +
+  coord_cartesian(xlim = c(0, 2))
+
+g3 <- g_base +
+  geom_histogram(aes(x = total.acidity), binwidth = 0.25) + 
+  scale_x_continuous(breaks = seq(0, 18, 1)) +
+  coord_cartesian(xlim = c(4, 18))
+
+g4 <- g_base +
+  geom_histogram(aes(x = citric.acid), binwidth = 0.05) + 
+  scale_x_continuous(breaks = seq(0, 1, 0.2)) +
+  coord_cartesian(xlim = c(0, 1))
+
+g5 <- g_base +
+  geom_histogram(aes(x = residual.sugar), binwidth = 0.5) + 
+  scale_x_continuous(breaks = seq(0, 16, 2)) +
+  coord_cartesian(xlim = c(0, 16))
+
+g6 <- g_base +
+  geom_histogram(aes(x = chlorides), binwidth = 0.01) + 
+  scale_x_continuous(breaks = seq(0, 0.75, 0.25)) +
+  coord_cartesian(xlim = c(0, 0.75))
+
+g7 <- g_base +
+  geom_histogram(aes(x = free.sulfur.dioxide), binwidth = 2.5) + 
+  scale_x_continuous(breaks = seq(0, 75, 25)) +
+  coord_cartesian(xlim = c(0, 75))
+
+g8 <- g_base +
+  geom_histogram(aes(x = total.sulfur.dioxide), binwidth = 10) + 
+  scale_x_continuous(breaks = seq(0, 300, 100)) +
+  coord_cartesian(xlim = c(0, 295))
+
+g9 <- g_base +
+  geom_histogram(aes(x = density), binwidth = 0.0005) + 
+  scale_x_continuous(breaks = seq(0.99, 1.005, 0.005)) +
+  coord_cartesian(xlim = c(0.99, 1.005))
+
+g10 <- g_base +
+  geom_histogram(aes(x = pH), binwidth = 0.05) + 
+  scale_x_continuous(breaks = seq(2.5, 4.5, 0.5)) +
+  coord_cartesian(xlim = c(2.5, 4.5))
+
+g11 <- g_base +
+  geom_histogram(aes(x = sulphates), binwidth = 0.05) + 
+  scale_x_continuous(breaks = seq(0, 2, 0.5)) +
+  coord_cartesian(xlim = c(0, 2))
+
+g12 <- g_base +
+  geom_histogram(aes(x = alcohol), binwidth = 0.25) + 
+  scale_x_continuous(breaks = seq(8, 15, 2)) +
+  coord_cartesian(xlim = c(8, 15))
+
+grid.arrange(g1, g2, g3, g4, g5, g6, 
+             g7, g8, g9, g10, g11, g12, ncol=3)
+```
+
+There are some really interesting variations in the distributions here. Looking
+closer at a few of the more interesting ones might prove quite valuable. 
+Working from top-left to right, selected plots are analysed.
+
+```{r echo=FALSE, warning=FALSE, message=FALSE, single_variable_hist}
+base_hist <- ggplot(
+  data = wine,
+  aes(color=I('black'), fill=I('#990000'))
+) 
+```
+
+### Acidity
+```{r echo=FALSE, acidity_plot}
+ac1 <- base_hist +
+  geom_histogram(aes(x = fixed.acidity), binwidth = 0.25) + 
+  scale_x_continuous(breaks = seq(4, 16, 2)) + 
+  coord_cartesian(xlim = c(4, 16))
+
+ac2 <- base_hist +
+  geom_histogram(aes(x = volatile.acidity), binwidth = 0.05) + 
+  scale_x_continuous(breaks = seq(0, 2, 0.5)) +
+  coord_cartesian(xlim = c(0, 2))
+
+grid.arrange(ac1, ac2, nrow=2)
+```
+
+**Fixed acidity** is determined by aids that do not evaporate easily -- 
+tartaricacid. It contributes to many other attributes, including the taste, pH, 
+color, and stability to oxidation, i.e., prevent the wine from tasting flat. 
+On theother hand, **volatile acidity** is responsible for the sour taste in 
+wine. A very high value can lead to sour tasting wine, a low value can make 
+the wine seem heavy. 
+(References: [1](http://waterhouse.ucdavis.edu/whats-in-wine/fixed-acidity), [2](http://waterhouse.ucdavis.edu/whats-in-wine/volatile-acidity).
+
+```{r echo=FALSE, warning=FALSE, message=FALSE, acidity_univariate}
+ac1 <- base_hist +
+  geom_histogram(aes(x = fixed.acidity), binwidth = 0.25) + 
+  scale_x_continuous(breaks = seq(4, 16, 2)) + 
+  coord_cartesian(xlim = c(4, 16))
+
+ac2 <- base_hist +
+  geom_histogram(aes(x = volatile.acidity), binwidth = 0.05) + 
+  scale_x_continuous(breaks = seq(0, 2, 0.5)) +
+  coord_cartesian(xlim = c(0, 2))
+
+ac3 <- base_hist +
+  geom_histogram(aes(x = total.acidity), binwidth = 0.25) + 
+  scale_x_continuous(breaks = seq(0, 18, 2)) +
+  coord_cartesian(xlim = c(0, 18))
+
+grid.arrange(ac1, ac2, ac3, nrow=3)
+
+print("Summary statistics of Fixed Acidity")
+summary(wine$fixed.acidity)
+print("Summary statistics of Volatile Acidity")
+summary(wine$volatile.acidity)
+print("Summary statistics of Total Acidity")
+summary(wine$total.acidity)
+```
+
+Of the wines we have in our dataset, we can see that most have a fixed acidity 
+of 7.5. The median fixed acidity is 7.9, and the mean is 8.32. There is a 
+slight skew in the data because a few wines possess a very high fixed acidity. 
+The median volatile acidity is 0.52 g/dm^3, and the mean is 0.5278 g/dm^3. *It 
+will be interesting to note which quality of wine is correlated to what level 
+of acidity in the bivariate section.*
+
+### Citric Acid 
+Citric acid is part of the fixed acid content of most wines. A non-volatile 
+acid, citric also adds much of the same characteristics as tartaric acid does. 
+Again, here I would guess most good wines have a balanced amount of citric 
+acid.
+
+```{r echo=FALSE, warning=FALSE, message=FALSE, citric_acid_univariate}
+base_hist +
+  geom_histogram(aes(x = citric.acid), binwidth = 0.05) + 
+  scale_x_continuous(breaks = seq(0, 1, 0.2)) + 
+  coord_cartesian(xlim = c(0, 1))
+
+print("Summary statistics of Citric Acid")
+summary(wine$citric.acid)
+print('Number of Zero Values')
+table(wine$citric.acid == 0)
+```
+
+There is a very high count of zero in citric acid. To check if this is 
+genuinely zero or merely a ‘not available’ value. A quick check using table 
+function shows that there are 132 observations of zero values and no NA value 
+in reported citric acid concentration. The citric acid concentration could be 
+too low and insignificant hence was reported as zero.
+
+As far as content wise the wines have a median citric acid level of 
+0.26 g/dm^3, and a mean level of 0.271 g/dm^3.
+
+### Sulfur-Dioxide & Sulphates
+**Free sulfur dioxide** is the free form of SO2 exists in equilibrium between 
+molecular SO2 (as a dissolved gas) and bisulfite ion; it prevents microbial 
+growth and the oxidation of wine. **Sulphates** is a wine additive which can 
+contribute to sulfur dioxide gas (SO2) levels, which acts as an anti-microbial 
+moreover, antioxidant -- *overall keeping the wine, fresh*.
+
+```{r echo=FALSE, warning=FALSE, message=FALSE, sulfur_univariate}
+sul1 <- base_hist + geom_histogram(aes(x = free.sulfur.dioxide))
+sul2 <- base_hist + geom_histogram(aes(x = log10(free.sulfur.dioxide)))
+
+sul3 <- base_hist + geom_histogram(aes(x = total.sulfur.dioxide))
+sul4 <- base_hist + geom_histogram(aes(x = log10(total.sulfur.dioxide)))
+
+sul5 <- base_hist + geom_histogram(aes(x = sulphates))
+sul6 <- base_hist + geom_histogram(aes(x = log10(sulphates)))
+
+grid.arrange(sul1, sul2, sul3, sul4, sul5, sul6, nrow=3)
+```
+
+The distributions of all three values are positively skewed with a long tail. 
+Thelog-transformation results in a normal-behaving distribution for 'total 
+sulfur dioxide' and 'sulphates'. 
+
+### Alcohol
+Alcohol is what adds that special something that turns rotten grape juice 
+into a drink many people love. Hence, by intuitive understanding, it should
+be crucial in determining the wine quality.
+
+```{r echo=FALSE, warning=FALSE, message=FALSE, alcohol_univariate}
+base_hist +
+  geom_histogram(aes(x = alcohol), binwidth = 0.25) + 
+  scale_x_continuous(breaks = seq(8, 15, 2)) +
+  coord_cartesian(xlim = c(8, 15))
+
+print("Summary statistics for alcohol %age.")
+summary(wine$alcohol)
+```
+
+The mean alcohol content for our wines is 10.42%, the median is 10.2%
+
+### Quality
+```{r echo=FALSE,warning=FALSE, message=FALSE, quality_univariate}
+qplot(x=quality, data=wine, geom='bar',
+      fill=I("#990000"), 
+      col=I("black"))
+
+print("Summary statistics - Wine Quality.")
+summary(wine$quality)
+```
+
+Overall wine quality, rated on a scale from 1 to 10, has a normal shape and 
+very few exceptionally high or low-quality ratings.
+
+It can be seen that the minimum rating is 3 and 8 is the maximum for quality.
+Hence, a variable called ‘rating’ is created based on variable quality.
+
+* 8 to 7 are Rated A.
+
+* 6 to 5 are Rated B.
+
+* 3 to 4 are Rated C.
+
+```{r echo=FALSE, quality_rating}
+# Dividing the quality into 3 rating levels
+wine$rating <- ifelse(wine$quality < 5, 'C', 
+                      ifelse(wine$quality < 7, 'B', 'A'))
+
+# Changing it into an ordered factor
+wine$rating <- ordered(wine$rating,
+                     levels = c('C', 'B', 'A'))
+
+summary(wine$rating)
+
+qr1 <- ggplot(aes(as.numeric(quality), fill=rating), data=wine) +
+  geom_bar() +
+  ggtitle ("Barchart of Quality with Rating") +
+  scale_x_continuous(breaks=seq(3,8,1)) + 
+  xlab("Quality") + 
+  theme_pander() + scale_colour_few()
+
+qr2 <- qplot(x=rating, data=wine, geom='bar',
+      fill=I("#990000"), 
+      col=I("black")) +
+  xlab("Rating") +
+  ggtitle("Barchart of Rating") + 
+  theme_pander() 
+
+grid.arrange(qr1, qr2, ncol=2)
+```
+
+The distribution of 'rating' is much higher on the 'B' rating wine as
+seen in quality distribution. This is likely to cause overplotting. Therefore, 
+a comparison of only the 'C' and 'A' wines is done to find distinctive 
+properties that separate these two. The comparison is made using summary
+statistics.
+
+```{r echo=FALSE, rating_comparison}
+print("Summary statistics of Wine with Rating 'A'")
+summary(subset(wine, rating=='A'))
+
+print("Summary statistics of Wine with Rating 'C'")
+summary(subset(wine, rating=='C'))
+```
+
+On comparing the *mean statistic* of different attribute for 'A-rated' and 
+'C-rated' wines (A → C), the following %age change is noted.
+
+1. `fixed.acidity`: mean reduced by 11%.
+
+2. `volatile.acidity` - mean increased by 80%.
+
+3. `citric.acidity` - mean increased by 117%.
+
+4. `sulphates` - mean reduced by 20.3%
+
+5. `alcohol` - mean reduced by 12.7%.
+
+6. `residualsugar` and `chloride` showed a very low variation.
+
+These changes are, however, only suitable for estimation of important quality 
+impacting variables and setting a way for further analysis. No conclusion
+can be drawn from it.
+
+## Univariate Analysis - Summary
+
+### Overview
+The red wine dataset features 1599 separate observations, each for a different 
+red wine sample. As presented, each wine sample is provided as a single row in 
+the dataset. Due to the nature of how some measurements are gathered, some 
+values given represent *components* of a measurement total.  
+
+For example, `data.fixed.acidity` and `data.volatile.acidity` are both obtained 
+via separate measurement techniques, and must be summed to indicate the total 
+acidity present in a wine sample. For these cases, I supplemented the data 
+given by computing the total and storing in the data frame with a 
+`data.total.*` variable. 
+
+### Features of Interest
+An interesting measurement here is the wine `quality`. It is the
+subjective measurement of how attractive the wine might be to a consumer. The
+goal here will is to try and correlate non-subjective wine properties with its 
+quality.
+
+I am curious about a few trends in particular --  **Sulphates vs. Quality** as 
+low sulphate wine has a reputation for not causing hangovers, 
+**Acidity vs. Quality** - Given that it impacts many factors like pH, 
+taste, color, it is compelling to see if it affects the quality.
+**Alcohol vs. Quality** - Just an interesting measurement. 
+
+At first, the lack of an *age* metric was surprising since it is commonly
+a factor in quick assumptions of wine quality. However, since the actual effect
+of wine age is on the wine's measurable chemical properties, its exclusion here
+might not be necessary.
+
+### Distributions
+ Many measurements that were clustered close to zero had a positive skew 
+(you cannot have negative percentages or amounts). Others such as `pH` and 
+`total.acidity` and `quality` had normal looking distributions. 
+
+The distributions studied in this section were primarily used to identify the
+trends in variables present in the dataset. This helps in setting up a track
+for moving towards bivariate and multivariate analysis.
+
+## Bivariate Plots Section
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, correlation_plots}
+ggcorr(wine, 
+       size = 2.2, hjust = 0.8,
+       low = "#4682B4", mid = "white", high = "#E74C3C")
+```
+
+**Observations from the correlation matrix.**
+
+* Total Acidity is highly correlatable with fixed acidity.
+
+* pH appears correlatable with acidity, citric acid, chlorides, and residual
+sugars.
+
+* No single property appears to correlate with quality.
+
+Further, in this section, metrics of interest are evaluated to check their
+significance on the wine quality. Moreover, bivariate relationships between
+other variables are also studied.
+
+### Acidity vs. Rating & Quality
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, acidity_rating}
+
+aq1 <- ggplot(aes(x=rating, y=total.acidity), data = wine) +
+  geom_boxplot(fill = '#ffeeee') +
+  coord_cartesian(ylim=c(0, quantile(wine$total.acidity, 0.99))) +
+  geom_point(stat='summary', fun.y=mean,color='red') + 
+  xlab('Rating') + ylab('Total Acidity')
+  
+aq2 <- ggplot(aes(x=quality, y=total.acidity), data = wine) +
+  geom_boxplot(fill = '#ffeeee') +
+  coord_cartesian(ylim=c(0, quantile(wine$total.acidity, 0.99))) +
+  geom_point(stat='summary', fun.y=mean, color='red') +
+  xlab('Quality') + ylab('Total Acidity') + 
+  geom_jitter(alpha=1/10, color='#990000') + 
+  ggtitle("\n")
+  
+grid.arrange(aq1, aq2, ncol=1)
+```
+
+The boxplots depicting quality also depicts the distribution 
+of various wines, and we can again see 5 and 6 quality wines have the most 
+share. The blue dot is the mean, and the middle line shows the median.
+
+The box plots show how the acidity decreases as the quality of wine improve. 
+However, the difference is not very noticeable. Since most wines tend to 
+maintain a similar acidity level & given the fact that *volatile acidity* is
+responsible for the sour taste in wine, hence a density plot of the said 
+attribute is plotted to investigate the data.
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, acidity_quality_rating}
+ggplot(aes(x = volatile.acidity, fill = quality, color = quality), 
+       data = wine) + 
+  geom_density(alpha=0.08)
+```
+
+Red Wine of `quality` 7 and 8 have their peaks for `volatile.acidity` well 
+below the 0.4 mark. Wine with `quality` 3 has the pick at the most right 
+hand side (towards more volatile acidity). This shows that the better quality
+wines are lesser sour and in general have lesser acidity. 
+
+### Alcohol vs. Quality
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, alcohol_quality_sugar}
+qas0 <- ggplot(aes(x=alcohol, y=as.numeric(quality)), data=wine) + 
+  geom_jitter(alpha=1/12) + 
+  geom_smooth() + 
+  ggtitle("Alcohol Content vs. Quality") + 
+  ylab("Quality") + xlab("Alcohol")
+
+qas1 <- ggplot(aes(x=alcohol), data=wine) + 
+  geom_density(fill=I("#BB0000")) + 
+  facet_wrap("quality") + 
+  ggtitle("Alcohol Content for \nWine Quality Ratings") +
+  ylab("Density") + xlab("Alcohol")
+
+qas2 <- ggplot(aes(x=residual.sugar, y=alcohol), data=wine) +
+  geom_jitter(alpha=1/12) + 
+  geom_smooth() +
+  ggtitle("Alcohol vs. Residual Sugar Content") + 
+  ylab("Alcohol") + xlab("Residual Sugar")
+
+grid.arrange(qas1, arrangeGrob(qas0, qas2), ncol=2)
+```
+
+The plot between residual sugar and alcohol content suggests that there is no 
+erratic relation between sugar and alcohol content, which is surprising as 
+alcohol is a byproduct of the yeast feeding off of sugar during the 
+fermentation process. That inference could not be established here.
+
+Alcohol and quality appear to be somewhat correlatable. Lower quality wines 
+tend to have lower alcohol content. This can be further studied using boxplots.
+
+```{r echo=FALSE, message=FALSE, warning=FALSE}
+
+quality_groups <- group_by(wine, alcohol)
+
+wine.quality_groups <- summarize(quality_groups,
+                          acidity_mean = mean(volatile.acidity),
+                          pH_mean = mean(pH),
+                          sulphates_mean = mean(sulphates),
+                          qmean = mean(as.numeric(quality)),
+                          n = n())
+
+wine.quality_groups <- arrange(wine.quality_groups, alcohol)
+```
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, alcohol_quality}
+ggplot(aes(y=alcohol, x=factor(quality)), data = wine) +
+  geom_boxplot(fill = '#ffeeee')+
+  xlab('quality')
+```
+
+The boxplots show an indication that higher quality wines have higher alcohol 
+content. This trend is shown by all the quality grades from 3 to 8 except 
+quality grade 5.
+
+**Does this mean that by adding more alcohol, we'd get better wine?**
+
+```{r echo=FALSE, message=FALSE, warning=FALSE}
+ggplot(aes(alcohol, qmean), data=wine.quality_groups) +
+  geom_smooth() +
+  ylab("Quality Mean") +
+  scale_x_continuous(breaks = seq(0, 15, 0.5)) +
+  xlab("Alcohol %")
+```
+
+The above line plot indicates nearly a linear increase till 13% alcohol 
+concetration, followed by a steep downwards trend. The graph has to be 
+smoothened to remove variances and noise.
+
+### Sulphates vs. Quality
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, sulphates_quality}
+ggplot(aes(y=sulphates, x=quality), data=wine) +
+  geom_boxplot(fill="#ffeeee")
+```
+
+Good wines have higher sulphates values than bad wines, though the difference 
+is not that wide.
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, sulphates_qplots}
+sq1 <- ggplot(aes(x=sulphates, y=as.numeric(quality)), data=wine) +
+  geom_jitter(alpha=1/10) +
+  geom_smooth() +
+  xlab("Sulphates") + ylab("Quality") + 
+  ggtitle("Sulphates vs. Quality")
+
+sq2 <- ggplot(aes(x=sulphates, y=as.numeric(quality)), 
+              data=subset(wine, wine$sulphates < 1)) +
+  geom_jitter(alpha=1/10) +
+  geom_smooth() +
+  xlab("Sulphates") + ylab("Quality") + 
+  ggtitle("\nSulphates vs Quality without Outliers") 
+
+grid.arrange(sq1, sq2, nrow = 2)
+```
+
+There is a slight trend implying a relationship between sulphates and wine
+quality, mainly if extreme sulphate values are ignored, i.e., because 
+disregarding measurements where sulphates > 1.0 is the same as disregarding
+the positive tail of the distribution, keeping just the normal-looking portion.
+However, the relationship is mathematically, still weak.
+
+## Bivariate Analysis - Summary
+
+There is no apparent and mathematically strong correlation between any wine 
+property and the given quality. Alcohol content is a strong contender, but even 
+so, the correlation was not particularly strong.
+
+Most properties have roughly normal distributions, with some skew in one tail. 
+Scatterplot relationships between these properties often showed a slight trend 
+within the bulk of property values. However, as soon as we leave the 
+expected range, the trends reverse. For example, Alcohol Content or 
+Sulphate vs. Quality. The trend is not a definitive one, but it is seen in 
+different variables. 
+
+Possibly, obtaining an outlier property (say sulphate content) is particularly 
+challenging to do in the wine making process. Alternatively, there is a change 
+that the wines that exhibit outlier properties are deliberately of a 
+non-standard variety. In that case, it could be that wine judges have a harder 
+time agreeing on a quality rating.
+
+## Multivariate Plots Section
+
+This section includes visualizations that take bivariate analysis a step 
+further, i.e., understand the earlier patterns better or to strengthen the 
+arguments that were presented in the previous section.
+
+### Alcohol, Volatile Acid & Wine Rating
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, alcohol_acid_quality}
+ggplot(wine, aes(x=alcohol, y=volatile.acidity, color=quality)) +
+  geom_jitter(alpha=0.8, position = position_jitter()) +
+  geom_smooth(method="lm", se = FALSE, size=1) + 
+  scale_color_brewer(type='seq',
+                   guide=guide_legend(title='Quality')) +
+  theme_pander()
+```
+
+Earlier inspections suggested that the volatile acidity and alcohol had high 
+correlations values of negative and positive. Alcohol seems to vary more than 
+volatile acidity when we talk about quality, nearly every Rating A wine has 
+less than 0.6 volatile acidity.
+
+### Understanding the Significance of Acidity
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, acid_quality}
+ggplot(subset(wine, rating=='A'|rating=='C'),
+       aes(x=volatile.acidity, y=citric.acid)) +
+  geom_point() + 
+  geom_jitter(position=position_jitter(), aes(color=rating)) +
+  geom_vline(xintercept=c(0.6), linetype='dashed', size=1, color='black') +
+  geom_hline(yintercept=c(0.5), linetype='dashed', size=1, color='black') +
+  scale_x_continuous(breaks = seq(0, 1.6, .1)) +
+  theme_pander() + scale_colour_few()
+```
+
+Nearly every wine has volatile acidity less than 0.8. As discussed earlier the
+A rating wines all have volatile.acidity of less than 0.6. For wines with
+rating B, the volatile acidity is between 0.4 and 0.8. Some C rating wine have
+a volatile acidity value of more than 0.8
+
+Most A rating wines have citric acid value of 0.25 to 0.75 while the B rating 
+wines have citric acid value below 0.50.
+
+### Understanding the Significance of Sulphates
+
+```{r echo=FALSE, message=FALSE, warning=FALSE}
+ggplot(subset(wine, rating=='A'|rating=='C'), aes(x = alcohol, y = sulphates)) +
+    geom_jitter(position = position_jitter(), aes(color=rating)) +
+  geom_hline(yintercept=c(0.65), linetype='dashed', size=1, color='black') +
+  theme_pander() + scale_colour_few() +
+  scale_y_continuous(breaks = seq(0, 2, .2))
+```
+
+It is incredible to see that nearly all wines lie below 1.0 sulphates level. 
+Due to overplotting, wines with rating B have been removed. It can be seen 
+rating A wines mostly have sulphate values between 0.5 and 1 and the best rated 
+wines have sulphate values between 0.6 and 1. Alcohol has the same values as 
+seen before.
+
+### Density & Sugar
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, Multivariate_Plots2}
+da1 <- ggplot(aes(x=density, y=total.acidity, color=as.numeric(quality)), 
+              data=wine) + 
+  geom_point(position='jitter') +
+  geom_smooth() +
+  labs(x="Total Acidity", y="Density", color="Quality") +
+  ggtitle("Density vs. Acidity Colored by Wine Quality Ratings")
+
+cs2 <- ggplot(aes(x=residual.sugar, y=density, color=as.numeric(quality)), 
+              data=wine) + 
+  geom_point(position='jitter') +
+  geom_smooth() + 
+  labs(x="Residual Sugar", y="Density", color="Quality") +
+  ggtitle("\nSugar vs. Chlorides colored by Wine Quality Ratings")
+
+grid.arrange(da1, cs2)
+```
+
+Higher quality wines appear to have a slight correlation with higher acidity
+across all densities. Moreover, there are abnormally high and low quality wines 
+coincident with higher-than-usual sugar content. 
+
+## Multivariate Analysis - Summary
+Based on the investigation, it can be said that higher `citric.acid` and 
+lower `volatile.acidity` contribute towards better wines. Also, better wines 
+tend to have higher alcohol content. 
+
+There were surprising results with `suplhates` and `alcohol` graphs. 
+Sulphates had a better correlation with quality than citric acid, still the 
+distribution was not that distinct between the different quality wines. Further 
+nearly all wines had a sulphate content of less than 1, irrespective of the 
+alcohol content; suplhate is a byproduct of fermantation just like 
+alcohol. 
+
+Based on the analysis presented, it can be noted because wine rating is a 
+subjective measure, it is why statistical correlation values are not a very 
+suitable metric to find important factors. This was realized half-way through
+the study. The graphs aptly depict that there is a suitable range and it is 
+some combination of chemical factors that contribute to the flavour of wine.
+
+## Final Plots and Summary
+
+### Plot One
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, plot_2}
+qr1 <- ggplot(aes(as.numeric(quality), fill=rating), data=wine) +
+  geom_bar() +
+  ggtitle ("Barchart of Quality with Rating") +
+  scale_x_continuous(breaks=seq(3,8,1)) + 
+  xlab("Quality") + 
+  theme_pander() + scale_colour_few()
+
+qr2 <- qplot(x=rating, data=wine, geom='bar',
+      fill=I("#990000"), 
+      col=I("black")) +
+  xlab("Rating") +
+  ggtitle("Barchart of Rating") + 
+  theme_pander() 
+
+grid.arrange(qr1, qr2, ncol=2)
+```
+
+#### Description One
+The plot is from the univariate section, which introduced the idea of 
+this analysis. As in the analysis, there are plenty of visualizations which 
+only plot data-points from A and C rated wines. A first comparison of only 
+the 'C' and 'A' wines helped find distinctive properties that separate these 
+two.
+
+It also suggests that it is likely that the critics can be highly subjective as
+they do not rate any wine with a measure of 1, 2 or 9, 10. With most wines 
+being mediocre, the wines that had the less popular rating must've caught the 
+attention of the wine experts, hence, the idea was derived to compare these two
+rating classes.
+
+### Plot Two
+
+```{r, echo=FALSE, warning=FALSE, message=FALSE, plot_1a}
+ggplot(aes(x=alcohol), data=wine) + 
+  geom_density(fill=I("#BB0000")) + 
+  facet_wrap("quality") + 
+  ggtitle("Alcohol Content for Wine Quality Ratings") +
+  labs(x="Alcohol [%age]", y="") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10))
+```
+
+```{r echo=FALSE, message=FALSE, warning=FALSE, plot_1b}
+fp1 <- ggplot(aes(y=alcohol, x=quality), data = wine)+
+  geom_boxplot() +
+  xlab('Quality') +
+  ylab("Alcohol in % by Volume") +
+  labs(x="Quality", y="Alcohol [%age]") +
+  ggtitle("Boxplot of Alcohol and Quality") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10))
+
+fp2 <-ggplot(aes(alcohol, qmean), data=wine.quality_groups) +
+  geom_smooth() +
+  scale_x_continuous(breaks = seq(0, 15, 0.5)) +
+  ggtitle("\nLine Plot of Quality Mean & Alcohol Percentage") + 
+  labs(x="Alcohol [%age]", y="Quality (Mean)") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10))
+
+grid.arrange(fp1, fp2)
+```
+
+#### Description Two
+
+These are plots taken from bivariate analysis section discussing the effect of 
+alcohol percentage on quality.
+
+The first visualization was especially appealing to me because of the way that 
+you can almost see the distribution shift from left to right as wine ratings 
+increase. Again, just showing a general tendency instead of a substantial
+significance in judging wine quality.
+
+The above boxplots show a steady rise in the level of alcohol. An interesting 
+trend of a decrement of quality above 13%, alcohol gave way to further analysis 
+which shows that a general correlation measure might not be suitable for the 
+study.
+
+The plot that follows set the basis for which I carried out the complete 
+analysis. Rather than emphasizing on mathematical correlation measures, the 
+inferences drawn were based on investigating the visualizations. This felt 
+suitable due to the subjectivity in the measure of wine quality.
+
+### Plot Three
+
+```{r echo=FALSE, messages=FALSE, warning=FALSE, plot_3}
+fp3 <- ggplot(subset(wine, rating=='A'|rating=='C'), 
+              aes(x = volatile.acidity, y = citric.acid)) +
+  geom_point() + 
+  geom_jitter(position=position_jitter(), aes(color=rating)) +
+  geom_vline(xintercept=c(0.6), linetype='dashed', size=1, color='black') +
+  geom_hline(yintercept=c(0.5), linetype='dashed', size=1, color='black') +
+  scale_x_continuous(breaks = seq(0, 1.6, .1)) +
+  theme_pander() + scale_colour_few() +
+  ggtitle("Wine Rating vs. Acids") + 
+  labs(x="Volatile Acidity (g/dm^3)", y="Citric Acid (g/dm^3)") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10),
+        legend.title = element_text(size=10))
+
+fp4 <- ggplot(subset(wine, rating=='A'|rating=='C'), 
+              aes(x = alcohol, y = sulphates)) +
+  geom_jitter(position = position_jitter(), aes(color=rating)) +
+  geom_hline(yintercept=c(0.65), linetype='dashed', size=1, color='black') +
+  theme_pander() + scale_colour_few() +
+  scale_y_continuous(breaks = seq(0,2,.2)) +
+  ggtitle("\nSulphates, Alcohol & Wine-Rating") + 
+  labs(x="Alcohol [%]", y="Sulphates (g/dm^3)") +
+  theme(plot.title = element_text(face="plain"),
+        axis.title.x = element_text(size=10),
+        axis.title.y = element_text(size=10),
+        legend.title = element_text(size=10))
+
+grid.arrange(fp3, fp4, nrow=2)
+```
+
+#### Description Three
+These plots served as finding distinguishing boundaries for given attributes,
+i.e., `sulphates`, `citric.acid`, `alcohol`, `volatile.acidity`. The 
+conclusions drawn from these plots are that sulphates should be high but less 
+than 1 with an alcohol concentration around 12-13%, along with less (< 0.6) 
+volatile acidity. It can be viewed nearlyas a depiction of a classification 
+methodology without application of any machine learning algorithm. Moreover, 
+these plots strengthened the arguments laid in the earlier analysis of the data.
+
+------
+
+## Reflection
+In this project, I was able to examine relationship between *physicochemical* 
+properties and identify the key variables that determine red wine quality, 
+which are alcohol content volatile acidity and sulphate levels.
+
+The dataset is quite interesting, though limited in large-scale implications. 
+I believe if this dataset held only one additional variable it would be vastly 
+more useful to the layman. If *price* were supplied along with this data 
+one could target the best wines within price categories, and what aspects 
+correlated to a high performing wine in any price bracket. 
+
+Overall, I was initially surprised by the seemingly dispersed nature of the 
+wine data. Nothing was immediately correlatable to being an inherent quality
+of good wines. However, upon reflection, this is a sensible finding. Wine
+making is still something of a science and an art, and if there was one
+single property or process that continually yielded high quality wines, the
+field wouldn't be what it is. 
+
+According to the study, it can be concluded that the best kind of wines are the
+ones with an alcohol concentration of about 13%, with low volatile acidity & 
+high sulphates level (with an upper cap of 1.0 g/dm^3).
+
+### Future Work & Limitations
+With my amateurish knowledge of wine-tasting, I tried my best to relate it to
+how I would rate a bottle of wine at dining. However, in the future, I would 
+like to do some research into the winemaking process. Some winemakers might 
+actively try for some property values or combinations, and be finding those 
+combinations (of 3 or more properties) might be the key to truly predicting 
+wine quality. This investigation was not able to find a robust generalized 
+model that would consistently be able to predict wine quality with any degree 
+of certainty.
+
+If I were to continue further into this specific dataset, I would aim to 
+train a classifier to correctly predict the wine category, in order to better 
+grasp the minuteness of what makes a good wine. 
+
+Additionally, having the wine type would be helpful for further analysis. 
+Sommeliers might prefer certain types of wines to have different 
+properties and behaviors. For example, a Port (as sweet desert wine) 
+surely is rated differently from a dark and robust abernet Sauvignon, 
+which is rated differently from a bright and fruity Syrah. Without knowing
+the type of wine, it is entirely possible that we are almost literally
+comparing apples to oranges and can't find a correlation. 

+ 10 - 0
Investigating Factors Affecting Red Wine Quality/References.txt

@@ -0,0 +1,10 @@
+Selcted References.
+
+[1] https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
+[2] https://cran.r-project.org/web/packages/gridExtra/gridExtra.pdf
+[3] https://cran.r-project.org/web/packages/ggthemes/vignettes/ggthemes.html
+[4] http://www.cookbook-r.com/Graphs/Facets_(ggplot2)/
+[5] https://datavizcatalogue.com/methods/density_plot.html
+[6] https://www.r-bloggers.com/dplyr-example-1/
+[7] http://htmlcolorcodes.com/
+[8] http://waterhouse.ucdavis.edu/@@search?SearchableText=acidity

+ 1600 - 0
Investigating Factors Affecting Red Wine Quality/wineQualityReds.csv

@@ -0,0 +1,1600 @@
+"","fixed.acidity","volatile.acidity","citric.acid","residual.sugar","chlorides","free.sulfur.dioxide","total.sulfur.dioxide","density","pH","sulphates","alcohol","quality"
+"1",7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,5
+"2",7.8,0.88,0,2.6,0.098,25,67,0.9968,3.2,0.68,9.8,5
+"3",7.8,0.76,0.04,2.3,0.092,15,54,0.997,3.26,0.65,9.8,5
+"4",11.2,0.28,0.56,1.9,0.075,17,60,0.998,3.16,0.58,9.8,6
+"5",7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,5
+"6",7.4,0.66,0,1.8,0.075,13,40,0.9978,3.51,0.56,9.4,5
+"7",7.9,0.6,0.06,1.6,0.069,15,59,0.9964,3.3,0.46,9.4,5
+"8",7.3,0.65,0,1.2,0.065,15,21,0.9946,3.39,0.47,10,7
+"9",7.8,0.58,0.02,2,0.073,9,18,0.9968,3.36,0.57,9.5,7
+"10",7.5,0.5,0.36,6.1,0.071,17,102,0.9978,3.35,0.8,10.5,5
+"11",6.7,0.58,0.08,1.8,0.097,15,65,0.9959,3.28,0.54,9.2,5
+"12",7.5,0.5,0.36,6.1,0.071,17,102,0.9978,3.35,0.8,10.5,5
+"13",5.6,0.615,0,1.6,0.089,16,59,0.9943,3.58,0.52,9.9,5
+"14",7.8,0.61,0.29,1.6,0.114,9,29,0.9974,3.26,1.56,9.1,5
+"15",8.9,0.62,0.18,3.8,0.176,52,145,0.9986,3.16,0.88,9.2,5
+"16",8.9,0.62,0.19,3.9,0.17,51,148,0.9986,3.17,0.93,9.2,5
+"17",8.5,0.28,0.56,1.8,0.092,35,103,0.9969,3.3,0.75,10.5,7
+"18",8.1,0.56,0.28,1.7,0.368,16,56,0.9968,3.11,1.28,9.3,5
+"19",7.4,0.59,0.08,4.4,0.086,6,29,0.9974,3.38,0.5,9,4
+"20",7.9,0.32,0.51,1.8,0.341,17,56,0.9969,3.04,1.08,9.2,6
+"21",8.9,0.22,0.48,1.8,0.077,29,60,0.9968,3.39,0.53,9.4,6
+"22",7.6,0.39,0.31,2.3,0.082,23,71,0.9982,3.52,0.65,9.7,5
+"23",7.9,0.43,0.21,1.6,0.106,10,37,0.9966,3.17,0.91,9.5,5
+"24",8.5,0.49,0.11,2.3,0.084,9,67,0.9968,3.17,0.53,9.4,5
+"25",6.9,0.4,0.14,2.4,0.085,21,40,0.9968,3.43,0.63,9.7,6
+"26",6.3,0.39,0.16,1.4,0.08,11,23,0.9955,3.34,0.56,9.3,5
+"27",7.6,0.41,0.24,1.8,0.08,4,11,0.9962,3.28,0.59,9.5,5
+"28",7.9,0.43,0.21,1.6,0.106,10,37,0.9966,3.17,0.91,9.5,5
+"29",7.1,0.71,0,1.9,0.08,14,35,0.9972,3.47,0.55,9.4,5
+"30",7.8,0.645,0,2,0.082,8,16,0.9964,3.38,0.59,9.8,6
+"31",6.7,0.675,0.07,2.4,0.089,17,82,0.9958,3.35,0.54,10.1,5
+"32",6.9,0.685,0,2.5,0.105,22,37,0.9966,3.46,0.57,10.6,6
+"33",8.3,0.655,0.12,2.3,0.083,15,113,0.9966,3.17,0.66,9.8,5
+"34",6.9,0.605,0.12,10.7,0.073,40,83,0.9993,3.45,0.52,9.4,6
+"35",5.2,0.32,0.25,1.8,0.103,13,50,0.9957,3.38,0.55,9.2,5
+"36",7.8,0.645,0,5.5,0.086,5,18,0.9986,3.4,0.55,9.6,6
+"37",7.8,0.6,0.14,2.4,0.086,3,15,0.9975,3.42,0.6,10.8,6
+"38",8.1,0.38,0.28,2.1,0.066,13,30,0.9968,3.23,0.73,9.7,7
+"39",5.7,1.13,0.09,1.5,0.172,7,19,0.994,3.5,0.48,9.8,4
+"40",7.3,0.45,0.36,5.9,0.074,12,87,0.9978,3.33,0.83,10.5,5
+"41",7.3,0.45,0.36,5.9,0.074,12,87,0.9978,3.33,0.83,10.5,5
+"42",8.8,0.61,0.3,2.8,0.088,17,46,0.9976,3.26,0.51,9.3,4
+"43",7.5,0.49,0.2,2.6,0.332,8,14,0.9968,3.21,0.9,10.5,6
+"44",8.1,0.66,0.22,2.2,0.069,9,23,0.9968,3.3,1.2,10.3,5
+"45",6.8,0.67,0.02,1.8,0.05,5,11,0.9962,3.48,0.52,9.5,5
+"46",4.6,0.52,0.15,2.1,0.054,8,65,0.9934,3.9,0.56,13.1,4
+"47",7.7,0.935,0.43,2.2,0.114,22,114,0.997,3.25,0.73,9.2,5
+"48",8.7,0.29,0.52,1.6,0.113,12,37,0.9969,3.25,0.58,9.5,5
+"49",6.4,0.4,0.23,1.6,0.066,5,12,0.9958,3.34,0.56,9.2,5
+"50",5.6,0.31,0.37,1.4,0.074,12,96,0.9954,3.32,0.58,9.2,5
+"51",8.8,0.66,0.26,1.7,0.074,4,23,0.9971,3.15,0.74,9.2,5
+"52",6.6,0.52,0.04,2.2,0.069,8,15,0.9956,3.4,0.63,9.4,6
+"53",6.6,0.5,0.04,2.1,0.068,6,14,0.9955,3.39,0.64,9.4,6
+"54",8.6,0.38,0.36,3,0.081,30,119,0.997,3.2,0.56,9.4,5
+"55",7.6,0.51,0.15,2.8,0.11,33,73,0.9955,3.17,0.63,10.2,6
+"56",7.7,0.62,0.04,3.8,0.084,25,45,0.9978,3.34,0.53,9.5,5
+"57",10.2,0.42,0.57,3.4,0.07,4,10,0.9971,3.04,0.63,9.6,5
+"58",7.5,0.63,0.12,5.1,0.111,50,110,0.9983,3.26,0.77,9.4,5
+"59",7.8,0.59,0.18,2.3,0.076,17,54,0.9975,3.43,0.59,10,5
+"60",7.3,0.39,0.31,2.4,0.074,9,46,0.9962,3.41,0.54,9.4,6
+"61",8.8,0.4,0.4,2.2,0.079,19,52,0.998,3.44,0.64,9.2,5
+"62",7.7,0.69,0.49,1.8,0.115,20,112,0.9968,3.21,0.71,9.3,5
+"63",7.5,0.52,0.16,1.9,0.085,12,35,0.9968,3.38,0.62,9.5,7
+"64",7,0.735,0.05,2,0.081,13,54,0.9966,3.39,0.57,9.8,5
+"65",7.2,0.725,0.05,4.65,0.086,4,11,0.9962,3.41,0.39,10.9,5
+"66",7.2,0.725,0.05,4.65,0.086,4,11,0.9962,3.41,0.39,10.9,5
+"67",7.5,0.52,0.11,1.5,0.079,11,39,0.9968,3.42,0.58,9.6,5
+"68",6.6,0.705,0.07,1.6,0.076,6,15,0.9962,3.44,0.58,10.7,5
+"69",9.3,0.32,0.57,2,0.074,27,65,0.9969,3.28,0.79,10.7,5
+"70",8,0.705,0.05,1.9,0.074,8,19,0.9962,3.34,0.95,10.5,6
+"71",7.7,0.63,0.08,1.9,0.076,15,27,0.9967,3.32,0.54,9.5,6
+"72",7.7,0.67,0.23,2.1,0.088,17,96,0.9962,3.32,0.48,9.5,5
+"73",7.7,0.69,0.22,1.9,0.084,18,94,0.9961,3.31,0.48,9.5,5
+"74",8.3,0.675,0.26,2.1,0.084,11,43,0.9976,3.31,0.53,9.2,4
+"75",9.7,0.32,0.54,2.5,0.094,28,83,0.9984,3.28,0.82,9.6,5
+"76",8.8,0.41,0.64,2.2,0.093,9,42,0.9986,3.54,0.66,10.5,5
+"77",8.8,0.41,0.64,2.2,0.093,9,42,0.9986,3.54,0.66,10.5,5
+"78",6.8,0.785,0,2.4,0.104,14,30,0.9966,3.52,0.55,10.7,6
+"79",6.7,0.75,0.12,2,0.086,12,80,0.9958,3.38,0.52,10.1,5
+"80",8.3,0.625,0.2,1.5,0.08,27,119,0.9972,3.16,1.12,9.1,4
+"81",6.2,0.45,0.2,1.6,0.069,3,15,0.9958,3.41,0.56,9.2,5
+"82",7.8,0.43,0.7,1.9,0.464,22,67,0.9974,3.13,1.28,9.4,5
+"83",7.4,0.5,0.47,2,0.086,21,73,0.997,3.36,0.57,9.1,5
+"84",7.3,0.67,0.26,1.8,0.401,16,51,0.9969,3.16,1.14,9.4,5
+"85",6.3,0.3,0.48,1.8,0.069,18,61,0.9959,3.44,0.78,10.3,6
+"86",6.9,0.55,0.15,2.2,0.076,19,40,0.9961,3.41,0.59,10.1,5
+"87",8.6,0.49,0.28,1.9,0.11,20,136,0.9972,2.93,1.95,9.9,6
+"88",7.7,0.49,0.26,1.9,0.062,9,31,0.9966,3.39,0.64,9.6,5
+"89",9.3,0.39,0.44,2.1,0.107,34,125,0.9978,3.14,1.22,9.5,5
+"90",7,0.62,0.08,1.8,0.076,8,24,0.9978,3.48,0.53,9,5
+"91",7.9,0.52,0.26,1.9,0.079,42,140,0.9964,3.23,0.54,9.5,5
+"92",8.6,0.49,0.28,1.9,0.11,20,136,0.9972,2.93,1.95,9.9,6
+"93",8.6,0.49,0.29,2,0.11,19,133,0.9972,2.93,1.98,9.8,5
+"94",7.7,0.49,0.26,1.9,0.062,9,31,0.9966,3.39,0.64,9.6,5
+"95",5,1.02,0.04,1.4,0.045,41,85,0.9938,3.75,0.48,10.5,4
+"96",4.7,0.6,0.17,2.3,0.058,17,106,0.9932,3.85,0.6,12.9,6
+"97",6.8,0.775,0,3,0.102,8,23,0.9965,3.45,0.56,10.7,5
+"98",7,0.5,0.25,2,0.07,3,22,0.9963,3.25,0.63,9.2,5
+"99",7.6,0.9,0.06,2.5,0.079,5,10,0.9967,3.39,0.56,9.8,5
+"100",8.1,0.545,0.18,1.9,0.08,13,35,0.9972,3.3,0.59,9,6
+"101",8.3,0.61,0.3,2.1,0.084,11,50,0.9972,3.4,0.61,10.2,6
+"102",7.8,0.5,0.3,1.9,0.075,8,22,0.9959,3.31,0.56,10.4,6
+"103",8.1,0.545,0.18,1.9,0.08,13,35,0.9972,3.3,0.59,9,6
+"104",8.1,0.575,0.22,2.1,0.077,12,65,0.9967,3.29,0.51,9.2,5
+"105",7.2,0.49,0.24,2.2,0.07,5,36,0.996,3.33,0.48,9.4,5
+"106",8.1,0.575,0.22,2.1,0.077,12,65,0.9967,3.29,0.51,9.2,5
+"107",7.8,0.41,0.68,1.7,0.467,18,69,0.9973,3.08,1.31,9.3,5
+"108",6.2,0.63,0.31,1.7,0.088,15,64,0.9969,3.46,0.79,9.3,5
+"109",8,0.33,0.53,2.5,0.091,18,80,0.9976,3.37,0.8,9.6,6
+"110",8.1,0.785,0.52,2,0.122,37,153,0.9969,3.21,0.69,9.3,5
+"111",7.8,0.56,0.19,1.8,0.104,12,47,0.9964,3.19,0.93,9.5,5
+"112",8.4,0.62,0.09,2.2,0.084,11,108,0.9964,3.15,0.66,9.8,5
+"113",8.4,0.6,0.1,2.2,0.085,14,111,0.9964,3.15,0.66,9.8,5
+"114",10.1,0.31,0.44,2.3,0.08,22,46,0.9988,3.32,0.67,9.7,6
+"115",7.8,0.56,0.19,1.8,0.104,12,47,0.9964,3.19,0.93,9.5,5
+"116",9.4,0.4,0.31,2.2,0.09,13,62,0.9966,3.07,0.63,10.5,6
+"117",8.3,0.54,0.28,1.9,0.077,11,40,0.9978,3.39,0.61,10,6
+"118",7.8,0.56,0.12,2,0.082,7,28,0.997,3.37,0.5,9.4,6
+"119",8.8,0.55,0.04,2.2,0.119,14,56,0.9962,3.21,0.6,10.9,6
+"120",7,0.69,0.08,1.8,0.097,22,89,0.9959,3.34,0.54,9.2,6
+"121",7.3,1.07,0.09,1.7,0.178,10,89,0.9962,3.3,0.57,9,5
+"122",8.8,0.55,0.04,2.2,0.119,14,56,0.9962,3.21,0.6,10.9,6
+"123",7.3,0.695,0,2.5,0.075,3,13,0.998,3.49,0.52,9.2,5
+"124",8,0.71,0,2.6,0.08,11,34,0.9976,3.44,0.53,9.5,5
+"125",7.8,0.5,0.17,1.6,0.082,21,102,0.996,3.39,0.48,9.5,5
+"126",9,0.62,0.04,1.9,0.146,27,90,0.9984,3.16,0.7,9.4,5
+"127",8.2,1.33,0,1.7,0.081,3,12,0.9964,3.53,0.49,10.9,5
+"128",8.1,1.33,0,1.8,0.082,3,12,0.9964,3.54,0.48,10.9,5
+"129",8,0.59,0.16,1.8,0.065,3,16,0.9962,3.42,0.92,10.5,7
+"130",6.1,0.38,0.15,1.8,0.072,6,19,0.9955,3.42,0.57,9.4,5
+"131",8,0.745,0.56,2,0.118,30,134,0.9968,3.24,0.66,9.4,5
+"132",5.6,0.5,0.09,2.3,0.049,17,99,0.9937,3.63,0.63,13,5
+"133",5.6,0.5,0.09,2.3,0.049,17,99,0.9937,3.63,0.63,13,5
+"134",6.6,0.5,0.01,1.5,0.06,17,26,0.9952,3.4,0.58,9.8,6
+"135",7.9,1.04,0.05,2.2,0.084,13,29,0.9959,3.22,0.55,9.9,6
+"136",8.4,0.745,0.11,1.9,0.09,16,63,0.9965,3.19,0.82,9.6,5
+"137",8.3,0.715,0.15,1.8,0.089,10,52,0.9968,3.23,0.77,9.5,5
+"138",7.2,0.415,0.36,2,0.081,13,45,0.9972,3.48,0.64,9.2,5
+"139",7.8,0.56,0.19,2.1,0.081,15,105,0.9962,3.33,0.54,9.5,5
+"140",7.8,0.56,0.19,2,0.081,17,108,0.9962,3.32,0.54,9.5,5
+"141",8.4,0.745,0.11,1.9,0.09,16,63,0.9965,3.19,0.82,9.6,5
+"142",8.3,0.715,0.15,1.8,0.089,10,52,0.9968,3.23,0.77,9.5,5
+"143",5.2,0.34,0,1.8,0.05,27,63,0.9916,3.68,0.79,14,6
+"144",6.3,0.39,0.08,1.7,0.066,3,20,0.9954,3.34,0.58,9.4,5
+"145",5.2,0.34,0,1.8,0.05,27,63,0.9916,3.68,0.79,14,6
+"146",8.1,0.67,0.55,1.8,0.117,32,141,0.9968,3.17,0.62,9.4,5
+"147",5.8,0.68,0.02,1.8,0.087,21,94,0.9944,3.54,0.52,10,5
+"148",7.6,0.49,0.26,1.6,0.236,10,88,0.9968,3.11,0.8,9.3,5
+"149",6.9,0.49,0.1,2.3,0.074,12,30,0.9959,3.42,0.58,10.2,6
+"150",8.2,0.4,0.44,2.8,0.089,11,43,0.9975,3.53,0.61,10.5,6
+"151",7.3,0.33,0.47,2.1,0.077,5,11,0.9958,3.33,0.53,10.3,6
+"152",9.2,0.52,1,3.4,0.61,32,69,0.9996,2.74,2,9.4,4
+"153",7.5,0.6,0.03,1.8,0.095,25,99,0.995,3.35,0.54,10.1,5
+"154",7.5,0.6,0.03,1.8,0.095,25,99,0.995,3.35,0.54,10.1,5
+"155",7.1,0.43,0.42,5.5,0.07,29,129,0.9973,3.42,0.72,10.5,5
+"156",7.1,0.43,0.42,5.5,0.071,28,128,0.9973,3.42,0.71,10.5,5
+"157",7.1,0.43,0.42,5.5,0.07,29,129,0.9973,3.42,0.72,10.5,5
+"158",7.1,0.43,0.42,5.5,0.071,28,128,0.9973,3.42,0.71,10.5,5
+"159",7.1,0.68,0,2.2,0.073,12,22,0.9969,3.48,0.5,9.3,5
+"160",6.8,0.6,0.18,1.9,0.079,18,86,0.9968,3.59,0.57,9.3,6
+"161",7.6,0.95,0.03,2,0.09,7,20,0.9959,3.2,0.56,9.6,5
+"162",7.6,0.68,0.02,1.3,0.072,9,20,0.9965,3.17,1.08,9.2,4
+"163",7.8,0.53,0.04,1.7,0.076,17,31,0.9964,3.33,0.56,10,6
+"164",7.4,0.6,0.26,7.3,0.07,36,121,0.9982,3.37,0.49,9.4,5
+"165",7.3,0.59,0.26,7.2,0.07,35,121,0.9981,3.37,0.49,9.4,5
+"166",7.8,0.63,0.48,1.7,0.1,14,96,0.9961,3.19,0.62,9.5,5
+"167",6.8,0.64,0.1,2.1,0.085,18,101,0.9956,3.34,0.52,10.2,5
+"168",7.3,0.55,0.03,1.6,0.072,17,42,0.9956,3.37,0.48,9,4
+"169",6.8,0.63,0.07,2.1,0.089,11,44,0.9953,3.47,0.55,10.4,6
+"170",7.5,0.705,0.24,1.8,0.36,15,63,0.9964,3,1.59,9.5,5
+"171",7.9,0.885,0.03,1.8,0.058,4,8,0.9972,3.36,0.33,9.1,4
+"172",8,0.42,0.17,2,0.073,6,18,0.9972,3.29,0.61,9.2,6
+"173",8,0.42,0.17,2,0.073,6,18,0.9972,3.29,0.61,9.2,6
+"174",7.4,0.62,0.05,1.9,0.068,24,42,0.9961,3.42,0.57,11.5,6
+"175",7.3,0.38,0.21,2,0.08,7,35,0.9961,3.33,0.47,9.5,5
+"176",6.9,0.5,0.04,1.5,0.085,19,49,0.9958,3.35,0.78,9.5,5
+"177",7.3,0.38,0.21,2,0.08,7,35,0.9961,3.33,0.47,9.5,5
+"178",7.5,0.52,0.42,2.3,0.087,8,38,0.9972,3.58,0.61,10.5,6
+"179",7,0.805,0,2.5,0.068,7,20,0.9969,3.48,0.56,9.6,5
+"180",8.8,0.61,0.14,2.4,0.067,10,42,0.9969,3.19,0.59,9.5,5
+"181",8.8,0.61,0.14,2.4,0.067,10,42,0.9969,3.19,0.59,9.5,5
+"182",8.9,0.61,0.49,2,0.27,23,110,0.9972,3.12,1.02,9.3,5
+"183",7.2,0.73,0.02,2.5,0.076,16,42,0.9972,3.44,0.52,9.3,5
+"184",6.8,0.61,0.2,1.8,0.077,11,65,0.9971,3.54,0.58,9.3,5
+"185",6.7,0.62,0.21,1.9,0.079,8,62,0.997,3.52,0.58,9.3,6
+"186",8.9,0.31,0.57,2,0.111,26,85,0.9971,3.26,0.53,9.7,5
+"187",7.4,0.39,0.48,2,0.082,14,67,0.9972,3.34,0.55,9.2,5
+"188",7.7,0.705,0.1,2.6,0.084,9,26,0.9976,3.39,0.49,9.7,5
+"189",7.9,0.5,0.33,2,0.084,15,143,0.9968,3.2,0.55,9.5,5
+"190",7.9,0.49,0.32,1.9,0.082,17,144,0.9968,3.2,0.55,9.5,5
+"191",8.2,0.5,0.35,2.9,0.077,21,127,0.9976,3.23,0.62,9.4,5
+"192",6.4,0.37,0.25,1.9,0.074,21,49,0.9974,3.57,0.62,9.8,6
+"193",6.8,0.63,0.12,3.8,0.099,16,126,0.9969,3.28,0.61,9.5,5
+"194",7.6,0.55,0.21,2.2,0.071,7,28,0.9964,3.28,0.55,9.7,5
+"195",7.6,0.55,0.21,2.2,0.071,7,28,0.9964,3.28,0.55,9.7,5
+"196",7.8,0.59,0.33,2,0.074,24,120,0.9968,3.25,0.54,9.4,5
+"197",7.3,0.58,0.3,2.4,0.074,15,55,0.9968,3.46,0.59,10.2,5
+"198",11.5,0.3,0.6,2,0.067,12,27,0.9981,3.11,0.97,10.1,6
+"199",5.4,0.835,0.08,1.2,0.046,13,93,0.9924,3.57,0.85,13,7
+"200",6.9,1.09,0.06,2.1,0.061,12,31,0.9948,3.51,0.43,11.4,4
+"201",9.6,0.32,0.47,1.4,0.056,9,24,0.99695,3.22,0.82,10.3,7
+"202",8.8,0.37,0.48,2.1,0.097,39,145,0.9975,3.04,1.03,9.3,5
+"203",6.8,0.5,0.11,1.5,0.075,16,49,0.99545,3.36,0.79,9.5,5
+"204",7,0.42,0.35,1.6,0.088,16,39,0.9961,3.34,0.55,9.2,5
+"205",7,0.43,0.36,1.6,0.089,14,37,0.99615,3.34,0.56,9.2,6
+"206",12.8,0.3,0.74,2.6,0.095,9,28,0.9994,3.2,0.77,10.8,7
+"207",12.8,0.3,0.74,2.6,0.095,9,28,0.9994,3.2,0.77,10.8,7
+"208",7.8,0.57,0.31,1.8,0.069,26,120,0.99625,3.29,0.53,9.3,5
+"209",7.8,0.44,0.28,2.7,0.1,18,95,0.9966,3.22,0.67,9.4,5
+"210",11,0.3,0.58,2.1,0.054,7,19,0.998,3.31,0.88,10.5,7
+"211",9.7,0.53,0.6,2,0.039,5,19,0.99585,3.3,0.86,12.4,6
+"212",8,0.725,0.24,2.8,0.083,10,62,0.99685,3.35,0.56,10,6
+"213",11.6,0.44,0.64,2.1,0.059,5,15,0.998,3.21,0.67,10.2,6
+"214",8.2,0.57,0.26,2.2,0.06,28,65,0.9959,3.3,0.43,10.1,5
+"215",7.8,0.735,0.08,2.4,0.092,10,41,0.9974,3.24,0.71,9.8,6
+"216",7,0.49,0.49,5.6,0.06,26,121,0.9974,3.34,0.76,10.5,5
+"217",8.7,0.625,0.16,2,0.101,13,49,0.9962,3.14,0.57,11,5
+"218",8.1,0.725,0.22,2.2,0.072,11,41,0.9967,3.36,0.55,9.1,5
+"219",7.5,0.49,0.19,1.9,0.076,10,44,0.9957,3.39,0.54,9.7,5
+"220",7.8,0.53,0.33,2.4,0.08,24,144,0.99655,3.3,0.6,9.5,5
+"221",7.8,0.34,0.37,2,0.082,24,58,0.9964,3.34,0.59,9.4,6
+"222",7.4,0.53,0.26,2,0.101,16,72,0.9957,3.15,0.57,9.4,5
+"223",6.8,0.61,0.04,1.5,0.057,5,10,0.99525,3.42,0.6,9.5,5
+"224",8.6,0.645,0.25,2,0.083,8,28,0.99815,3.28,0.6,10,6
+"225",8.4,0.635,0.36,2,0.089,15,55,0.99745,3.31,0.57,10.4,4
+"226",7.7,0.43,0.25,2.6,0.073,29,63,0.99615,3.37,0.58,10.5,6
+"227",8.9,0.59,0.5,2,0.337,27,81,0.9964,3.04,1.61,9.5,6
+"228",9,0.82,0.14,2.6,0.089,9,23,0.9984,3.39,0.63,9.8,5
+"229",7.7,0.43,0.25,2.6,0.073,29,63,0.99615,3.37,0.58,10.5,6
+"230",6.9,0.52,0.25,2.6,0.081,10,37,0.99685,3.46,0.5,11,5
+"231",5.2,0.48,0.04,1.6,0.054,19,106,0.9927,3.54,0.62,12.2,7
+"232",8,0.38,0.06,1.8,0.078,12,49,0.99625,3.37,0.52,9.9,6
+"233",8.5,0.37,0.2,2.8,0.09,18,58,0.998,3.34,0.7,9.6,6
+"234",6.9,0.52,0.25,2.6,0.081,10,37,0.99685,3.46,0.5,11,5
+"235",8.2,1,0.09,2.3,0.065,7,37,0.99685,3.32,0.55,9,6
+"236",7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,6
+"237",7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,6
+"238",7.2,0.645,0,1.9,0.097,15,39,0.99675,3.37,0.58,9.2,6
+"239",7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,6
+"240",8.2,1,0.09,2.3,0.065,7,37,0.99685,3.32,0.55,9,6
+"241",8.9,0.635,0.37,1.7,0.263,5,62,0.9971,3,1.09,9.3,5
+"242",12,0.38,0.56,2.1,0.093,6,24,0.99925,3.14,0.71,10.9,6
+"243",7.7,0.58,0.1,1.8,0.102,28,109,0.99565,3.08,0.49,9.8,6
+"244",15,0.21,0.44,2.2,0.075,10,24,1.00005,3.07,0.84,9.2,7
+"245",15,0.21,0.44,2.2,0.075,10,24,1.00005,3.07,0.84,9.2,7
+"246",7.3,0.66,0,2,0.084,6,23,0.9983,3.61,0.96,9.9,6
+"247",7.1,0.68,0.07,1.9,0.075,16,51,0.99685,3.38,0.52,9.5,5
+"248",8.2,0.6,0.17,2.3,0.072,11,73,0.9963,3.2,0.45,9.3,5
+"249",7.7,0.53,0.06,1.7,0.074,9,39,0.99615,3.35,0.48,9.8,6
+"250",7.3,0.66,0,2,0.084,6,23,0.9983,3.61,0.96,9.9,6
+"251",10.8,0.32,0.44,1.6,0.063,16,37,0.9985,3.22,0.78,10,6
+"252",7.1,0.6,0,1.8,0.074,16,34,0.9972,3.47,0.7,9.9,6
+"253",11.1,0.35,0.48,3.1,0.09,5,21,0.9986,3.17,0.53,10.5,5
+"254",7.7,0.775,0.42,1.9,0.092,8,86,0.9959,3.23,0.59,9.5,5
+"255",7.1,0.6,0,1.8,0.074,16,34,0.9972,3.47,0.7,9.9,6
+"256",8,0.57,0.23,3.2,0.073,17,119,0.99675,3.26,0.57,9.3,5
+"257",9.4,0.34,0.37,2.2,0.075,5,13,0.998,3.22,0.62,9.2,5
+"258",6.6,0.695,0,2.1,0.075,12,56,0.9968,3.49,0.67,9.2,5
+"259",7.7,0.41,0.76,1.8,0.611,8,45,0.9968,3.06,1.26,9.4,5
+"260",10,0.31,0.47,2.6,0.085,14,33,0.99965,3.36,0.8,10.5,7
+"261",7.9,0.33,0.23,1.7,0.077,18,45,0.99625,3.29,0.65,9.3,5
+"262",7,0.975,0.04,2,0.087,12,67,0.99565,3.35,0.6,9.4,4
+"263",8,0.52,0.03,1.7,0.07,10,35,0.99575,3.34,0.57,10,5
+"264",7.9,0.37,0.23,1.8,0.077,23,49,0.9963,3.28,0.67,9.3,5
+"265",12.5,0.56,0.49,2.4,0.064,5,27,0.9999,3.08,0.87,10.9,5
+"266",11.8,0.26,0.52,1.8,0.071,6,10,0.9968,3.2,0.72,10.2,7
+"267",8.1,0.87,0,3.3,0.096,26,61,1.00025,3.6,0.72,9.8,4
+"268",7.9,0.35,0.46,3.6,0.078,15,37,0.9973,3.35,0.86,12.8,8
+"269",6.9,0.54,0.04,3,0.077,7,27,0.9987,3.69,0.91,9.4,6
+"270",11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,6
+"271",7.9,0.545,0.06,4,0.087,27,61,0.9965,3.36,0.67,10.7,6
+"272",11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,6
+"273",10.9,0.37,0.58,4,0.071,17,65,0.99935,3.22,0.78,10.1,5
+"274",8.4,0.715,0.2,2.4,0.076,10,38,0.99735,3.31,0.64,9.4,5
+"275",7.5,0.65,0.18,7,0.088,27,94,0.99915,3.38,0.77,9.4,5
+"276",7.9,0.545,0.06,4,0.087,27,61,0.9965,3.36,0.67,10.7,6
+"277",6.9,0.54,0.04,3,0.077,7,27,0.9987,3.69,0.91,9.4,6
+"278",11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,6
+"279",10.3,0.32,0.45,6.4,0.073,5,13,0.9976,3.23,0.82,12.6,8
+"280",8.9,0.4,0.32,5.6,0.087,10,47,0.9991,3.38,0.77,10.5,7
+"281",11.4,0.26,0.44,3.6,0.071,6,19,0.9986,3.12,0.82,9.3,6
+"282",7.7,0.27,0.68,3.5,0.358,5,10,0.9972,3.25,1.08,9.9,7
+"283",7.6,0.52,0.12,3,0.067,12,53,0.9971,3.36,0.57,9.1,5
+"284",8.9,0.4,0.32,5.6,0.087,10,47,0.9991,3.38,0.77,10.5,7
+"285",9.9,0.59,0.07,3.4,0.102,32,71,1.00015,3.31,0.71,9.8,5
+"286",9.9,0.59,0.07,3.4,0.102,32,71,1.00015,3.31,0.71,9.8,5
+"287",12,0.45,0.55,2,0.073,25,49,0.9997,3.1,0.76,10.3,6
+"288",7.5,0.4,0.12,3,0.092,29,53,0.9967,3.37,0.7,10.3,6
+"289",8.7,0.52,0.09,2.5,0.091,20,49,0.9976,3.34,0.86,10.6,7
+"290",11.6,0.42,0.53,3.3,0.105,33,98,1.001,3.2,0.95,9.2,5
+"291",8.7,0.52,0.09,2.5,0.091,20,49,0.9976,3.34,0.86,10.6,7
+"292",11,0.2,0.48,2,0.343,6,18,0.9979,3.3,0.71,10.5,5
+"293",10.4,0.55,0.23,2.7,0.091,18,48,0.9994,3.22,0.64,10.3,6
+"294",6.9,0.36,0.25,2.4,0.098,5,16,0.9964,3.41,0.6,10.1,6
+"295",13.3,0.34,0.52,3.2,0.094,17,53,1.0014,3.05,0.81,9.5,6
+"296",10.8,0.5,0.46,2.5,0.073,5,27,1.0001,3.05,0.64,9.5,5
+"297",10.6,0.83,0.37,2.6,0.086,26,70,0.9981,3.16,0.52,9.9,5
+"298",7.1,0.63,0.06,2,0.083,8,29,0.99855,3.67,0.73,9.6,5
+"299",7.2,0.65,0.02,2.3,0.094,5,31,0.9993,3.67,0.8,9.7,5
+"300",6.9,0.67,0.06,2.1,0.08,8,33,0.99845,3.68,0.71,9.6,5
+"301",7.5,0.53,0.06,2.6,0.086,20,44,0.9965,3.38,0.59,10.7,6
+"302",11.1,0.18,0.48,1.5,0.068,7,15,0.9973,3.22,0.64,10.1,6
+"303",8.3,0.705,0.12,2.6,0.092,12,28,0.9994,3.51,0.72,10,5
+"304",7.4,0.67,0.12,1.6,0.186,5,21,0.996,3.39,0.54,9.5,5
+"305",8.4,0.65,0.6,2.1,0.112,12,90,0.9973,3.2,0.52,9.2,5
+"306",10.3,0.53,0.48,2.5,0.063,6,25,0.9998,3.12,0.59,9.3,6
+"307",7.6,0.62,0.32,2.2,0.082,7,54,0.9966,3.36,0.52,9.4,5
+"308",10.3,0.41,0.42,2.4,0.213,6,14,0.9994,3.19,0.62,9.5,6
+"309",10.3,0.43,0.44,2.4,0.214,5,12,0.9994,3.19,0.63,9.5,6
+"310",7.4,0.29,0.38,1.7,0.062,9,30,0.9968,3.41,0.53,9.5,6
+"311",10.3,0.53,0.48,2.5,0.063,6,25,0.9998,3.12,0.59,9.3,6
+"312",7.9,0.53,0.24,2,0.072,15,105,0.996,3.27,0.54,9.4,6
+"313",9,0.46,0.31,2.8,0.093,19,98,0.99815,3.32,0.63,9.5,6
+"314",8.6,0.47,0.3,3,0.076,30,135,0.9976,3.3,0.53,9.4,5
+"315",7.4,0.36,0.29,2.6,0.087,26,72,0.99645,3.39,0.68,11,5
+"316",7.1,0.35,0.29,2.5,0.096,20,53,0.9962,3.42,0.65,11,6
+"317",9.6,0.56,0.23,3.4,0.102,37,92,0.9996,3.3,0.65,10.1,5
+"318",9.6,0.77,0.12,2.9,0.082,30,74,0.99865,3.3,0.64,10.4,6
+"319",9.8,0.66,0.39,3.2,0.083,21,59,0.9989,3.37,0.71,11.5,7
+"320",9.6,0.77,0.12,2.9,0.082,30,74,0.99865,3.3,0.64,10.4,6
+"321",9.8,0.66,0.39,3.2,0.083,21,59,0.9989,3.37,0.71,11.5,7
+"322",9.3,0.61,0.26,3.4,0.09,25,87,0.99975,3.24,0.62,9.7,5
+"323",7.8,0.62,0.05,2.3,0.079,6,18,0.99735,3.29,0.63,9.3,5
+"324",10.3,0.59,0.42,2.8,0.09,35,73,0.999,3.28,0.7,9.5,6
+"325",10,0.49,0.2,11,0.071,13,50,1.0015,3.16,0.69,9.2,6
+"326",10,0.49,0.2,11,0.071,13,50,1.0015,3.16,0.69,9.2,6
+"327",11.6,0.53,0.66,3.65,0.121,6,14,0.9978,3.05,0.74,11.5,7
+"328",10.3,0.44,0.5,4.5,0.107,5,13,0.998,3.28,0.83,11.5,5
+"329",13.4,0.27,0.62,2.6,0.082,6,21,1.0002,3.16,0.67,9.7,6
+"330",10.7,0.46,0.39,2,0.061,7,15,0.9981,3.18,0.62,9.5,5
+"331",10.2,0.36,0.64,2.9,0.122,10,41,0.998,3.23,0.66,12.5,6
+"332",10.2,0.36,0.64,2.9,0.122,10,41,0.998,3.23,0.66,12.5,6
+"333",8,0.58,0.28,3.2,0.066,21,114,0.9973,3.22,0.54,9.4,6
+"334",8.4,0.56,0.08,2.1,0.105,16,44,0.9958,3.13,0.52,11,5
+"335",7.9,0.65,0.01,2.5,0.078,17,38,0.9963,3.34,0.74,11.7,7
+"336",11.9,0.695,0.53,3.4,0.128,7,21,0.9992,3.17,0.84,12.2,7
+"337",8.9,0.43,0.45,1.9,0.052,6,16,0.9948,3.35,0.7,12.5,6
+"338",7.8,0.43,0.32,2.8,0.08,29,58,0.9974,3.31,0.64,10.3,5
+"339",12.4,0.49,0.58,3,0.103,28,99,1.0008,3.16,1,11.5,6
+"340",12.5,0.28,0.54,2.3,0.082,12,29,0.9997,3.11,1.36,9.8,7
+"341",12.2,0.34,0.5,2.4,0.066,10,21,1,3.12,1.18,9.2,6
+"342",10.6,0.42,0.48,2.7,0.065,5,18,0.9972,3.21,0.87,11.3,6
+"343",10.9,0.39,0.47,1.8,0.118,6,14,0.9982,3.3,0.75,9.8,6
+"344",10.9,0.39,0.47,1.8,0.118,6,14,0.9982,3.3,0.75,9.8,6
+"345",11.9,0.57,0.5,2.6,0.082,6,32,1.0006,3.12,0.78,10.7,6
+"346",7,0.685,0,1.9,0.067,40,63,0.9979,3.6,0.81,9.9,5
+"347",6.6,0.815,0.02,2.7,0.072,17,34,0.9955,3.58,0.89,12.3,7
+"348",13.8,0.49,0.67,3,0.093,6,15,0.9986,3.02,0.93,12,6
+"349",9.6,0.56,0.31,2.8,0.089,15,46,0.9979,3.11,0.92,10,6
+"350",9.1,0.785,0,2.6,0.093,11,28,0.9994,3.36,0.86,9.4,6
+"351",10.7,0.67,0.22,2.7,0.107,17,34,1.0004,3.28,0.98,9.9,6
+"352",9.1,0.795,0,2.6,0.096,11,26,0.9994,3.35,0.83,9.4,6
+"353",7.7,0.665,0,2.4,0.09,8,19,0.9974,3.27,0.73,9.3,5
+"354",13.5,0.53,0.79,4.8,0.12,23,77,1.0018,3.18,0.77,13,5
+"355",6.1,0.21,0.4,1.4,0.066,40.5,165,0.9912,3.25,0.59,11.9,6
+"356",6.7,0.75,0.01,2.4,0.078,17,32,0.9955,3.55,0.61,12.8,6
+"357",11.5,0.41,0.52,3,0.08,29,55,1.0001,3.26,0.88,11,5
+"358",10.5,0.42,0.66,2.95,0.116,12,29,0.997,3.24,0.75,11.7,7
+"359",11.9,0.43,0.66,3.1,0.109,10,23,1,3.15,0.85,10.4,7
+"360",12.6,0.38,0.66,2.6,0.088,10,41,1.001,3.17,0.68,9.8,6
+"361",8.2,0.7,0.23,2,0.099,14,81,0.9973,3.19,0.7,9.4,5
+"362",8.6,0.45,0.31,2.6,0.086,21,50,0.9982,3.37,0.91,9.9,6
+"363",11.9,0.58,0.66,2.5,0.072,6,37,0.9992,3.05,0.56,10,5
+"364",12.5,0.46,0.63,2,0.071,6,15,0.9988,2.99,0.87,10.2,5
+"365",12.8,0.615,0.66,5.8,0.083,7,42,1.0022,3.07,0.73,10,7
+"366",10,0.42,0.5,3.4,0.107,7,21,0.9979,3.26,0.93,11.8,6
+"367",12.8,0.615,0.66,5.8,0.083,7,42,1.0022,3.07,0.73,10,7
+"368",10.4,0.575,0.61,2.6,0.076,11,24,1,3.16,0.69,9,5
+"369",10.3,0.34,0.52,2.8,0.159,15,75,0.9998,3.18,0.64,9.4,5
+"370",9.4,0.27,0.53,2.4,0.074,6,18,0.9962,3.2,1.13,12,7
+"371",6.9,0.765,0.02,2.3,0.063,35,63,0.9975,3.57,0.78,9.9,5
+"372",7.9,0.24,0.4,1.6,0.056,11,25,0.9967,3.32,0.87,8.7,6
+"373",9.1,0.28,0.48,1.8,0.067,26,46,0.9967,3.32,1.04,10.6,6
+"374",7.4,0.55,0.22,2.2,0.106,12,72,0.9959,3.05,0.63,9.2,5
+"375",14,0.41,0.63,3.8,0.089,6,47,1.0014,3.01,0.81,10.8,6
+"376",11.5,0.54,0.71,4.4,0.124,6,15,0.9984,3.01,0.83,11.8,7
+"377",11.5,0.45,0.5,3,0.078,19,47,1.0003,3.26,1.11,11,6
+"378",9.4,0.27,0.53,2.4,0.074,6,18,0.9962,3.2,1.13,12,7
+"379",11.4,0.625,0.66,6.2,0.088,6,24,0.9988,3.11,0.99,13.3,6
+"380",8.3,0.42,0.38,2.5,0.094,24,60,0.9979,3.31,0.7,10.8,6
+"381",8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,6
+"382",13.7,0.415,0.68,2.9,0.085,17,43,1.0014,3.06,0.8,10,6
+"383",8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,6
+"384",8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,6
+"385",7.7,0.51,0.28,2.1,0.087,23,54,0.998,3.42,0.74,9.2,5
+"386",7.4,0.63,0.07,2.4,0.09,11,37,0.9979,3.43,0.76,9.7,6
+"387",7.8,0.54,0.26,2,0.088,23,48,0.9981,3.41,0.74,9.2,6
+"388",8.3,0.66,0.15,1.9,0.079,17,42,0.9972,3.31,0.54,9.6,6
+"389",7.8,0.46,0.26,1.9,0.088,23,53,0.9981,3.43,0.74,9.2,6
+"390",9.6,0.38,0.31,2.5,0.096,16,49,0.9982,3.19,0.7,10,7
+"391",5.6,0.85,0.05,1.4,0.045,12,88,0.9924,3.56,0.82,12.9,8
+"392",13.7,0.415,0.68,2.9,0.085,17,43,1.0014,3.06,0.8,10,6
+"393",9.5,0.37,0.52,2,0.082,6,26,0.998,3.18,0.51,9.5,5
+"394",8.4,0.665,0.61,2,0.112,13,95,0.997,3.16,0.54,9.1,5
+"395",12.7,0.6,0.65,2.3,0.063,6,25,0.9997,3.03,0.57,9.9,5
+"396",12,0.37,0.76,4.2,0.066,7,38,1.0004,3.22,0.6,13,7
+"397",6.6,0.735,0.02,7.9,0.122,68,124,0.9994,3.47,0.53,9.9,5
+"398",11.5,0.59,0.59,2.6,0.087,13,49,0.9988,3.18,0.65,11,6
+"399",11.5,0.59,0.59,2.6,0.087,13,49,0.9988,3.18,0.65,11,6
+"400",8.7,0.765,0.22,2.3,0.064,9,42,0.9963,3.1,0.55,9.4,5
+"401",6.6,0.735,0.02,7.9,0.122,68,124,0.9994,3.47,0.53,9.9,5
+"402",7.7,0.26,0.3,1.7,0.059,20,38,0.9949,3.29,0.47,10.8,6
+"403",12.2,0.48,0.54,2.6,0.085,19,64,1,3.1,0.61,10.5,6
+"404",11.4,0.6,0.49,2.7,0.085,10,41,0.9994,3.15,0.63,10.5,6
+"405",7.7,0.69,0.05,2.7,0.075,15,27,0.9974,3.26,0.61,9.1,5
+"406",8.7,0.31,0.46,1.4,0.059,11,25,0.9966,3.36,0.76,10.1,6
+"407",9.8,0.44,0.47,2.5,0.063,9,28,0.9981,3.24,0.65,10.8,6
+"408",12,0.39,0.66,3,0.093,12,30,0.9996,3.18,0.63,10.8,7
+"409",10.4,0.34,0.58,3.7,0.174,6,16,0.997,3.19,0.7,11.3,6
+"410",12.5,0.46,0.49,4.5,0.07,26,49,0.9981,3.05,0.57,9.6,4
+"411",9,0.43,0.34,2.5,0.08,26,86,0.9987,3.38,0.62,9.5,6
+"412",9.1,0.45,0.35,2.4,0.08,23,78,0.9987,3.38,0.62,9.5,5
+"413",7.1,0.735,0.16,1.9,0.1,15,77,0.9966,3.27,0.64,9.3,5
+"414",9.9,0.4,0.53,6.7,0.097,6,19,0.9986,3.27,0.82,11.7,7
+"415",8.8,0.52,0.34,2.7,0.087,24,122,0.9982,3.26,0.61,9.5,5
+"416",8.6,0.725,0.24,6.6,0.117,31,134,1.0014,3.32,1.07,9.3,5
+"417",10.6,0.48,0.64,2.2,0.111,6,20,0.997,3.26,0.66,11.7,6
+"418",7,0.58,0.12,1.9,0.091,34,124,0.9956,3.44,0.48,10.5,5
+"419",11.9,0.38,0.51,2,0.121,7,20,0.9996,3.24,0.76,10.4,6
+"420",6.8,0.77,0,1.8,0.066,34,52,0.9976,3.62,0.68,9.9,5
+"421",9.5,0.56,0.33,2.4,0.089,35,67,0.9972,3.28,0.73,11.8,7
+"422",6.6,0.84,0.03,2.3,0.059,32,48,0.9952,3.52,0.56,12.3,7
+"423",7.7,0.96,0.2,2,0.047,15,60,0.9955,3.36,0.44,10.9,5
+"424",10.5,0.24,0.47,2.1,0.066,6,24,0.9978,3.15,0.9,11,7
+"425",7.7,0.96,0.2,2,0.047,15,60,0.9955,3.36,0.44,10.9,5
+"426",6.6,0.84,0.03,2.3,0.059,32,48,0.9952,3.52,0.56,12.3,7
+"427",6.4,0.67,0.08,2.1,0.045,19,48,0.9949,3.49,0.49,11.4,6
+"428",9.5,0.78,0.22,1.9,0.077,6,32,0.9988,3.26,0.56,10.6,6
+"429",9.1,0.52,0.33,1.3,0.07,9,30,0.9978,3.24,0.6,9.3,5
+"430",12.8,0.84,0.63,2.4,0.088,13,35,0.9997,3.1,0.6,10.4,6
+"431",10.5,0.24,0.47,2.1,0.066,6,24,0.9978,3.15,0.9,11,7
+"432",7.8,0.55,0.35,2.2,0.074,21,66,0.9974,3.25,0.56,9.2,5
+"433",11.9,0.37,0.69,2.3,0.078,12,24,0.9958,3,0.65,12.8,6
+"434",12.3,0.39,0.63,2.3,0.091,6,18,1.0004,3.16,0.49,9.5,5
+"435",10.4,0.41,0.55,3.2,0.076,22,54,0.9996,3.15,0.89,9.9,6
+"436",12.3,0.39,0.63,2.3,0.091,6,18,1.0004,3.16,0.49,9.5,5
+"437",8,0.67,0.3,2,0.06,38,62,0.9958,3.26,0.56,10.2,6
+"438",11.1,0.45,0.73,3.2,0.066,6,22,0.9986,3.17,0.66,11.2,6
+"439",10.4,0.41,0.55,3.2,0.076,22,54,0.9996,3.15,0.89,9.9,6
+"440",7,0.62,0.18,1.5,0.062,7,50,0.9951,3.08,0.6,9.3,5
+"441",12.6,0.31,0.72,2.2,0.072,6,29,0.9987,2.88,0.82,9.8,8
+"442",11.9,0.4,0.65,2.15,0.068,7,27,0.9988,3.06,0.68,11.3,6
+"443",15.6,0.685,0.76,3.7,0.1,6,43,1.0032,2.95,0.68,11.2,7
+"444",10,0.44,0.49,2.7,0.077,11,19,0.9963,3.23,0.63,11.6,7
+"445",5.3,0.57,0.01,1.7,0.054,5,27,0.9934,3.57,0.84,12.5,7
+"446",9.5,0.735,0.1,2.1,0.079,6,31,0.9986,3.23,0.56,10.1,6
+"447",12.5,0.38,0.6,2.6,0.081,31,72,0.9996,3.1,0.73,10.5,5
+"448",9.3,0.48,0.29,2.1,0.127,6,16,0.9968,3.22,0.72,11.2,5
+"449",8.6,0.53,0.22,2,0.1,7,27,0.9967,3.2,0.56,10.2,6
+"450",11.9,0.39,0.69,2.8,0.095,17,35,0.9994,3.1,0.61,10.8,6
+"451",11.9,0.39,0.69,2.8,0.095,17,35,0.9994,3.1,0.61,10.8,6
+"452",8.4,0.37,0.53,1.8,0.413,9,26,0.9979,3.06,1.06,9.1,6
+"453",6.8,0.56,0.03,1.7,0.084,18,35,0.9968,3.44,0.63,10,6
+"454",10.4,0.33,0.63,2.8,0.084,5,22,0.9998,3.26,0.74,11.2,7
+"455",7,0.23,0.4,1.6,0.063,21,67,0.9952,3.5,0.63,11.1,5
+"456",11.3,0.62,0.67,5.2,0.086,6,19,0.9988,3.22,0.69,13.4,8
+"457",8.9,0.59,0.39,2.3,0.095,5,22,0.9986,3.37,0.58,10.3,5
+"458",9.2,0.63,0.21,2.7,0.097,29,65,0.9988,3.28,0.58,9.6,5
+"459",10.4,0.33,0.63,2.8,0.084,5,22,0.9998,3.26,0.74,11.2,7
+"460",11.6,0.58,0.66,2.2,0.074,10,47,1.0008,3.25,0.57,9,3
+"461",9.2,0.43,0.52,2.3,0.083,14,23,0.9976,3.35,0.61,11.3,6
+"462",8.3,0.615,0.22,2.6,0.087,6,19,0.9982,3.26,0.61,9.3,5
+"463",11,0.26,0.68,2.55,0.085,10,25,0.997,3.18,0.61,11.8,5
+"464",8.1,0.66,0.7,2.2,0.098,25,129,0.9972,3.08,0.53,9,5
+"465",11.5,0.315,0.54,2.1,0.084,5,15,0.9987,2.98,0.7,9.2,6
+"466",10,0.29,0.4,2.9,0.098,10,26,1.0006,3.48,0.91,9.7,5
+"467",10.3,0.5,0.42,2,0.069,21,51,0.9982,3.16,0.72,11.5,6
+"468",8.8,0.46,0.45,2.6,0.065,7,18,0.9947,3.32,0.79,14,6
+"469",11.4,0.36,0.69,2.1,0.09,6,21,1,3.17,0.62,9.2,6
+"470",8.7,0.82,0.02,1.2,0.07,36,48,0.9952,3.2,0.58,9.8,5
+"471",13,0.32,0.65,2.6,0.093,15,47,0.9996,3.05,0.61,10.6,5
+"472",9.6,0.54,0.42,2.4,0.081,25,52,0.997,3.2,0.71,11.4,6
+"473",12.5,0.37,0.55,2.6,0.083,25,68,0.9995,3.15,0.82,10.4,6
+"474",9.9,0.35,0.55,2.1,0.062,5,14,0.9971,3.26,0.79,10.6,5
+"475",10.5,0.28,0.51,1.7,0.08,10,24,0.9982,3.2,0.89,9.4,6
+"476",9.6,0.68,0.24,2.2,0.087,5,28,0.9988,3.14,0.6,10.2,5
+"477",9.3,0.27,0.41,2,0.091,6,16,0.998,3.28,0.7,9.7,5
+"478",10.4,0.24,0.49,1.8,0.075,6,20,0.9977,3.18,1.06,11,6
+"479",9.6,0.68,0.24,2.2,0.087,5,28,0.9988,3.14,0.6,10.2,5
+"480",9.4,0.685,0.11,2.7,0.077,6,31,0.9984,3.19,0.7,10.1,6
+"481",10.6,0.28,0.39,15.5,0.069,6,23,1.0026,3.12,0.66,9.2,5
+"482",9.4,0.3,0.56,2.8,0.08,6,17,0.9964,3.15,0.92,11.7,8
+"483",10.6,0.36,0.59,2.2,0.152,6,18,0.9986,3.04,1.05,9.4,5
+"484",10.6,0.36,0.6,2.2,0.152,7,18,0.9986,3.04,1.06,9.4,5
+"485",10.6,0.44,0.68,4.1,0.114,6,24,0.997,3.06,0.66,13.4,6
+"486",10.2,0.67,0.39,1.9,0.054,6,17,0.9976,3.17,0.47,10,5
+"487",10.2,0.67,0.39,1.9,0.054,6,17,0.9976,3.17,0.47,10,5
+"488",10.2,0.645,0.36,1.8,0.053,5,14,0.9982,3.17,0.42,10,6
+"489",11.6,0.32,0.55,2.8,0.081,35,67,1.0002,3.32,0.92,10.8,7
+"490",9.3,0.39,0.4,2.6,0.073,10,26,0.9984,3.34,0.75,10.2,6
+"491",9.3,0.775,0.27,2.8,0.078,24,56,0.9984,3.31,0.67,10.6,6
+"492",9.2,0.41,0.5,2.5,0.055,12,25,0.9952,3.34,0.79,13.3,7
+"493",8.9,0.4,0.51,2.6,0.052,13,27,0.995,3.32,0.9,13.4,7
+"494",8.7,0.69,0.31,3,0.086,23,81,1.0002,3.48,0.74,11.6,6
+"495",6.5,0.39,0.23,8.3,0.051,28,91,0.9952,3.44,0.55,12.1,6
+"496",10.7,0.35,0.53,2.6,0.07,5,16,0.9972,3.15,0.65,11,8
+"497",7.8,0.52,0.25,1.9,0.081,14,38,0.9984,3.43,0.65,9,6
+"498",7.2,0.34,0.32,2.5,0.09,43,113,0.9966,3.32,0.79,11.1,5
+"499",10.7,0.35,0.53,2.6,0.07,5,16,0.9972,3.15,0.65,11,8
+"500",8.7,0.69,0.31,3,0.086,23,81,1.0002,3.48,0.74,11.6,6
+"501",7.8,0.52,0.25,1.9,0.081,14,38,0.9984,3.43,0.65,9,6
+"502",10.4,0.44,0.73,6.55,0.074,38,76,0.999,3.17,0.85,12,7
+"503",10.4,0.44,0.73,6.55,0.074,38,76,0.999,3.17,0.85,12,7
+"504",10.5,0.26,0.47,1.9,0.078,6,24,0.9976,3.18,1.04,10.9,7
+"505",10.5,0.24,0.42,1.8,0.077,6,22,0.9976,3.21,1.05,10.8,7
+"506",10.2,0.49,0.63,2.9,0.072,10,26,0.9968,3.16,0.78,12.5,7
+"507",10.4,0.24,0.46,1.8,0.075,6,21,0.9976,3.25,1.02,10.8,7
+"508",11.2,0.67,0.55,2.3,0.084,6,13,1,3.17,0.71,9.5,6
+"509",10,0.59,0.31,2.2,0.09,26,62,0.9994,3.18,0.63,10.2,6
+"510",13.3,0.29,0.75,2.8,0.084,23,43,0.9986,3.04,0.68,11.4,7
+"511",12.4,0.42,0.49,4.6,0.073,19,43,0.9978,3.02,0.61,9.5,5
+"512",10,0.59,0.31,2.2,0.09,26,62,0.9994,3.18,0.63,10.2,6
+"513",10.7,0.4,0.48,2.1,0.125,15,49,0.998,3.03,0.81,9.7,6
+"514",10.5,0.51,0.64,2.4,0.107,6,15,0.9973,3.09,0.66,11.8,7
+"515",10.5,0.51,0.64,2.4,0.107,6,15,0.9973,3.09,0.66,11.8,7
+"516",8.5,0.655,0.49,6.1,0.122,34,151,1.001,3.31,1.14,9.3,5
+"517",12.5,0.6,0.49,4.3,0.1,5,14,1.001,3.25,0.74,11.9,6
+"518",10.4,0.61,0.49,2.1,0.2,5,16,0.9994,3.16,0.63,8.4,3
+"519",10.9,0.21,0.49,2.8,0.088,11,32,0.9972,3.22,0.68,11.7,6
+"520",7.3,0.365,0.49,2.5,0.088,39,106,0.9966,3.36,0.78,11,5
+"521",9.8,0.25,0.49,2.7,0.088,15,33,0.9982,3.42,0.9,10,6
+"522",7.6,0.41,0.49,2,0.088,16,43,0.998,3.48,0.64,9.1,5
+"523",8.2,0.39,0.49,2.3,0.099,47,133,0.9979,3.38,0.99,9.8,5
+"524",9.3,0.4,0.49,2.5,0.085,38,142,0.9978,3.22,0.55,9.4,5
+"525",9.2,0.43,0.49,2.4,0.086,23,116,0.9976,3.23,0.64,9.5,5
+"526",10.4,0.64,0.24,2.8,0.105,29,53,0.9998,3.24,0.67,9.9,5
+"527",7.3,0.365,0.49,2.5,0.088,39,106,0.9966,3.36,0.78,11,5
+"528",7,0.38,0.49,2.5,0.097,33,85,0.9962,3.39,0.77,11.4,6
+"529",8.2,0.42,0.49,2.6,0.084,32,55,0.9988,3.34,0.75,8.7,6
+"530",9.9,0.63,0.24,2.4,0.077,6,33,0.9974,3.09,0.57,9.4,5
+"531",9.1,0.22,0.24,2.1,0.078,1,28,0.999,3.41,0.87,10.3,6
+"532",11.9,0.38,0.49,2.7,0.098,12,42,1.0004,3.16,0.61,10.3,5
+"533",11.9,0.38,0.49,2.7,0.098,12,42,1.0004,3.16,0.61,10.3,5
+"534",10.3,0.27,0.24,2.1,0.072,15,33,0.9956,3.22,0.66,12.8,6
+"535",10,0.48,0.24,2.7,0.102,13,32,1,3.28,0.56,10,6
+"536",9.1,0.22,0.24,2.1,0.078,1,28,0.999,3.41,0.87,10.3,6
+"537",9.9,0.63,0.24,2.4,0.077,6,33,0.9974,3.09,0.57,9.4,5
+"538",8.1,0.825,0.24,2.1,0.084,5,13,0.9972,3.37,0.77,10.7,6
+"539",12.9,0.35,0.49,5.8,0.066,5,35,1.0014,3.2,0.66,12,7
+"540",11.2,0.5,0.74,5.15,0.1,5,17,0.9996,3.22,0.62,11.2,5
+"541",9.2,0.59,0.24,3.3,0.101,20,47,0.9988,3.26,0.67,9.6,5
+"542",9.5,0.46,0.49,6.3,0.064,5,17,0.9988,3.21,0.73,11,6
+"543",9.3,0.715,0.24,2.1,0.07,5,20,0.9966,3.12,0.59,9.9,5
+"544",11.2,0.66,0.24,2.5,0.085,16,53,0.9993,3.06,0.72,11,6
+"545",14.3,0.31,0.74,1.8,0.075,6,15,1.0008,2.86,0.79,8.4,6
+"546",9.1,0.47,0.49,2.6,0.094,38,106,0.9982,3.08,0.59,9.1,5
+"547",7.5,0.55,0.24,2,0.078,10,28,0.9983,3.45,0.78,9.5,6
+"548",10.6,0.31,0.49,2.5,0.067,6,21,0.9987,3.26,0.86,10.7,6
+"549",12.4,0.35,0.49,2.6,0.079,27,69,0.9994,3.12,0.75,10.4,6
+"550",9,0.53,0.49,1.9,0.171,6,25,0.9975,3.27,0.61,9.4,6
+"551",6.8,0.51,0.01,2.1,0.074,9,25,0.9958,3.33,0.56,9.5,6
+"552",9.4,0.43,0.24,2.8,0.092,14,45,0.998,3.19,0.73,10,6
+"553",9.5,0.46,0.24,2.7,0.092,14,44,0.998,3.12,0.74,10,6
+"554",5,1.04,0.24,1.6,0.05,32,96,0.9934,3.74,0.62,11.5,5
+"555",15.5,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,5
+"556",15.5,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,5
+"557",10.9,0.53,0.49,4.6,0.118,10,17,1.0002,3.07,0.56,11.7,6
+"558",15.6,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,5
+"559",10.9,0.53,0.49,4.6,0.118,10,17,1.0002,3.07,0.56,11.7,6
+"560",13,0.47,0.49,4.3,0.085,6,47,1.0021,3.3,0.68,12.7,6
+"561",12.7,0.6,0.49,2.8,0.075,5,19,0.9994,3.14,0.57,11.4,5
+"562",9,0.44,0.49,2.4,0.078,26,121,0.9978,3.23,0.58,9.2,5
+"563",9,0.54,0.49,2.9,0.094,41,110,0.9982,3.08,0.61,9.2,5
+"564",7.6,0.29,0.49,2.7,0.092,25,60,0.9971,3.31,0.61,10.1,6
+"565",13,0.47,0.49,4.3,0.085,6,47,1.0021,3.3,0.68,12.7,6
+"566",12.7,0.6,0.49,2.8,0.075,5,19,0.9994,3.14,0.57,11.4,5
+"567",8.7,0.7,0.24,2.5,0.226,5,15,0.9991,3.32,0.6,9,6
+"568",8.7,0.7,0.24,2.5,0.226,5,15,0.9991,3.32,0.6,9,6
+"569",9.8,0.5,0.49,2.6,0.25,5,20,0.999,3.31,0.79,10.7,6
+"570",6.2,0.36,0.24,2.2,0.095,19,42,0.9946,3.57,0.57,11.7,6
+"571",11.5,0.35,0.49,3.3,0.07,10,37,1.0003,3.32,0.91,11,6
+"572",6.2,0.36,0.24,2.2,0.095,19,42,0.9946,3.57,0.57,11.7,6
+"573",10.2,0.24,0.49,2.4,0.075,10,28,0.9978,3.14,0.61,10.4,5
+"574",10.5,0.59,0.49,2.1,0.07,14,47,0.9991,3.3,0.56,9.6,4
+"575",10.6,0.34,0.49,3.2,0.078,20,78,0.9992,3.19,0.7,10,6
+"576",12.3,0.27,0.49,3.1,0.079,28,46,0.9993,3.2,0.8,10.2,6
+"577",9.9,0.5,0.24,2.3,0.103,6,14,0.9978,3.34,0.52,10,4
+"578",8.8,0.44,0.49,2.8,0.083,18,111,0.9982,3.3,0.6,9.5,5
+"579",8.8,0.47,0.49,2.9,0.085,17,110,0.9982,3.29,0.6,9.8,5
+"580",10.6,0.31,0.49,2.2,0.063,18,40,0.9976,3.14,0.51,9.8,6
+"581",12.3,0.5,0.49,2.2,0.089,5,14,1.0002,3.19,0.44,9.6,5
+"582",12.3,0.5,0.49,2.2,0.089,5,14,1.0002,3.19,0.44,9.6,5
+"583",11.7,0.49,0.49,2.2,0.083,5,15,1,3.19,0.43,9.2,5
+"584",12,0.28,0.49,1.9,0.074,10,21,0.9976,2.98,0.66,9.9,7
+"585",11.8,0.33,0.49,3.4,0.093,54,80,1.0002,3.3,0.76,10.7,7
+"586",7.6,0.51,0.24,2.4,0.091,8,38,0.998,3.47,0.66,9.6,6
+"587",11.1,0.31,0.49,2.7,0.094,16,47,0.9986,3.12,1.02,10.6,7
+"588",7.3,0.73,0.24,1.9,0.108,18,102,0.9967,3.26,0.59,9.3,5
+"589",5,0.42,0.24,2,0.06,19,50,0.9917,3.72,0.74,14,8
+"590",10.2,0.29,0.49,2.6,0.059,5,13,0.9976,3.05,0.74,10.5,7
+"591",9,0.45,0.49,2.6,0.084,21,75,0.9987,3.35,0.57,9.7,5
+"592",6.6,0.39,0.49,1.7,0.07,23,149,0.9922,3.12,0.5,11.5,6
+"593",9,0.45,0.49,2.6,0.084,21,75,0.9987,3.35,0.57,9.7,5
+"594",9.9,0.49,0.58,3.5,0.094,9,43,1.0004,3.29,0.58,9,5
+"595",7.9,0.72,0.17,2.6,0.096,20,38,0.9978,3.4,0.53,9.5,5
+"596",8.9,0.595,0.41,7.9,0.086,30,109,0.9998,3.27,0.57,9.3,5
+"597",12.4,0.4,0.51,2,0.059,6,24,0.9994,3.04,0.6,9.3,6
+"598",11.9,0.58,0.58,1.9,0.071,5,18,0.998,3.09,0.63,10,6
+"599",8.5,0.585,0.18,2.1,0.078,5,30,0.9967,3.2,0.48,9.8,6
+"600",12.7,0.59,0.45,2.3,0.082,11,22,1,3,0.7,9.3,6
+"601",8.2,0.915,0.27,2.1,0.088,7,23,0.9962,3.26,0.47,10,4
+"602",13.2,0.46,0.52,2.2,0.071,12,35,1.0006,3.1,0.56,9,6
+"603",7.7,0.835,0,2.6,0.081,6,14,0.9975,3.3,0.52,9.3,5
+"604",13.2,0.46,0.52,2.2,0.071,12,35,1.0006,3.1,0.56,9,6
+"605",8.3,0.58,0.13,2.9,0.096,14,63,0.9984,3.17,0.62,9.1,6
+"606",8.3,0.6,0.13,2.6,0.085,6,24,0.9984,3.31,0.59,9.2,6
+"607",9.4,0.41,0.48,4.6,0.072,10,20,0.9973,3.34,0.79,12.2,7
+"608",8.8,0.48,0.41,3.3,0.092,26,52,0.9982,3.31,0.53,10.5,6
+"609",10.1,0.65,0.37,5.1,0.11,11,65,1.0026,3.32,0.64,10.4,6
+"610",6.3,0.36,0.19,3.2,0.075,15,39,0.9956,3.56,0.52,12.7,6
+"611",8.8,0.24,0.54,2.5,0.083,25,57,0.9983,3.39,0.54,9.2,5
+"612",13.2,0.38,0.55,2.7,0.081,5,16,1.0006,2.98,0.54,9.4,5
+"613",7.5,0.64,0,2.4,0.077,18,29,0.9965,3.32,0.6,10,6
+"614",8.2,0.39,0.38,1.5,0.058,10,29,0.9962,3.26,0.74,9.8,5
+"615",9.2,0.755,0.18,2.2,0.148,10,103,0.9969,2.87,1.36,10.2,6
+"616",9.6,0.6,0.5,2.3,0.079,28,71,0.9997,3.5,0.57,9.7,5
+"617",9.6,0.6,0.5,2.3,0.079,28,71,0.9997,3.5,0.57,9.7,5
+"618",11.5,0.31,0.51,2.2,0.079,14,28,0.9982,3.03,0.93,9.8,6
+"619",11.4,0.46,0.5,2.7,0.122,4,17,1.0006,3.13,0.7,10.2,5
+"620",11.3,0.37,0.41,2.3,0.088,6,16,0.9988,3.09,0.8,9.3,5
+"621",8.3,0.54,0.24,3.4,0.076,16,112,0.9976,3.27,0.61,9.4,5
+"622",8.2,0.56,0.23,3.4,0.078,14,104,0.9976,3.28,0.62,9.4,5
+"623",10,0.58,0.22,1.9,0.08,9,32,0.9974,3.13,0.55,9.5,5
+"624",7.9,0.51,0.25,2.9,0.077,21,45,0.9974,3.49,0.96,12.1,6
+"625",6.8,0.69,0,5.6,0.124,21,58,0.9997,3.46,0.72,10.2,5
+"626",6.8,0.69,0,5.6,0.124,21,58,0.9997,3.46,0.72,10.2,5
+"627",8.8,0.6,0.29,2.2,0.098,5,15,0.9988,3.36,0.49,9.1,5
+"628",8.8,0.6,0.29,2.2,0.098,5,15,0.9988,3.36,0.49,9.1,5
+"629",8.7,0.54,0.26,2.5,0.097,7,31,0.9976,3.27,0.6,9.3,6
+"630",7.6,0.685,0.23,2.3,0.111,20,84,0.9964,3.21,0.61,9.3,5
+"631",8.7,0.54,0.26,2.5,0.097,7,31,0.9976,3.27,0.6,9.3,6
+"632",10.4,0.28,0.54,2.7,0.105,5,19,0.9988,3.25,0.63,9.5,5
+"633",7.6,0.41,0.14,3,0.087,21,43,0.9964,3.32,0.57,10.5,6
+"634",10.1,0.935,0.22,3.4,0.105,11,86,1.001,3.43,0.64,11.3,4
+"635",7.9,0.35,0.21,1.9,0.073,46,102,0.9964,3.27,0.58,9.5,5
+"636",8.7,0.84,0,1.4,0.065,24,33,0.9954,3.27,0.55,9.7,5
+"637",9.6,0.88,0.28,2.4,0.086,30,147,0.9979,3.24,0.53,9.4,5
+"638",9.5,0.885,0.27,2.3,0.084,31,145,0.9978,3.24,0.53,9.4,5
+"639",7.7,0.915,0.12,2.2,0.143,7,23,0.9964,3.35,0.65,10.2,7
+"640",8.9,0.29,0.35,1.9,0.067,25,57,0.997,3.18,1.36,10.3,6
+"641",9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,5
+"642",9.5,0.59,0.44,2.3,0.071,21,68,0.9992,3.46,0.63,9.5,5
+"643",9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,5
+"644",9.5,0.59,0.44,2.3,0.071,21,68,0.9992,3.46,0.63,9.5,5
+"645",9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,5
+"646",7.8,0.64,0.1,6,0.115,5,11,0.9984,3.37,0.69,10.1,7
+"647",7.3,0.67,0.05,3.6,0.107,6,20,0.9972,3.4,0.63,10.1,5
+"648",8.3,0.845,0.01,2.2,0.07,5,14,0.9967,3.32,0.58,11,4
+"649",8.7,0.48,0.3,2.8,0.066,10,28,0.9964,3.33,0.67,11.2,7
+"650",6.7,0.42,0.27,8.6,0.068,24,148,0.9948,3.16,0.57,11.3,6
+"651",10.7,0.43,0.39,2.2,0.106,8,32,0.9986,2.89,0.5,9.6,5
+"652",9.8,0.88,0.25,2.5,0.104,35,155,1.001,3.41,0.67,11.2,5
+"653",15.9,0.36,0.65,7.5,0.096,22,71,0.9976,2.98,0.84,14.9,5
+"654",9.4,0.33,0.59,2.8,0.079,9,30,0.9976,3.12,0.54,12,6
+"655",8.6,0.47,0.47,2.4,0.074,7,29,0.9979,3.08,0.46,9.5,5
+"656",9.7,0.55,0.17,2.9,0.087,20,53,1.0004,3.14,0.61,9.4,5
+"657",10.7,0.43,0.39,2.2,0.106,8,32,0.9986,2.89,0.5,9.6,5
+"658",12,0.5,0.59,1.4,0.073,23,42,0.998,2.92,0.68,10.5,7
+"659",7.2,0.52,0.07,1.4,0.074,5,20,0.9973,3.32,0.81,9.6,6
+"660",7.1,0.84,0.02,4.4,0.096,5,13,0.997,3.41,0.57,11,4
+"661",7.2,0.52,0.07,1.4,0.074,5,20,0.9973,3.32,0.81,9.6,6
+"662",7.5,0.42,0.31,1.6,0.08,15,42,0.9978,3.31,0.64,9,5
+"663",7.2,0.57,0.06,1.6,0.076,9,27,0.9972,3.36,0.7,9.6,6
+"664",10.1,0.28,0.46,1.8,0.05,5,13,0.9974,3.04,0.79,10.2,6
+"665",12.1,0.4,0.52,2,0.092,15,54,1,3.03,0.66,10.2,5
+"666",9.4,0.59,0.14,2,0.084,25,48,0.9981,3.14,0.56,9.7,5
+"667",8.3,0.49,0.36,1.8,0.222,6,16,0.998,3.18,0.6,9.5,6
+"668",11.3,0.34,0.45,2,0.082,6,15,0.9988,2.94,0.66,9.2,6
+"669",10,0.73,0.43,2.3,0.059,15,31,0.9966,3.15,0.57,11,5
+"670",11.3,0.34,0.45,2,0.082,6,15,0.9988,2.94,0.66,9.2,6
+"671",6.9,0.4,0.24,2.5,0.083,30,45,0.9959,3.26,0.58,10,5
+"672",8.2,0.73,0.21,1.7,0.074,5,13,0.9968,3.2,0.52,9.5,5
+"673",9.8,1.24,0.34,2,0.079,32,151,0.998,3.15,0.53,9.5,5
+"674",8.2,0.73,0.21,1.7,0.074,5,13,0.9968,3.2,0.52,9.5,5
+"675",10.8,0.4,0.41,2.2,0.084,7,17,0.9984,3.08,0.67,9.3,6
+"676",9.3,0.41,0.39,2.2,0.064,12,31,0.9984,3.26,0.65,10.2,5
+"677",10.8,0.4,0.41,2.2,0.084,7,17,0.9984,3.08,0.67,9.3,6
+"678",8.6,0.8,0.11,2.3,0.084,12,31,0.9979,3.4,0.48,9.9,5
+"679",8.3,0.78,0.1,2.6,0.081,45,87,0.9983,3.48,0.53,10,5
+"680",10.8,0.26,0.45,3.3,0.06,20,49,0.9972,3.13,0.54,9.6,5
+"681",13.3,0.43,0.58,1.9,0.07,15,40,1.0004,3.06,0.49,9,5
+"682",8,0.45,0.23,2.2,0.094,16,29,0.9962,3.21,0.49,10.2,6
+"683",8.5,0.46,0.31,2.25,0.078,32,58,0.998,3.33,0.54,9.8,5
+"684",8.1,0.78,0.23,2.6,0.059,5,15,0.997,3.37,0.56,11.3,5
+"685",9.8,0.98,0.32,2.3,0.078,35,152,0.998,3.25,0.48,9.4,5
+"686",8.1,0.78,0.23,2.6,0.059,5,15,0.997,3.37,0.56,11.3,5
+"687",7.1,0.65,0.18,1.8,0.07,13,40,0.997,3.44,0.6,9.1,5
+"688",9.1,0.64,0.23,3.1,0.095,13,38,0.9998,3.28,0.59,9.7,5
+"689",7.7,0.66,0.04,1.6,0.039,4,9,0.9962,3.4,0.47,9.4,5
+"690",8.1,0.38,0.48,1.8,0.157,5,17,0.9976,3.3,1.05,9.4,5
+"691",7.4,1.185,0,4.25,0.097,5,14,0.9966,3.63,0.54,10.7,3
+"692",9.2,0.92,0.24,2.6,0.087,12,93,0.9998,3.48,0.54,9.8,5
+"693",8.6,0.49,0.51,2,0.422,16,62,0.9979,3.03,1.17,9,5
+"694",9,0.48,0.32,2.8,0.084,21,122,0.9984,3.32,0.62,9.4,5
+"695",9,0.47,0.31,2.7,0.084,24,125,0.9984,3.31,0.61,9.4,5
+"696",5.1,0.47,0.02,1.3,0.034,18,44,0.9921,3.9,0.62,12.8,6
+"697",7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,6
+"698",7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,6
+"699",9.4,0.615,0.28,3.2,0.087,18,72,1.0001,3.31,0.53,9.7,5
+"700",11.8,0.38,0.55,2.1,0.071,5,19,0.9986,3.11,0.62,10.8,6
+"701",10.6,1.02,0.43,2.9,0.076,26,88,0.9984,3.08,0.57,10.1,6
+"702",7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,6
+"703",7,0.64,0.02,2.1,0.067,9,23,0.997,3.47,0.67,9.4,6
+"704",7.5,0.38,0.48,2.6,0.073,22,84,0.9972,3.32,0.7,9.6,4
+"705",9.1,0.765,0.04,1.6,0.078,4,14,0.998,3.29,0.54,9.7,4
+"706",8.4,1.035,0.15,6,0.073,11,54,0.999,3.37,0.49,9.9,5
+"707",7,0.78,0.08,2,0.093,10,19,0.9956,3.4,0.47,10,5
+"708",7.4,0.49,0.19,3,0.077,16,37,0.9966,3.37,0.51,10.5,5
+"709",7.8,0.545,0.12,2.5,0.068,11,35,0.996,3.34,0.61,11.6,6
+"710",9.7,0.31,0.47,1.6,0.062,13,33,0.9983,3.27,0.66,10,6
+"711",10.6,1.025,0.43,2.8,0.08,21,84,0.9985,3.06,0.57,10.1,5
+"712",8.9,0.565,0.34,3,0.093,16,112,0.9998,3.38,0.61,9.5,5
+"713",8.7,0.69,0,3.2,0.084,13,33,0.9992,3.36,0.45,9.4,5
+"714",8,0.43,0.36,2.3,0.075,10,48,0.9976,3.34,0.46,9.4,5
+"715",9.9,0.74,0.28,2.6,0.078,21,77,0.998,3.28,0.51,9.8,5
+"716",7.2,0.49,0.18,2.7,0.069,13,34,0.9967,3.29,0.48,9.2,6
+"717",8,0.43,0.36,2.3,0.075,10,48,0.9976,3.34,0.46,9.4,5
+"718",7.6,0.46,0.11,2.6,0.079,12,49,0.9968,3.21,0.57,10,5
+"719",8.4,0.56,0.04,2,0.082,10,22,0.9976,3.22,0.44,9.6,5
+"720",7.1,0.66,0,3.9,0.086,17,45,0.9976,3.46,0.54,9.5,5
+"721",8.4,0.56,0.04,2,0.082,10,22,0.9976,3.22,0.44,9.6,5
+"722",8.9,0.48,0.24,2.85,0.094,35,106,0.9982,3.1,0.53,9.2,5
+"723",7.6,0.42,0.08,2.7,0.084,15,48,0.9968,3.21,0.59,10,5
+"724",7.1,0.31,0.3,2.2,0.053,36,127,0.9965,2.94,1.62,9.5,5
+"725",7.5,1.115,0.1,3.1,0.086,5,12,0.9958,3.54,0.6,11.2,4
+"726",9,0.66,0.17,3,0.077,5,13,0.9976,3.29,0.55,10.4,5
+"727",8.1,0.72,0.09,2.8,0.084,18,49,0.9994,3.43,0.72,11.1,6
+"728",6.4,0.57,0.02,1.8,0.067,4,11,0.997,3.46,0.68,9.5,5
+"729",6.4,0.57,0.02,1.8,0.067,4,11,0.997,3.46,0.68,9.5,5
+"730",6.4,0.865,0.03,3.2,0.071,27,58,0.995,3.61,0.49,12.7,6
+"731",9.5,0.55,0.66,2.3,0.387,12,37,0.9982,3.17,0.67,9.6,5
+"732",8.9,0.875,0.13,3.45,0.088,4,14,0.9994,3.44,0.52,11.5,5
+"733",7.3,0.835,0.03,2.1,0.092,10,19,0.9966,3.39,0.47,9.6,5
+"734",7,0.45,0.34,2.7,0.082,16,72,0.998,3.55,0.6,9.5,5
+"735",7.7,0.56,0.2,2,0.075,9,39,0.9987,3.48,0.62,9.3,5
+"736",7.7,0.965,0.1,2.1,0.112,11,22,0.9963,3.26,0.5,9.5,5
+"737",7.7,0.965,0.1,2.1,0.112,11,22,0.9963,3.26,0.5,9.5,5
+"738",8.2,0.59,0,2.5,0.093,19,58,1.0002,3.5,0.65,9.3,6
+"739",9,0.46,0.23,2.8,0.092,28,104,0.9983,3.1,0.56,9.2,5
+"740",9,0.69,0,2.4,0.088,19,38,0.999,3.35,0.6,9.3,5
+"741",8.3,0.76,0.29,4.2,0.075,12,16,0.9965,3.45,0.68,11.5,6
+"742",9.2,0.53,0.24,2.6,0.078,28,139,0.99788,3.21,0.57,9.5,5
+"743",6.5,0.615,0,1.9,0.065,9,18,0.9972,3.46,0.65,9.2,5
+"744",11.6,0.41,0.58,2.8,0.096,25,101,1.00024,3.13,0.53,10,5
+"745",11.1,0.39,0.54,2.7,0.095,21,101,1.0001,3.13,0.51,9.5,5
+"746",7.3,0.51,0.18,2.1,0.07,12,28,0.99768,3.52,0.73,9.5,6
+"747",8.2,0.34,0.38,2.5,0.08,12,57,0.9978,3.3,0.47,9,6
+"748",8.6,0.33,0.4,2.6,0.083,16,68,0.99782,3.3,0.48,9.4,5
+"749",7.2,0.5,0.18,2.1,0.071,12,31,0.99761,3.52,0.72,9.6,6
+"750",7.3,0.51,0.18,2.1,0.07,12,28,0.99768,3.52,0.73,9.5,6
+"751",8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,5
+"752",8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,5
+"753",7.6,0.54,0.13,2.5,0.097,24,66,0.99785,3.39,0.61,9.4,5
+"754",8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,5
+"755",7.8,0.48,0.68,1.7,0.415,14,32,0.99656,3.09,1.06,9.1,6
+"756",7.8,0.91,0.07,1.9,0.058,22,47,0.99525,3.51,0.43,10.7,6
+"757",6.3,0.98,0.01,2,0.057,15,33,0.99488,3.6,0.46,11.2,6
+"758",8.1,0.87,0,2.2,0.084,10,31,0.99656,3.25,0.5,9.8,5
+"759",8.1,0.87,0,2.2,0.084,10,31,0.99656,3.25,0.5,9.8,5
+"760",8.8,0.42,0.21,2.5,0.092,33,88,0.99823,3.19,0.52,9.2,5
+"761",9,0.58,0.25,2.8,0.075,9,104,0.99779,3.23,0.57,9.7,5
+"762",9.3,0.655,0.26,2,0.096,5,35,0.99738,3.25,0.42,9.6,5
+"763",8.8,0.7,0,1.7,0.069,8,19,0.99701,3.31,0.53,10,6
+"764",9.3,0.655,0.26,2,0.096,5,35,0.99738,3.25,0.42,9.6,5
+"765",9.1,0.68,0.11,2.8,0.093,11,44,0.99888,3.31,0.55,9.5,6
+"766",9.2,0.67,0.1,3,0.091,12,48,0.99888,3.31,0.54,9.5,6
+"767",8.8,0.59,0.18,2.9,0.089,12,74,0.99738,3.14,0.54,9.4,5
+"768",7.5,0.6,0.32,2.7,0.103,13,98,0.99938,3.45,0.62,9.5,5
+"769",7.1,0.59,0.02,2.3,0.082,24,94,0.99744,3.55,0.53,9.7,6
+"770",7.9,0.72,0.01,1.9,0.076,7,32,0.99668,3.39,0.54,9.6,5
+"771",7.1,0.59,0.02,2.3,0.082,24,94,0.99744,3.55,0.53,9.7,6
+"772",9.4,0.685,0.26,2.4,0.082,23,143,0.9978,3.28,0.55,9.4,5
+"773",9.5,0.57,0.27,2.3,0.082,23,144,0.99782,3.27,0.55,9.4,5
+"774",7.9,0.4,0.29,1.8,0.157,1,44,0.9973,3.3,0.92,9.5,6
+"775",7.9,0.4,0.3,1.8,0.157,2,45,0.99727,3.31,0.91,9.5,6
+"776",7.2,1,0,3,0.102,7,16,0.99586,3.43,0.46,10,5
+"777",6.9,0.765,0.18,2.4,0.243,5.5,48,0.99612,3.4,0.6,10.3,6
+"778",6.9,0.635,0.17,2.4,0.241,6,18,0.9961,3.4,0.59,10.3,6
+"779",8.3,0.43,0.3,3.4,0.079,7,34,0.99788,3.36,0.61,10.5,5
+"780",7.1,0.52,0.03,2.6,0.076,21,92,0.99745,3.5,0.6,9.8,5
+"781",7,0.57,0,2,0.19,12,45,0.99676,3.31,0.6,9.4,6
+"782",6.5,0.46,0.14,2.4,0.114,9,37,0.99732,3.66,0.65,9.8,5
+"783",9,0.82,0.05,2.4,0.081,26,96,0.99814,3.36,0.53,10,5
+"784",6.5,0.46,0.14,2.4,0.114,9,37,0.99732,3.66,0.65,9.8,5
+"785",7.1,0.59,0.01,2.5,0.077,20,85,0.99746,3.55,0.59,9.8,5
+"786",9.9,0.35,0.41,2.3,0.083,11,61,0.9982,3.21,0.5,9.5,5
+"787",9.9,0.35,0.41,2.3,0.083,11,61,0.9982,3.21,0.5,9.5,5
+"788",10,0.56,0.24,2.2,0.079,19,58,0.9991,3.18,0.56,10.1,6
+"789",10,0.56,0.24,2.2,0.079,19,58,0.9991,3.18,0.56,10.1,6
+"790",8.6,0.63,0.17,2.9,0.099,21,119,0.998,3.09,0.52,9.3,5
+"791",7.4,0.37,0.43,2.6,0.082,18,82,0.99708,3.33,0.68,9.7,6
+"792",8.8,0.64,0.17,2.9,0.084,25,130,0.99818,3.23,0.54,9.6,5
+"793",7.1,0.61,0.02,2.5,0.081,17,87,0.99745,3.48,0.6,9.7,6
+"794",7.7,0.6,0,2.6,0.055,7,13,0.99639,3.38,0.56,10.8,5
+"795",10.1,0.27,0.54,2.3,0.065,7,26,0.99531,3.17,0.53,12.5,6
+"796",10.8,0.89,0.3,2.6,0.132,7,60,0.99786,2.99,1.18,10.2,5
+"797",8.7,0.46,0.31,2.5,0.126,24,64,0.99746,3.1,0.74,9.6,5
+"798",9.3,0.37,0.44,1.6,0.038,21,42,0.99526,3.24,0.81,10.8,7
+"799",9.4,0.5,0.34,3.6,0.082,5,14,0.9987,3.29,0.52,10.7,6
+"800",9.4,0.5,0.34,3.6,0.082,5,14,0.9987,3.29,0.52,10.7,6
+"801",7.2,0.61,0.08,4,0.082,26,108,0.99641,3.25,0.51,9.4,5
+"802",8.6,0.55,0.09,3.3,0.068,8,17,0.99735,3.23,0.44,10,5
+"803",5.1,0.585,0,1.7,0.044,14,86,0.99264,3.56,0.94,12.9,7
+"804",7.7,0.56,0.08,2.5,0.114,14,46,0.9971,3.24,0.66,9.6,6
+"805",8.4,0.52,0.22,2.7,0.084,4,18,0.99682,3.26,0.57,9.9,6
+"806",8.2,0.28,0.4,2.4,0.052,4,10,0.99356,3.33,0.7,12.8,7
+"807",8.4,0.25,0.39,2,0.041,4,10,0.99386,3.27,0.71,12.5,7
+"808",8.2,0.28,0.4,2.4,0.052,4,10,0.99356,3.33,0.7,12.8,7
+"809",7.4,0.53,0.12,1.9,0.165,4,12,0.99702,3.26,0.86,9.2,5
+"810",7.6,0.48,0.31,2.8,0.07,4,15,0.99693,3.22,0.55,10.3,6
+"811",7.3,0.49,0.1,2.6,0.068,4,14,0.99562,3.3,0.47,10.5,5
+"812",12.9,0.5,0.55,2.8,0.072,7,24,1.00012,3.09,0.68,10.9,6
+"813",10.8,0.45,0.33,2.5,0.099,20,38,0.99818,3.24,0.71,10.8,5
+"814",6.9,0.39,0.24,2.1,0.102,4,7,0.99462,3.44,0.58,11.4,4
+"815",12.6,0.41,0.54,2.8,0.103,19,41,0.99939,3.21,0.76,11.3,6
+"816",10.8,0.45,0.33,2.5,0.099,20,38,0.99818,3.24,0.71,10.8,5
+"817",9.8,0.51,0.19,3.2,0.081,8,30,0.9984,3.23,0.58,10.5,6
+"818",10.8,0.29,0.42,1.6,0.084,19,27,0.99545,3.28,0.73,11.9,6
+"819",7.1,0.715,0,2.35,0.071,21,47,0.99632,3.29,0.45,9.4,5
+"820",9.1,0.66,0.15,3.2,0.097,9,59,0.99976,3.28,0.54,9.6,5
+"821",7,0.685,0,1.9,0.099,9,22,0.99606,3.34,0.6,9.7,5
+"822",4.9,0.42,0,2.1,0.048,16,42,0.99154,3.71,0.74,14,7
+"823",6.7,0.54,0.13,2,0.076,15,36,0.9973,3.61,0.64,9.8,5
+"824",6.7,0.54,0.13,2,0.076,15,36,0.9973,3.61,0.64,9.8,5
+"825",7.1,0.48,0.28,2.8,0.068,6,16,0.99682,3.24,0.53,10.3,5
+"826",7.1,0.46,0.14,2.8,0.076,15,37,0.99624,3.36,0.49,10.7,5
+"827",7.5,0.27,0.34,2.3,0.05,4,8,0.9951,3.4,0.64,11,7
+"828",7.1,0.46,0.14,2.8,0.076,15,37,0.99624,3.36,0.49,10.7,5
+"829",7.8,0.57,0.09,2.3,0.065,34,45,0.99417,3.46,0.74,12.7,8
+"830",5.9,0.61,0.08,2.1,0.071,16,24,0.99376,3.56,0.77,11.1,6
+"831",7.5,0.685,0.07,2.5,0.058,5,9,0.99632,3.38,0.55,10.9,4
+"832",5.9,0.61,0.08,2.1,0.071,16,24,0.99376,3.56,0.77,11.1,6
+"833",10.4,0.44,0.42,1.5,0.145,34,48,0.99832,3.38,0.86,9.9,3
+"834",11.6,0.47,0.44,1.6,0.147,36,51,0.99836,3.38,0.86,9.9,4
+"835",8.8,0.685,0.26,1.6,0.088,16,23,0.99694,3.32,0.47,9.4,5
+"836",7.6,0.665,0.1,1.5,0.066,27,55,0.99655,3.39,0.51,9.3,5
+"837",6.7,0.28,0.28,2.4,0.012,36,100,0.99064,3.26,0.39,11.7,7
+"838",6.7,0.28,0.28,2.4,0.012,36,100,0.99064,3.26,0.39,11.7,7
+"839",10.1,0.31,0.35,1.6,0.075,9,28,0.99672,3.24,0.83,11.2,7
+"840",6,0.5,0.04,2.2,0.092,13,26,0.99647,3.46,0.47,10,5
+"841",11.1,0.42,0.47,2.65,0.085,9,34,0.99736,3.24,0.77,12.1,7
+"842",6.6,0.66,0,3,0.115,21,31,0.99629,3.45,0.63,10.3,5
+"843",10.6,0.5,0.45,2.6,0.119,34,68,0.99708,3.23,0.72,10.9,6
+"844",7.1,0.685,0.35,2,0.088,9,92,0.9963,3.28,0.62,9.4,5
+"845",9.9,0.25,0.46,1.7,0.062,26,42,0.9959,3.18,0.83,10.6,6
+"846",6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,5
+"847",6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,5
+"848",7.4,0.68,0.16,1.8,0.078,12,39,0.9977,3.5,0.7,9.9,6
+"849",6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,5
+"850",6.4,0.63,0.21,1.6,0.08,12,32,0.99689,3.58,0.66,9.8,5
+"851",9.3,0.43,0.44,1.9,0.085,9,22,0.99708,3.28,0.55,9.5,5
+"852",9.3,0.43,0.44,1.9,0.085,9,22,0.99708,3.28,0.55,9.5,5
+"853",8,0.42,0.32,2.5,0.08,26,122,0.99801,3.22,1.07,9.7,5
+"854",9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,6
+"855",9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,6
+"856",7.6,0.735,0.02,2.5,0.071,10,14,0.99538,3.51,0.71,11.7,7
+"857",9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,6
+"858",8.2,0.26,0.34,2.5,0.073,16,47,0.99594,3.4,0.78,11.3,7
+"859",11.7,0.28,0.47,1.7,0.054,17,32,0.99686,3.15,0.67,10.6,7
+"860",6.8,0.56,0.22,1.8,0.074,15,24,0.99438,3.4,0.82,11.2,6
+"861",7.2,0.62,0.06,2.7,0.077,15,85,0.99746,3.51,0.54,9.5,5
+"862",5.8,1.01,0.66,2,0.039,15,88,0.99357,3.66,0.6,11.5,6
+"863",7.5,0.42,0.32,2.7,0.067,7,25,0.99628,3.24,0.44,10.4,5
+"864",7.2,0.62,0.06,2.5,0.078,17,84,0.99746,3.51,0.53,9.7,5
+"865",7.2,0.62,0.06,2.7,0.077,15,85,0.99746,3.51,0.54,9.5,5
+"866",7.2,0.635,0.07,2.6,0.077,16,86,0.99748,3.51,0.54,9.7,5
+"867",6.8,0.49,0.22,2.3,0.071,13,24,0.99438,3.41,0.83,11.3,6
+"868",6.9,0.51,0.23,2,0.072,13,22,0.99438,3.4,0.84,11.2,6
+"869",6.8,0.56,0.22,1.8,0.074,15,24,0.99438,3.4,0.82,11.2,6
+"870",7.6,0.63,0.03,2,0.08,27,43,0.99578,3.44,0.64,10.9,6
+"871",7.7,0.715,0.01,2.1,0.064,31,43,0.99371,3.41,0.57,11.8,6
+"872",6.9,0.56,0.03,1.5,0.086,36,46,0.99522,3.53,0.57,10.6,5
+"873",7.3,0.35,0.24,2,0.067,28,48,0.99576,3.43,0.54,10,4
+"874",9.1,0.21,0.37,1.6,0.067,6,10,0.99552,3.23,0.58,11.1,7
+"875",10.4,0.38,0.46,2.1,0.104,6,10,0.99664,3.12,0.65,11.8,7
+"876",8.8,0.31,0.4,2.8,0.109,7,16,0.99614,3.31,0.79,11.8,7
+"877",7.1,0.47,0,2.2,0.067,7,14,0.99517,3.4,0.58,10.9,4
+"878",7.7,0.715,0.01,2.1,0.064,31,43,0.99371,3.41,0.57,11.8,6
+"879",8.8,0.61,0.19,4,0.094,30,69,0.99787,3.22,0.5,10,6
+"880",7.2,0.6,0.04,2.5,0.076,18,88,0.99745,3.53,0.55,9.5,5
+"881",9.2,0.56,0.18,1.6,0.078,10,21,0.99576,3.15,0.49,9.9,5
+"882",7.6,0.715,0,2.1,0.068,30,35,0.99533,3.48,0.65,11.4,6
+"883",8.4,0.31,0.29,3.1,0.194,14,26,0.99536,3.22,0.78,12,6
+"884",7.2,0.6,0.04,2.5,0.076,18,88,0.99745,3.53,0.55,9.5,5
+"885",8.8,0.61,0.19,4,0.094,30,69,0.99787,3.22,0.5,10,6
+"886",8.9,0.75,0.14,2.5,0.086,9,30,0.99824,3.34,0.64,10.5,5
+"887",9,0.8,0.12,2.4,0.083,8,28,0.99836,3.33,0.65,10.4,6
+"888",10.7,0.52,0.38,2.6,0.066,29,56,0.99577,3.15,0.79,12.1,7
+"889",6.8,0.57,0,2.5,0.072,32,64,0.99491,3.43,0.56,11.2,6
+"890",10.7,0.9,0.34,6.6,0.112,23,99,1.00289,3.22,0.68,9.3,5
+"891",7.2,0.34,0.24,2,0.071,30,52,0.99576,3.44,0.58,10.1,5
+"892",7.2,0.66,0.03,2.3,0.078,16,86,0.99743,3.53,0.57,9.7,5
+"893",10.1,0.45,0.23,1.9,0.082,10,18,0.99774,3.22,0.65,9.3,6
+"894",7.2,0.66,0.03,2.3,0.078,16,86,0.99743,3.53,0.57,9.7,5
+"895",7.2,0.63,0.03,2.2,0.08,17,88,0.99745,3.53,0.58,9.8,6
+"896",7.1,0.59,0.01,2.3,0.08,27,43,0.9955,3.42,0.58,10.7,6
+"897",8.3,0.31,0.39,2.4,0.078,17,43,0.99444,3.31,0.77,12.5,7
+"898",7.1,0.59,0.01,2.3,0.08,27,43,0.9955,3.42,0.58,10.7,6
+"899",8.3,0.31,0.39,2.4,0.078,17,43,0.99444,3.31,0.77,12.5,7
+"900",8.3,1.02,0.02,3.4,0.084,6,11,0.99892,3.48,0.49,11,3
+"901",8.9,0.31,0.36,2.6,0.056,10,39,0.99562,3.4,0.69,11.8,5
+"902",7.4,0.635,0.1,2.4,0.08,16,33,0.99736,3.58,0.69,10.8,7
+"903",7.4,0.635,0.1,2.4,0.08,16,33,0.99736,3.58,0.69,10.8,7
+"904",6.8,0.59,0.06,6,0.06,11,18,0.9962,3.41,0.59,10.8,7
+"905",6.8,0.59,0.06,6,0.06,11,18,0.9962,3.41,0.59,10.8,7
+"906",9.2,0.58,0.2,3,0.081,15,115,0.998,3.23,0.59,9.5,5
+"907",7.2,0.54,0.27,2.6,0.084,12,78,0.9964,3.39,0.71,11,5
+"908",6.1,0.56,0,2.2,0.079,6,9,0.9948,3.59,0.54,11.5,6
+"909",7.4,0.52,0.13,2.4,0.078,34,61,0.99528,3.43,0.59,10.8,6
+"910",7.3,0.305,0.39,1.2,0.059,7,11,0.99331,3.29,0.52,11.5,6
+"911",9.3,0.38,0.48,3.8,0.132,3,11,0.99577,3.23,0.57,13.2,6
+"912",9.1,0.28,0.46,9,0.114,3,9,0.99901,3.18,0.6,10.9,6
+"913",10,0.46,0.44,2.9,0.065,4,8,0.99674,3.33,0.62,12.2,6
+"914",9.4,0.395,0.46,4.6,0.094,3,10,0.99639,3.27,0.64,12.2,7
+"915",7.3,0.305,0.39,1.2,0.059,7,11,0.99331,3.29,0.52,11.5,6
+"916",8.6,0.315,0.4,2.2,0.079,3,6,0.99512,3.27,0.67,11.9,6
+"917",5.3,0.715,0.19,1.5,0.161,7,62,0.99395,3.62,0.61,11,5
+"918",6.8,0.41,0.31,8.8,0.084,26,45,0.99824,3.38,0.64,10.1,6
+"919",8.4,0.36,0.32,2.2,0.081,32,79,0.9964,3.3,0.72,11,6
+"920",8.4,0.62,0.12,1.8,0.072,38,46,0.99504,3.38,0.89,11.8,6
+"921",9.6,0.41,0.37,2.3,0.091,10,23,0.99786,3.24,0.56,10.5,5
+"922",8.4,0.36,0.32,2.2,0.081,32,79,0.9964,3.3,0.72,11,6
+"923",8.4,0.62,0.12,1.8,0.072,38,46,0.99504,3.38,0.89,11.8,6
+"924",6.8,0.41,0.31,8.8,0.084,26,45,0.99824,3.38,0.64,10.1,6
+"925",8.6,0.47,0.27,2.3,0.055,14,28,0.99516,3.18,0.8,11.2,5
+"926",8.6,0.22,0.36,1.9,0.064,53,77,0.99604,3.47,0.87,11,7
+"927",9.4,0.24,0.33,2.3,0.061,52,73,0.99786,3.47,0.9,10.2,6
+"928",8.4,0.67,0.19,2.2,0.093,11,75,0.99736,3.2,0.59,9.2,4
+"929",8.6,0.47,0.27,2.3,0.055,14,28,0.99516,3.18,0.8,11.2,5
+"930",8.7,0.33,0.38,3.3,0.063,10,19,0.99468,3.3,0.73,12,7
+"931",6.6,0.61,0.01,1.9,0.08,8,25,0.99746,3.69,0.73,10.5,5
+"932",7.4,0.61,0.01,2,0.074,13,38,0.99748,3.48,0.65,9.8,5
+"933",7.6,0.4,0.29,1.9,0.078,29,66,0.9971,3.45,0.59,9.5,6
+"934",7.4,0.61,0.01,2,0.074,13,38,0.99748,3.48,0.65,9.8,5
+"935",6.6,0.61,0.01,1.9,0.08,8,25,0.99746,3.69,0.73,10.5,5
+"936",8.8,0.3,0.38,2.3,0.06,19,72,0.99543,3.39,0.72,11.8,6
+"937",8.8,0.3,0.38,2.3,0.06,19,72,0.99543,3.39,0.72,11.8,6
+"938",12,0.63,0.5,1.4,0.071,6,26,0.99791,3.07,0.6,10.4,4
+"939",7.2,0.38,0.38,2.8,0.068,23,42,0.99356,3.34,0.72,12.9,7
+"940",6.2,0.46,0.17,1.6,0.073,7,11,0.99425,3.61,0.54,11.4,5
+"941",9.6,0.33,0.52,2.2,0.074,13,25,0.99509,3.36,0.76,12.4,7
+"942",9.9,0.27,0.49,5,0.082,9,17,0.99484,3.19,0.52,12.5,7
+"943",10.1,0.43,0.4,2.6,0.092,13,52,0.99834,3.22,0.64,10,7
+"944",9.8,0.5,0.34,2.3,0.094,10,45,0.99864,3.24,0.6,9.7,7
+"945",8.3,0.3,0.49,3.8,0.09,11,24,0.99498,3.27,0.64,12.1,7
+"946",10.2,0.44,0.42,2,0.071,7,20,0.99566,3.14,0.79,11.1,7
+"947",10.2,0.44,0.58,4.1,0.092,11,24,0.99745,3.29,0.99,12,7
+"948",8.3,0.28,0.48,2.1,0.093,6,12,0.99408,3.26,0.62,12.4,7
+"949",8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,7
+"950",8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,7
+"951",8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,7
+"952",8.3,0.28,0.48,2.1,0.093,6,12,0.99408,3.26,0.62,12.4,7
+"953",8.2,0.31,0.4,2.2,0.058,6,10,0.99536,3.31,0.68,11.2,7
+"954",10.2,0.34,0.48,2.1,0.052,5,9,0.99458,3.2,0.69,12.1,7
+"955",7.6,0.43,0.4,2.7,0.082,6,11,0.99538,3.44,0.54,12.2,6
+"956",8.5,0.21,0.52,1.9,0.09,9,23,0.99648,3.36,0.67,10.4,5
+"957",9,0.36,0.52,2.1,0.111,5,10,0.99568,3.31,0.62,11.3,6
+"958",9.5,0.37,0.52,2,0.088,12,51,0.99613,3.29,0.58,11.1,6
+"959",6.4,0.57,0.12,2.3,0.12,25,36,0.99519,3.47,0.71,11.3,7
+"960",8,0.59,0.05,2,0.089,12,32,0.99735,3.36,0.61,10,5
+"961",8.5,0.47,0.27,1.9,0.058,18,38,0.99518,3.16,0.85,11.1,6
+"962",7.1,0.56,0.14,1.6,0.078,7,18,0.99592,3.27,0.62,9.3,5
+"963",6.6,0.57,0.02,2.1,0.115,6,16,0.99654,3.38,0.69,9.5,5
+"964",8.8,0.27,0.39,2,0.1,20,27,0.99546,3.15,0.69,11.2,6
+"965",8.5,0.47,0.27,1.9,0.058,18,38,0.99518,3.16,0.85,11.1,6
+"966",8.3,0.34,0.4,2.4,0.065,24,48,0.99554,3.34,0.86,11,6
+"967",9,0.38,0.41,2.4,0.103,6,10,0.99604,3.13,0.58,11.9,7
+"968",8.5,0.66,0.2,2.1,0.097,23,113,0.99733,3.13,0.48,9.2,5
+"969",9,0.4,0.43,2.4,0.068,29,46,0.9943,3.2,0.6,12.2,6
+"970",6.7,0.56,0.09,2.9,0.079,7,22,0.99669,3.46,0.61,10.2,5
+"971",10.4,0.26,0.48,1.9,0.066,6,10,0.99724,3.33,0.87,10.9,6
+"972",10.4,0.26,0.48,1.9,0.066,6,10,0.99724,3.33,0.87,10.9,6
+"973",10.1,0.38,0.5,2.4,0.104,6,13,0.99643,3.22,0.65,11.6,7
+"974",8.5,0.34,0.44,1.7,0.079,6,12,0.99605,3.52,0.63,10.7,5
+"975",8.8,0.33,0.41,5.9,0.073,7,13,0.99658,3.3,0.62,12.1,7
+"976",7.2,0.41,0.3,2.1,0.083,35,72,0.997,3.44,0.52,9.4,5
+"977",7.2,0.41,0.3,2.1,0.083,35,72,0.997,3.44,0.52,9.4,5
+"978",8.4,0.59,0.29,2.6,0.109,31,119,0.99801,3.15,0.5,9.1,5
+"979",7,0.4,0.32,3.6,0.061,9,29,0.99416,3.28,0.49,11.3,7
+"980",12.2,0.45,0.49,1.4,0.075,3,6,0.9969,3.13,0.63,10.4,5
+"981",9.1,0.5,0.3,1.9,0.065,8,17,0.99774,3.32,0.71,10.5,6
+"982",9.5,0.86,0.26,1.9,0.079,13,28,0.99712,3.25,0.62,10,5
+"983",7.3,0.52,0.32,2.1,0.07,51,70,0.99418,3.34,0.82,12.9,6
+"984",9.1,0.5,0.3,1.9,0.065,8,17,0.99774,3.32,0.71,10.5,6
+"985",12.2,0.45,0.49,1.4,0.075,3,6,0.9969,3.13,0.63,10.4,5
+"986",7.4,0.58,0,2,0.064,7,11,0.99562,3.45,0.58,11.3,6
+"987",9.8,0.34,0.39,1.4,0.066,3,7,0.9947,3.19,0.55,11.4,7
+"988",7.1,0.36,0.3,1.6,0.08,35,70,0.99693,3.44,0.5,9.4,5
+"989",7.7,0.39,0.12,1.7,0.097,19,27,0.99596,3.16,0.49,9.4,5
+"990",9.7,0.295,0.4,1.5,0.073,14,21,0.99556,3.14,0.51,10.9,6
+"991",7.7,0.39,0.12,1.7,0.097,19,27,0.99596,3.16,0.49,9.4,5
+"992",7.1,0.34,0.28,2,0.082,31,68,0.99694,3.45,0.48,9.4,5
+"993",6.5,0.4,0.1,2,0.076,30,47,0.99554,3.36,0.48,9.4,6
+"994",7.1,0.34,0.28,2,0.082,31,68,0.99694,3.45,0.48,9.4,5
+"995",10,0.35,0.45,2.5,0.092,20,88,0.99918,3.15,0.43,9.4,5
+"996",7.7,0.6,0.06,2,0.079,19,41,0.99697,3.39,0.62,10.1,6
+"997",5.6,0.66,0,2.2,0.087,3,11,0.99378,3.71,0.63,12.8,7
+"998",5.6,0.66,0,2.2,0.087,3,11,0.99378,3.71,0.63,12.8,7
+"999",8.9,0.84,0.34,1.4,0.05,4,10,0.99554,3.12,0.48,9.1,6
+"1000",6.4,0.69,0,1.65,0.055,7,12,0.99162,3.47,0.53,12.9,6
+"1001",7.5,0.43,0.3,2.2,0.062,6,12,0.99495,3.44,0.72,11.5,7
+"1002",9.9,0.35,0.38,1.5,0.058,31,47,0.99676,3.26,0.82,10.6,7
+"1003",9.1,0.29,0.33,2.05,0.063,13,27,0.99516,3.26,0.84,11.7,7
+"1004",6.8,0.36,0.32,1.8,0.067,4,8,0.9928,3.36,0.55,12.8,7
+"1005",8.2,0.43,0.29,1.6,0.081,27,45,0.99603,3.25,0.54,10.3,5
+"1006",6.8,0.36,0.32,1.8,0.067,4,8,0.9928,3.36,0.55,12.8,7
+"1007",9.1,0.29,0.33,2.05,0.063,13,27,0.99516,3.26,0.84,11.7,7
+"1008",9.1,0.3,0.34,2,0.064,12,25,0.99516,3.26,0.84,11.7,7
+"1009",8.9,0.35,0.4,3.6,0.11,12,24,0.99549,3.23,0.7,12,7
+"1010",9.6,0.5,0.36,2.8,0.116,26,55,0.99722,3.18,0.68,10.9,5
+"1011",8.9,0.28,0.45,1.7,0.067,7,12,0.99354,3.25,0.55,12.3,7
+"1012",8.9,0.32,0.31,2,0.088,12,19,0.9957,3.17,0.55,10.4,6
+"1013",7.7,1.005,0.15,2.1,0.102,11,32,0.99604,3.23,0.48,10,5
+"1014",7.5,0.71,0,1.6,0.092,22,31,0.99635,3.38,0.58,10,6
+"1015",8,0.58,0.16,2,0.12,3,7,0.99454,3.22,0.58,11.2,6
+"1016",10.5,0.39,0.46,2.2,0.075,14,27,0.99598,3.06,0.84,11.4,6
+"1017",8.9,0.38,0.4,2.2,0.068,12,28,0.99486,3.27,0.75,12.6,7
+"1018",8,0.18,0.37,0.9,0.049,36,109,0.99007,2.89,0.44,12.7,6
+"1019",8,0.18,0.37,0.9,0.049,36,109,0.99007,2.89,0.44,12.7,6
+"1020",7,0.5,0.14,1.8,0.078,10,23,0.99636,3.53,0.61,10.4,5
+"1021",11.3,0.36,0.66,2.4,0.123,3,8,0.99642,3.2,0.53,11.9,6
+"1022",11.3,0.36,0.66,2.4,0.123,3,8,0.99642,3.2,0.53,11.9,6
+"1023",7,0.51,0.09,2.1,0.062,4,9,0.99584,3.35,0.54,10.5,5
+"1024",8.2,0.32,0.42,2.3,0.098,3,9,0.99506,3.27,0.55,12.3,6
+"1025",7.7,0.58,0.01,1.8,0.088,12,18,0.99568,3.32,0.56,10.5,7
+"1026",8.6,0.83,0,2.8,0.095,17,43,0.99822,3.33,0.6,10.4,6
+"1027",7.9,0.31,0.32,1.9,0.066,14,36,0.99364,3.41,0.56,12.6,6
+"1028",6.4,0.795,0,2.2,0.065,28,52,0.99378,3.49,0.52,11.6,5
+"1029",7.2,0.34,0.21,2.5,0.075,41,68,0.99586,3.37,0.54,10.1,6
+"1030",7.7,0.58,0.01,1.8,0.088,12,18,0.99568,3.32,0.56,10.5,7
+"1031",7.1,0.59,0,2.1,0.091,9,14,0.99488,3.42,0.55,11.5,7
+"1032",7.3,0.55,0.01,1.8,0.093,9,15,0.99514,3.35,0.58,11,7
+"1033",8.1,0.82,0,4.1,0.095,5,14,0.99854,3.36,0.53,9.6,5
+"1034",7.5,0.57,0.08,2.6,0.089,14,27,0.99592,3.3,0.59,10.4,6
+"1035",8.9,0.745,0.18,2.5,0.077,15,48,0.99739,3.2,0.47,9.7,6
+"1036",10.1,0.37,0.34,2.4,0.085,5,17,0.99683,3.17,0.65,10.6,7
+"1037",7.6,0.31,0.34,2.5,0.082,26,35,0.99356,3.22,0.59,12.5,7
+"1038",7.3,0.91,0.1,1.8,0.074,20,56,0.99672,3.35,0.56,9.2,5
+"1039",8.7,0.41,0.41,6.2,0.078,25,42,0.9953,3.24,0.77,12.6,7
+"1040",8.9,0.5,0.21,2.2,0.088,21,39,0.99692,3.33,0.83,11.1,6
+"1041",7.4,0.965,0,2.2,0.088,16,32,0.99756,3.58,0.67,10.2,5
+"1042",6.9,0.49,0.19,1.7,0.079,13,26,0.99547,3.38,0.64,9.8,6
+"1043",8.9,0.5,0.21,2.2,0.088,21,39,0.99692,3.33,0.83,11.1,6
+"1044",9.5,0.39,0.41,8.9,0.069,18,39,0.99859,3.29,0.81,10.9,7
+"1045",6.4,0.39,0.33,3.3,0.046,12,53,0.99294,3.36,0.62,12.2,6
+"1046",6.9,0.44,0,1.4,0.07,32,38,0.99438,3.32,0.58,11.4,6
+"1047",7.6,0.78,0,1.7,0.076,33,45,0.99612,3.31,0.62,10.7,6
+"1048",7.1,0.43,0.17,1.8,0.082,27,51,0.99634,3.49,0.64,10.4,5
+"1049",9.3,0.49,0.36,1.7,0.081,3,14,0.99702,3.27,0.78,10.9,6
+"1050",9.3,0.5,0.36,1.8,0.084,6,17,0.99704,3.27,0.77,10.8,6
+"1051",7.1,0.43,0.17,1.8,0.082,27,51,0.99634,3.49,0.64,10.4,5
+"1052",8.5,0.46,0.59,1.4,0.414,16,45,0.99702,3.03,1.34,9.2,5
+"1053",5.6,0.605,0.05,2.4,0.073,19,25,0.99258,3.56,0.55,12.9,5
+"1054",8.3,0.33,0.42,2.3,0.07,9,20,0.99426,3.38,0.77,12.7,7
+"1055",8.2,0.64,0.27,2,0.095,5,77,0.99747,3.13,0.62,9.1,6
+"1056",8.2,0.64,0.27,2,0.095,5,77,0.99747,3.13,0.62,9.1,6
+"1057",8.9,0.48,0.53,4,0.101,3,10,0.99586,3.21,0.59,12.1,7
+"1058",7.6,0.42,0.25,3.9,0.104,28,90,0.99784,3.15,0.57,9.1,5
+"1059",9.9,0.53,0.57,2.4,0.093,30,52,0.9971,3.19,0.76,11.6,7
+"1060",8.9,0.48,0.53,4,0.101,3,10,0.99586,3.21,0.59,12.1,7
+"1061",11.6,0.23,0.57,1.8,0.074,3,8,0.9981,3.14,0.7,9.9,6
+"1062",9.1,0.4,0.5,1.8,0.071,7,16,0.99462,3.21,0.69,12.5,8
+"1063",8,0.38,0.44,1.9,0.098,6,15,0.9956,3.3,0.64,11.4,6
+"1064",10.2,0.29,0.65,2.4,0.075,6,17,0.99565,3.22,0.63,11.8,6
+"1065",8.2,0.74,0.09,2,0.067,5,10,0.99418,3.28,0.57,11.8,6
+"1066",7.7,0.61,0.18,2.4,0.083,6,20,0.9963,3.29,0.6,10.2,6
+"1067",6.6,0.52,0.08,2.4,0.07,13,26,0.99358,3.4,0.72,12.5,7
+"1068",11.1,0.31,0.53,2.2,0.06,3,10,0.99572,3.02,0.83,10.9,7
+"1069",11.1,0.31,0.53,2.2,0.06,3,10,0.99572,3.02,0.83,10.9,7
+"1070",8,0.62,0.35,2.8,0.086,28,52,0.997,3.31,0.62,10.8,5
+"1071",9.3,0.33,0.45,1.5,0.057,19,37,0.99498,3.18,0.89,11.1,7
+"1072",7.5,0.77,0.2,8.1,0.098,30,92,0.99892,3.2,0.58,9.2,5
+"1073",7.2,0.35,0.26,1.8,0.083,33,75,0.9968,3.4,0.58,9.5,6
+"1074",8,0.62,0.33,2.7,0.088,16,37,0.9972,3.31,0.58,10.7,6
+"1075",7.5,0.77,0.2,8.1,0.098,30,92,0.99892,3.2,0.58,9.2,5
+"1076",9.1,0.25,0.34,2,0.071,45,67,0.99769,3.44,0.86,10.2,7
+"1077",9.9,0.32,0.56,2,0.073,3,8,0.99534,3.15,0.73,11.4,6
+"1078",8.6,0.37,0.65,6.4,0.08,3,8,0.99817,3.27,0.58,11,5
+"1079",8.6,0.37,0.65,6.4,0.08,3,8,0.99817,3.27,0.58,11,5
+"1080",7.9,0.3,0.68,8.3,0.05,37.5,278,0.99316,3.01,0.51,12.3,7
+"1081",10.3,0.27,0.56,1.4,0.047,3,8,0.99471,3.16,0.51,11.8,6
+"1082",7.9,0.3,0.68,8.3,0.05,37.5,289,0.99316,3.01,0.51,12.3,7
+"1083",7.2,0.38,0.3,1.8,0.073,31,70,0.99685,3.42,0.59,9.5,6
+"1084",8.7,0.42,0.45,2.4,0.072,32,59,0.99617,3.33,0.77,12,6
+"1085",7.2,0.38,0.3,1.8,0.073,31,70,0.99685,3.42,0.59,9.5,6
+"1086",6.8,0.48,0.08,1.8,0.074,40,64,0.99529,3.12,0.49,9.6,5
+"1087",8.5,0.34,0.4,4.7,0.055,3,9,0.99738,3.38,0.66,11.6,7
+"1088",7.9,0.19,0.42,1.6,0.057,18,30,0.994,3.29,0.69,11.2,6
+"1089",11.6,0.41,0.54,1.5,0.095,22,41,0.99735,3.02,0.76,9.9,7
+"1090",11.6,0.41,0.54,1.5,0.095,22,41,0.99735,3.02,0.76,9.9,7
+"1091",10,0.26,0.54,1.9,0.083,42,74,0.99451,2.98,0.63,11.8,8
+"1092",7.9,0.34,0.42,2,0.086,8,19,0.99546,3.35,0.6,11.4,6
+"1093",7,0.54,0.09,2,0.081,10,16,0.99479,3.43,0.59,11.5,6
+"1094",9.2,0.31,0.36,2.2,0.079,11,31,0.99615,3.33,0.86,12,7
+"1095",6.6,0.725,0.09,5.5,0.117,9,17,0.99655,3.35,0.49,10.8,6
+"1096",9.4,0.4,0.47,2.5,0.087,6,20,0.99772,3.15,0.5,10.5,5
+"1097",6.6,0.725,0.09,5.5,0.117,9,17,0.99655,3.35,0.49,10.8,6
+"1098",8.6,0.52,0.38,1.5,0.096,5,18,0.99666,3.2,0.52,9.4,5
+"1099",8,0.31,0.45,2.1,0.216,5,16,0.99358,3.15,0.81,12.5,7
+"1100",8.6,0.52,0.38,1.5,0.096,5,18,0.99666,3.2,0.52,9.4,5
+"1101",8.4,0.34,0.42,2.1,0.072,23,36,0.99392,3.11,0.78,12.4,6
+"1102",7.4,0.49,0.27,2.1,0.071,14,25,0.99388,3.35,0.63,12,6
+"1103",6.1,0.48,0.09,1.7,0.078,18,30,0.99402,3.45,0.54,11.2,6
+"1104",7.4,0.49,0.27,2.1,0.071,14,25,0.99388,3.35,0.63,12,6
+"1105",8,0.48,0.34,2.2,0.073,16,25,0.9936,3.28,0.66,12.4,6
+"1106",6.3,0.57,0.28,2.1,0.048,13,49,0.99374,3.41,0.6,12.8,5
+"1107",8.2,0.23,0.42,1.9,0.069,9,17,0.99376,3.21,0.54,12.3,6
+"1108",9.1,0.3,0.41,2,0.068,10,24,0.99523,3.27,0.85,11.7,7
+"1109",8.1,0.78,0.1,3.3,0.09,4,13,0.99855,3.36,0.49,9.5,5
+"1110",10.8,0.47,0.43,2.1,0.171,27,66,0.9982,3.17,0.76,10.8,6
+"1111",8.3,0.53,0,1.4,0.07,6,14,0.99593,3.25,0.64,10,6
+"1112",5.4,0.42,0.27,2,0.092,23,55,0.99471,3.78,0.64,12.3,7
+"1113",7.9,0.33,0.41,1.5,0.056,6,35,0.99396,3.29,0.71,11,6
+"1114",8.9,0.24,0.39,1.6,0.074,3,10,0.99698,3.12,0.59,9.5,6
+"1115",5,0.4,0.5,4.3,0.046,29,80,0.9902,3.49,0.66,13.6,6
+"1116",7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,6
+"1117",7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,6
+"1118",7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,6
+"1119",7.1,0.39,0.12,2.1,0.065,14,24,0.99252,3.3,0.53,13.3,6
+"1120",5.6,0.66,0,2.5,0.066,7,15,0.99256,3.52,0.58,12.9,5
+"1121",7.9,0.54,0.34,2.5,0.076,8,17,0.99235,3.2,0.72,13.1,8
+"1122",6.6,0.5,0,1.8,0.062,21,28,0.99352,3.44,0.55,12.3,6
+"1123",6.3,0.47,0,1.4,0.055,27,33,0.9922,3.45,0.48,12.3,6
+"1124",10.7,0.4,0.37,1.9,0.081,17,29,0.99674,3.12,0.65,11.2,6
+"1125",6.5,0.58,0,2.2,0.096,3,13,0.99557,3.62,0.62,11.5,4
+"1126",8.8,0.24,0.35,1.7,0.055,13,27,0.99394,3.14,0.59,11.3,7
+"1127",5.8,0.29,0.26,1.7,0.063,3,11,0.9915,3.39,0.54,13.5,6
+"1128",6.3,0.76,0,2.9,0.072,26,52,0.99379,3.51,0.6,11.5,6
+"1129",10,0.43,0.33,2.7,0.095,28,89,0.9984,3.22,0.68,10,5
+"1130",10.5,0.43,0.35,3.3,0.092,24,70,0.99798,3.21,0.69,10.5,6
+"1131",9.1,0.6,0,1.9,0.058,5,10,0.9977,3.18,0.63,10.4,6
+"1132",5.9,0.19,0.21,1.7,0.045,57,135,0.99341,3.32,0.44,9.5,5
+"1133",7.4,0.36,0.34,1.8,0.075,18,38,0.9933,3.38,0.88,13.6,7
+"1134",7.2,0.48,0.07,5.5,0.089,10,18,0.99684,3.37,0.68,11.2,7
+"1135",8.5,0.28,0.35,1.7,0.061,6,15,0.99524,3.3,0.74,11.8,7
+"1136",8,0.25,0.43,1.7,0.067,22,50,0.9946,3.38,0.6,11.9,6
+"1137",10.4,0.52,0.45,2,0.08,6,13,0.99774,3.22,0.76,11.4,6
+"1138",10.4,0.52,0.45,2,0.08,6,13,0.99774,3.22,0.76,11.4,6
+"1139",7.5,0.41,0.15,3.7,0.104,29,94,0.99786,3.14,0.58,9.1,5
+"1140",8.2,0.51,0.24,2,0.079,16,86,0.99764,3.34,0.64,9.5,6
+"1141",7.3,0.4,0.3,1.7,0.08,33,79,0.9969,3.41,0.65,9.5,6
+"1142",8.2,0.38,0.32,2.5,0.08,24,71,0.99624,3.27,0.85,11,6
+"1143",6.9,0.45,0.11,2.4,0.043,6,12,0.99354,3.3,0.65,11.4,6
+"1144",7,0.22,0.3,1.8,0.065,16,20,0.99672,3.61,0.82,10,6
+"1145",7.3,0.32,0.23,2.3,0.066,35,70,0.99588,3.43,0.62,10.1,5
+"1146",8.2,0.2,0.43,2.5,0.076,31,51,0.99672,3.53,0.81,10.4,6
+"1147",7.8,0.5,0.12,1.8,0.178,6,21,0.996,3.28,0.87,9.8,6
+"1148",10,0.41,0.45,6.2,0.071,6,14,0.99702,3.21,0.49,11.8,7
+"1149",7.8,0.39,0.42,2,0.086,9,21,0.99526,3.39,0.66,11.6,6
+"1150",10,0.35,0.47,2,0.061,6,11,0.99585,3.23,0.52,12,6
+"1151",8.2,0.33,0.32,2.8,0.067,4,12,0.99473,3.3,0.76,12.8,7
+"1152",6.1,0.58,0.23,2.5,0.044,16,70,0.99352,3.46,0.65,12.5,6
+"1153",8.3,0.6,0.25,2.2,0.118,9,38,0.99616,3.15,0.53,9.8,5
+"1154",9.6,0.42,0.35,2.1,0.083,17,38,0.99622,3.23,0.66,11.1,6
+"1155",6.6,0.58,0,2.2,0.1,50,63,0.99544,3.59,0.68,11.4,6
+"1156",8.3,0.6,0.25,2.2,0.118,9,38,0.99616,3.15,0.53,9.8,5
+"1157",8.5,0.18,0.51,1.75,0.071,45,88,0.99524,3.33,0.76,11.8,7
+"1158",5.1,0.51,0.18,2.1,0.042,16,101,0.9924,3.46,0.87,12.9,7
+"1159",6.7,0.41,0.43,2.8,0.076,22,54,0.99572,3.42,1.16,10.6,6
+"1160",10.2,0.41,0.43,2.2,0.11,11,37,0.99728,3.16,0.67,10.8,5
+"1161",10.6,0.36,0.57,2.3,0.087,6,20,0.99676,3.14,0.72,11.1,7
+"1162",8.8,0.45,0.43,1.4,0.076,12,21,0.99551,3.21,0.75,10.2,6
+"1163",8.5,0.32,0.42,2.3,0.075,12,19,0.99434,3.14,0.71,11.8,7
+"1164",9,0.785,0.24,1.7,0.078,10,21,0.99692,3.29,0.67,10,5
+"1165",9,0.785,0.24,1.7,0.078,10,21,0.99692,3.29,0.67,10,5
+"1166",8.5,0.44,0.5,1.9,0.369,15,38,0.99634,3.01,1.1,9.4,5
+"1167",9.9,0.54,0.26,2,0.111,7,60,0.99709,2.94,0.98,10.2,5
+"1168",8.2,0.33,0.39,2.5,0.074,29,48,0.99528,3.32,0.88,12.4,7
+"1169",6.5,0.34,0.27,2.8,0.067,8,44,0.99384,3.21,0.56,12,6
+"1170",7.6,0.5,0.29,2.3,0.086,5,14,0.99502,3.32,0.62,11.5,6
+"1171",9.2,0.36,0.34,1.6,0.062,5,12,0.99667,3.2,0.67,10.5,6
+"1172",7.1,0.59,0,2.2,0.078,26,44,0.99522,3.42,0.68,10.8,6
+"1173",9.7,0.42,0.46,2.1,0.074,5,16,0.99649,3.27,0.74,12.3,6
+"1174",7.6,0.36,0.31,1.7,0.079,26,65,0.99716,3.46,0.62,9.5,6
+"1175",7.6,0.36,0.31,1.7,0.079,26,65,0.99716,3.46,0.62,9.5,6
+"1176",6.5,0.61,0,2.2,0.095,48,59,0.99541,3.61,0.7,11.5,6
+"1177",6.5,0.88,0.03,5.6,0.079,23,47,0.99572,3.58,0.5,11.2,4
+"1178",7.1,0.66,0,2.4,0.052,6,11,0.99318,3.35,0.66,12.7,7
+"1179",5.6,0.915,0,2.1,0.041,17,78,0.99346,3.68,0.73,11.4,5
+"1180",8.2,0.35,0.33,2.4,0.076,11,47,0.99599,3.27,0.81,11,6
+"1181",8.2,0.35,0.33,2.4,0.076,11,47,0.99599,3.27,0.81,11,6
+"1182",9.8,0.39,0.43,1.65,0.068,5,11,0.99478,3.19,0.46,11.4,5
+"1183",10.2,0.4,0.4,2.5,0.068,41,54,0.99754,3.38,0.86,10.5,6
+"1184",6.8,0.66,0.07,1.6,0.07,16,61,0.99572,3.29,0.6,9.3,5
+"1185",6.7,0.64,0.23,2.1,0.08,11,119,0.99538,3.36,0.7,10.9,5
+"1186",7,0.43,0.3,2,0.085,6,39,0.99346,3.33,0.46,11.9,6
+"1187",6.6,0.8,0.03,7.8,0.079,6,12,0.9963,3.52,0.5,12.2,5
+"1188",7,0.43,0.3,2,0.085,6,39,0.99346,3.33,0.46,11.9,6
+"1189",6.7,0.64,0.23,2.1,0.08,11,119,0.99538,3.36,0.7,10.9,5
+"1190",8.8,0.955,0.05,1.8,0.075,5,19,0.99616,3.3,0.44,9.6,4
+"1191",9.1,0.4,0.57,4.6,0.08,6,20,0.99652,3.28,0.57,12.5,6
+"1192",6.5,0.885,0,2.3,0.166,6,12,0.99551,3.56,0.51,10.8,5
+"1193",7.2,0.25,0.37,2.5,0.063,11,41,0.99439,3.52,0.8,12.4,7
+"1194",6.4,0.885,0,2.3,0.166,6,12,0.99551,3.56,0.51,10.8,5
+"1195",7,0.745,0.12,1.8,0.114,15,64,0.99588,3.22,0.59,9.5,6
+"1196",6.2,0.43,0.22,1.8,0.078,21,56,0.99633,3.52,0.6,9.5,6
+"1197",7.9,0.58,0.23,2.3,0.076,23,94,0.99686,3.21,0.58,9.5,6
+"1198",7.7,0.57,0.21,1.5,0.069,4,9,0.99458,3.16,0.54,9.8,6
+"1199",7.7,0.26,0.26,2,0.052,19,77,0.9951,3.15,0.79,10.9,6
+"1200",7.9,0.58,0.23,2.3,0.076,23,94,0.99686,3.21,0.58,9.5,6
+"1201",7.7,0.57,0.21,1.5,0.069,4,9,0.99458,3.16,0.54,9.8,6
+"1202",7.9,0.34,0.36,1.9,0.065,5,10,0.99419,3.27,0.54,11.2,7
+"1203",8.6,0.42,0.39,1.8,0.068,6,12,0.99516,3.35,0.69,11.7,8
+"1204",9.9,0.74,0.19,5.8,0.111,33,76,0.99878,3.14,0.55,9.4,5
+"1205",7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,7
+"1206",7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,7
+"1207",7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,7
+"1208",9.9,0.72,0.55,1.7,0.136,24,52,0.99752,3.35,0.94,10,5
+"1209",7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,7
+"1210",6.2,0.39,0.43,2,0.071,14,24,0.99428,3.45,0.87,11.2,7
+"1211",6.8,0.65,0.02,2.1,0.078,8,15,0.99498,3.35,0.62,10.4,6
+"1212",6.6,0.44,0.15,2.1,0.076,22,53,0.9957,3.32,0.62,9.3,5
+"1213",6.8,0.65,0.02,2.1,0.078,8,15,0.99498,3.35,0.62,10.4,6
+"1214",9.6,0.38,0.42,1.9,0.071,5,13,0.99659,3.15,0.75,10.5,6
+"1215",10.2,0.33,0.46,1.9,0.081,6,9,0.99628,3.1,0.48,10.4,6
+"1216",8.8,0.27,0.46,2.1,0.095,20,29,0.99488,3.26,0.56,11.3,6
+"1217",7.9,0.57,0.31,2,0.079,10,79,0.99677,3.29,0.69,9.5,6
+"1218",8.2,0.34,0.37,1.9,0.057,43,74,0.99408,3.23,0.81,12,6
+"1219",8.2,0.4,0.31,1.9,0.082,8,24,0.996,3.24,0.69,10.6,6
+"1220",9,0.39,0.4,1.3,0.044,25,50,0.99478,3.2,0.83,10.9,6
+"1221",10.9,0.32,0.52,1.8,0.132,17,44,0.99734,3.28,0.77,11.5,6
+"1222",10.9,0.32,0.52,1.8,0.132,17,44,0.99734,3.28,0.77,11.5,6
+"1223",8.1,0.53,0.22,2.2,0.078,33,89,0.99678,3.26,0.46,9.6,6
+"1224",10.5,0.36,0.47,2.2,0.074,9,23,0.99638,3.23,0.76,12,6
+"1225",12.6,0.39,0.49,2.5,0.08,8,20,0.9992,3.07,0.82,10.3,6
+"1226",9.2,0.46,0.23,2.6,0.091,18,77,0.99922,3.15,0.51,9.4,5
+"1227",7.5,0.58,0.03,4.1,0.08,27,46,0.99592,3.02,0.47,9.2,5
+"1228",9,0.58,0.25,2,0.104,8,21,0.99769,3.27,0.72,9.6,5
+"1229",5.1,0.42,0,1.8,0.044,18,88,0.99157,3.68,0.73,13.6,7
+"1230",7.6,0.43,0.29,2.1,0.075,19,66,0.99718,3.4,0.64,9.5,5
+"1231",7.7,0.18,0.34,2.7,0.066,15,58,0.9947,3.37,0.78,11.8,6
+"1232",7.8,0.815,0.01,2.6,0.074,48,90,0.99621,3.38,0.62,10.8,5
+"1233",7.6,0.43,0.29,2.1,0.075,19,66,0.99718,3.4,0.64,9.5,5
+"1234",10.2,0.23,0.37,2.2,0.057,14,36,0.99614,3.23,0.49,9.3,4
+"1235",7.1,0.75,0.01,2.2,0.059,11,18,0.99242,3.39,0.4,12.8,6
+"1236",6,0.33,0.32,12.9,0.054,6,113,0.99572,3.3,0.56,11.5,4
+"1237",7.8,0.55,0,1.7,0.07,7,17,0.99659,3.26,0.64,9.4,6
+"1238",7.1,0.75,0.01,2.2,0.059,11,18,0.99242,3.39,0.4,12.8,6
+"1239",8.1,0.73,0,2.5,0.081,12,24,0.99798,3.38,0.46,9.6,4
+"1240",6.5,0.67,0,4.3,0.057,11,20,0.99488,3.45,0.56,11.8,4
+"1241",7.5,0.61,0.2,1.7,0.076,36,60,0.99494,3.1,0.4,9.3,5
+"1242",9.8,0.37,0.39,2.5,0.079,28,65,0.99729,3.16,0.59,9.8,5
+"1243",9,0.4,0.41,2,0.058,15,40,0.99414,3.22,0.6,12.2,6
+"1244",8.3,0.56,0.22,2.4,0.082,10,86,0.9983,3.37,0.62,9.5,5
+"1245",5.9,0.29,0.25,13.4,0.067,72,160,0.99721,3.33,0.54,10.3,6
+"1246",7.4,0.55,0.19,1.8,0.082,15,34,0.99655,3.49,0.68,10.5,5
+"1247",7.4,0.74,0.07,1.7,0.086,15,48,0.99502,3.12,0.48,10,5
+"1248",7.4,0.55,0.19,1.8,0.082,15,34,0.99655,3.49,0.68,10.5,5
+"1249",6.9,0.41,0.33,2.2,0.081,22,36,0.9949,3.41,0.75,11.1,6
+"1250",7.1,0.6,0.01,2.3,0.079,24,37,0.99514,3.4,0.61,10.9,6
+"1251",7.1,0.6,0.01,2.3,0.079,24,37,0.99514,3.4,0.61,10.9,6
+"1252",7.5,0.58,0.14,2.2,0.077,27,60,0.9963,3.28,0.59,9.8,5
+"1253",7.1,0.72,0,1.8,0.123,6,14,0.99627,3.45,0.58,9.8,5
+"1254",7.9,0.66,0,1.4,0.096,6,13,0.99569,3.43,0.58,9.5,5
+"1255",7.8,0.7,0.06,1.9,0.079,20,35,0.99628,3.4,0.69,10.9,5
+"1256",6.1,0.64,0.02,2.4,0.069,26,46,0.99358,3.47,0.45,11,5
+"1257",7.5,0.59,0.22,1.8,0.082,43,60,0.99499,3.1,0.42,9.2,5
+"1258",7,0.58,0.28,4.8,0.085,12,69,0.99633,3.32,0.7,11,6
+"1259",6.8,0.64,0,2.7,0.123,15,33,0.99538,3.44,0.63,11.3,6
+"1260",6.8,0.64,0,2.7,0.123,15,33,0.99538,3.44,0.63,11.3,6
+"1261",8.6,0.635,0.68,1.8,0.403,19,56,0.99632,3.02,1.15,9.3,5
+"1262",6.3,1.02,0,2,0.083,17,24,0.99437,3.59,0.55,11.2,4
+"1263",9.8,0.45,0.38,2.5,0.081,34,66,0.99726,3.15,0.58,9.8,5
+"1264",8.2,0.78,0,2.2,0.089,13,26,0.9978,3.37,0.46,9.6,4
+"1265",8.5,0.37,0.32,1.8,0.066,26,51,0.99456,3.38,0.72,11.8,6
+"1266",7.2,0.57,0.05,2.3,0.081,16,36,0.99564,3.38,0.6,10.3,6
+"1267",7.2,0.57,0.05,2.3,0.081,16,36,0.99564,3.38,0.6,10.3,6
+"1268",10.4,0.43,0.5,2.3,0.068,13,19,0.996,3.1,0.87,11.4,6
+"1269",6.9,0.41,0.31,2,0.079,21,51,0.99668,3.47,0.55,9.5,6
+"1270",5.5,0.49,0.03,1.8,0.044,28,87,0.9908,3.5,0.82,14,8
+"1271",5,0.38,0.01,1.6,0.048,26,60,0.99084,3.7,0.75,14,6
+"1272",7.3,0.44,0.2,1.6,0.049,24,64,0.9935,3.38,0.57,11.7,6
+"1273",5.9,0.46,0,1.9,0.077,25,44,0.99385,3.5,0.53,11.2,5
+"1274",7.5,0.58,0.2,2,0.073,34,44,0.99494,3.1,0.43,9.3,5
+"1275",7.8,0.58,0.13,2.1,0.102,17,36,0.9944,3.24,0.53,11.2,6
+"1276",8,0.715,0.22,2.3,0.075,13,81,0.99688,3.24,0.54,9.5,6
+"1277",8.5,0.4,0.4,6.3,0.05,3,10,0.99566,3.28,0.56,12,4
+"1278",7,0.69,0,1.9,0.114,3,10,0.99636,3.35,0.6,9.7,6
+"1279",8,0.715,0.22,2.3,0.075,13,81,0.99688,3.24,0.54,9.5,6
+"1280",9.8,0.3,0.39,1.7,0.062,3,9,0.9948,3.14,0.57,11.5,7
+"1281",7.1,0.46,0.2,1.9,0.077,28,54,0.9956,3.37,0.64,10.4,6
+"1282",7.1,0.46,0.2,1.9,0.077,28,54,0.9956,3.37,0.64,10.4,6
+"1283",7.9,0.765,0,2,0.084,9,22,0.99619,3.33,0.68,10.9,6
+"1284",8.7,0.63,0.28,2.7,0.096,17,69,0.99734,3.26,0.63,10.2,6
+"1285",7,0.42,0.19,2.3,0.071,18,36,0.99476,3.39,0.56,10.9,5
+"1286",11.3,0.37,0.5,1.8,0.09,20,47,0.99734,3.15,0.57,10.5,5
+"1287",7.1,0.16,0.44,2.5,0.068,17,31,0.99328,3.35,0.54,12.4,6
+"1288",8,0.6,0.08,2.6,0.056,3,7,0.99286,3.22,0.37,13,5
+"1289",7,0.6,0.3,4.5,0.068,20,110,0.99914,3.3,1.17,10.2,5
+"1290",7,0.6,0.3,4.5,0.068,20,110,0.99914,3.3,1.17,10.2,5
+"1291",7.6,0.74,0,1.9,0.1,6,12,0.99521,3.36,0.59,11,5
+"1292",8.2,0.635,0.1,2.1,0.073,25,60,0.99638,3.29,0.75,10.9,6
+"1293",5.9,0.395,0.13,2.4,0.056,14,28,0.99362,3.62,0.67,12.4,6
+"1294",7.5,0.755,0,1.9,0.084,6,12,0.99672,3.34,0.49,9.7,4
+"1295",8.2,0.635,0.1,2.1,0.073,25,60,0.99638,3.29,0.75,10.9,6
+"1296",6.6,0.63,0,4.3,0.093,51,77.5,0.99558,3.2,0.45,9.5,5
+"1297",6.6,0.63,0,4.3,0.093,51,77.5,0.99558,3.2,0.45,9.5,5
+"1298",7.2,0.53,0.14,2.1,0.064,15,29,0.99323,3.35,0.61,12.1,6
+"1299",5.7,0.6,0,1.4,0.063,11,18,0.99191,3.45,0.56,12.2,6
+"1300",7.6,1.58,0,2.1,0.137,5,9,0.99476,3.5,0.4,10.9,3
+"1301",5.2,0.645,0,2.15,0.08,15,28,0.99444,3.78,0.61,12.5,6
+"1302",6.7,0.86,0.07,2,0.1,20,57,0.99598,3.6,0.74,11.7,6
+"1303",9.1,0.37,0.32,2.1,0.064,4,15,0.99576,3.3,0.8,11.2,6
+"1304",8,0.28,0.44,1.8,0.081,28,68,0.99501,3.36,0.66,11.2,5
+"1305",7.6,0.79,0.21,2.3,0.087,21,68,0.9955,3.12,0.44,9.2,5
+"1306",7.5,0.61,0.26,1.9,0.073,24,88,0.99612,3.3,0.53,9.8,5
+"1307",9.7,0.69,0.32,2.5,0.088,22,91,0.9979,3.29,0.62,10.1,5
+"1308",6.8,0.68,0.09,3.9,0.068,15,29,0.99524,3.41,0.52,11.1,4
+"1309",9.7,0.69,0.32,2.5,0.088,22,91,0.9979,3.29,0.62,10.1,5
+"1310",7,0.62,0.1,1.4,0.071,27,63,0.996,3.28,0.61,9.2,5
+"1311",7.5,0.61,0.26,1.9,0.073,24,88,0.99612,3.3,0.53,9.8,5
+"1312",6.5,0.51,0.15,3,0.064,12,27,0.9929,3.33,0.59,12.8,6
+"1313",8,1.18,0.21,1.9,0.083,14,41,0.99532,3.34,0.47,10.5,5
+"1314",7,0.36,0.21,2.3,0.086,20,65,0.99558,3.4,0.54,10.1,6
+"1315",7,0.36,0.21,2.4,0.086,24,69,0.99556,3.4,0.53,10.1,6
+"1316",7.5,0.63,0.27,2,0.083,17,91,0.99616,3.26,0.58,9.8,6
+"1317",5.4,0.74,0,1.2,0.041,16,46,0.99258,4.01,0.59,12.5,6
+"1318",9.9,0.44,0.46,2.2,0.091,10,41,0.99638,3.18,0.69,11.9,6
+"1319",7.5,0.63,0.27,2,0.083,17,91,0.99616,3.26,0.58,9.8,6
+"1320",9.1,0.76,0.68,1.7,0.414,18,64,0.99652,2.9,1.33,9.1,6
+"1321",9.7,0.66,0.34,2.6,0.094,12,88,0.99796,3.26,0.66,10.1,5
+"1322",5,0.74,0,1.2,0.041,16,46,0.99258,4.01,0.59,12.5,6
+"1323",9.1,0.34,0.42,1.8,0.058,9,18,0.99392,3.18,0.55,11.4,5
+"1324",9.1,0.36,0.39,1.8,0.06,21,55,0.99495,3.18,0.82,11,7
+"1325",6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,6
+"1326",6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,6
+"1327",6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,6
+"1328",6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,6
+"1329",6.5,0.52,0.11,1.8,0.073,13,38,0.9955,3.34,0.52,9.3,5
+"1330",7.4,0.6,0.26,2.1,0.083,17,91,0.99616,3.29,0.56,9.8,6
+"1331",7.4,0.6,0.26,2.1,0.083,17,91,0.99616,3.29,0.56,9.8,6
+"1332",7.8,0.87,0.26,3.8,0.107,31,67,0.99668,3.26,0.46,9.2,5
+"1333",8.4,0.39,0.1,1.7,0.075,6,25,0.99581,3.09,0.43,9.7,6
+"1334",9.1,0.775,0.22,2.2,0.079,12,48,0.9976,3.18,0.51,9.6,5
+"1335",7.2,0.835,0,2,0.166,4,11,0.99608,3.39,0.52,10,5
+"1336",6.6,0.58,0.02,2.4,0.069,19,40,0.99387,3.38,0.66,12.6,6
+"1337",6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,5
+"1338",6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,5
+"1339",6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,5
+"1340",7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,6
+"1341",7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,6
+"1342",7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,6
+"1343",7.6,0.54,0.02,1.7,0.085,17,31,0.99589,3.37,0.51,10.4,6
+"1344",7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,6
+"1345",11.5,0.42,0.48,2.6,0.077,8,20,0.99852,3.09,0.53,11,5
+"1346",8.2,0.44,0.24,2.3,0.063,10,28,0.99613,3.25,0.53,10.2,6
+"1347",6.1,0.59,0.01,2.1,0.056,5,13,0.99472,3.52,0.56,11.4,5
+"1348",7.2,0.655,0.03,1.8,0.078,7,12,0.99587,3.34,0.39,9.5,5
+"1349",7.2,0.655,0.03,1.8,0.078,7,12,0.99587,3.34,0.39,9.5,5
+"1350",6.9,0.57,0,2.8,0.081,21,41,0.99518,3.41,0.52,10.8,5
+"1351",9,0.6,0.29,2,0.069,32,73,0.99654,3.34,0.57,10,5
+"1352",7.2,0.62,0.01,2.3,0.065,8,46,0.99332,3.32,0.51,11.8,6
+"1353",7.6,0.645,0.03,1.9,0.086,14,57,0.9969,3.37,0.46,10.3,5
+"1354",7.6,0.645,0.03,1.9,0.086,14,57,0.9969,3.37,0.46,10.3,5
+"1355",7.2,0.58,0.03,2.3,0.077,7,28,0.99568,3.35,0.52,10,5
+"1356",6.1,0.32,0.25,1.8,0.086,5,32,0.99464,3.36,0.44,10.1,5
+"1357",6.1,0.34,0.25,1.8,0.084,4,28,0.99464,3.36,0.44,10.1,5
+"1358",7.3,0.43,0.24,2.5,0.078,27,67,0.99648,3.6,0.59,11.1,6
+"1359",7.4,0.64,0.17,5.4,0.168,52,98,0.99736,3.28,0.5,9.5,5
+"1360",11.6,0.475,0.4,1.4,0.091,6,28,0.99704,3.07,0.65,10.0333333333333,6
+"1361",9.2,0.54,0.31,2.3,0.112,11,38,0.99699,3.24,0.56,10.9,5
+"1362",8.3,0.85,0.14,2.5,0.093,13,54,0.99724,3.36,0.54,10.1,5
+"1363",11.6,0.475,0.4,1.4,0.091,6,28,0.99704,3.07,0.65,10.0333333333333,6
+"1364",8,0.83,0.27,2,0.08,11,63,0.99652,3.29,0.48,9.8,4
+"1365",7.2,0.605,0.02,1.9,0.096,10,31,0.995,3.46,0.53,11.8,6
+"1366",7.8,0.5,0.09,2.2,0.115,10,42,0.9971,3.18,0.62,9.5,5
+"1367",7.3,0.74,0.08,1.7,0.094,10,45,0.99576,3.24,0.5,9.8,5
+"1368",6.9,0.54,0.3,2.2,0.088,9,105,0.99725,3.25,1.18,10.5,6
+"1369",8,0.77,0.32,2.1,0.079,16,74,0.99656,3.27,0.5,9.8,6
+"1370",6.6,0.61,0,1.6,0.069,4,8,0.99396,3.33,0.37,10.4,4
+"1371",8.7,0.78,0.51,1.7,0.415,12,66,0.99623,3,1.17,9.2,5
+"1372",7.5,0.58,0.56,3.1,0.153,5,14,0.99476,3.21,1.03,11.6,6
+"1373",8.7,0.78,0.51,1.7,0.415,12,66,0.99623,3,1.17,9.2,5
+"1374",7.7,0.75,0.27,3.8,0.11,34,89,0.99664,3.24,0.45,9.3,5
+"1375",6.8,0.815,0,1.2,0.267,16,29,0.99471,3.32,0.51,9.8,3
+"1376",7.2,0.56,0.26,2,0.083,13,100,0.99586,3.26,0.52,9.9,5
+"1377",8.2,0.885,0.2,1.4,0.086,7,31,0.9946,3.11,0.46,10,5
+"1378",5.2,0.49,0.26,2.3,0.09,23,74,0.9953,3.71,0.62,12.2,6
+"1379",7.2,0.45,0.15,2,0.078,10,28,0.99609,3.29,0.51,9.9,6
+"1380",7.5,0.57,0.02,2.6,0.077,11,35,0.99557,3.36,0.62,10.8,6
+"1381",7.5,0.57,0.02,2.6,0.077,11,35,0.99557,3.36,0.62,10.8,6
+"1382",6.8,0.83,0.09,1.8,0.074,4,25,0.99534,3.38,0.45,9.6,5
+"1383",8,0.6,0.22,2.1,0.08,25,105,0.99613,3.3,0.49,9.9,5
+"1384",8,0.6,0.22,2.1,0.08,25,105,0.99613,3.3,0.49,9.9,5
+"1385",7.1,0.755,0.15,1.8,0.107,20,84,0.99593,3.19,0.5,9.5,5
+"1386",8,0.81,0.25,3.4,0.076,34,85,0.99668,3.19,0.42,9.2,5
+"1387",7.4,0.64,0.07,1.8,0.1,8,23,0.9961,3.3,0.58,9.6,5
+"1388",7.4,0.64,0.07,1.8,0.1,8,23,0.9961,3.3,0.58,9.6,5
+"1389",6.6,0.64,0.31,6.1,0.083,7,49,0.99718,3.35,0.68,10.3,5
+"1390",6.7,0.48,0.02,2.2,0.08,36,111,0.99524,3.1,0.53,9.7,5
+"1391",6,0.49,0,2.3,0.068,15,33,0.99292,3.58,0.59,12.5,6
+"1392",8,0.64,0.22,2.4,0.094,5,33,0.99612,3.37,0.58,11,5
+"1393",7.1,0.62,0.06,1.3,0.07,5,12,0.9942,3.17,0.48,9.8,5
+"1394",8,0.52,0.25,2,0.078,19,59,0.99612,3.3,0.48,10.2,5
+"1395",6.4,0.57,0.14,3.9,0.07,27,73,0.99669,3.32,0.48,9.2,5
+"1396",8.6,0.685,0.1,1.6,0.092,3,12,0.99745,3.31,0.65,9.55,6
+"1397",8.7,0.675,0.1,1.6,0.09,4,11,0.99745,3.31,0.65,9.55,5
+"1398",7.3,0.59,0.26,2,0.08,17,104,0.99584,3.28,0.52,9.9,5
+"1399",7,0.6,0.12,2.2,0.083,13,28,0.9966,3.52,0.62,10.2,7
+"1400",7.2,0.67,0,2.2,0.068,10,24,0.9956,3.42,0.72,11.1,6
+"1401",7.9,0.69,0.21,2.1,0.08,33,141,0.9962,3.25,0.51,9.9,5
+"1402",7.9,0.69,0.21,2.1,0.08,33,141,0.9962,3.25,0.51,9.9,5
+"1403",7.6,0.3,0.42,2,0.052,6,24,0.9963,3.44,0.82,11.9,6
+"1404",7.2,0.33,0.33,1.7,0.061,3,13,0.996,3.23,1.1,10,8
+"1405",8,0.5,0.39,2.6,0.082,12,46,0.9985,3.43,0.62,10.7,6
+"1406",7.7,0.28,0.3,2,0.062,18,34,0.9952,3.28,0.9,11.3,7
+"1407",8.2,0.24,0.34,5.1,0.062,8,22,0.9974,3.22,0.94,10.9,6
+"1408",6,0.51,0,2.1,0.064,40,54,0.995,3.54,0.93,10.7,6
+"1409",8.1,0.29,0.36,2.2,0.048,35,53,0.995,3.27,1.01,12.4,7
+"1410",6,0.51,0,2.1,0.064,40,54,0.995,3.54,0.93,10.7,6
+"1411",6.6,0.96,0,1.8,0.082,5,16,0.9936,3.5,0.44,11.9,6
+"1412",6.4,0.47,0.4,2.4,0.071,8,19,0.9963,3.56,0.73,10.6,6
+"1413",8.2,0.24,0.34,5.1,0.062,8,22,0.9974,3.22,0.94,10.9,6
+"1414",9.9,0.57,0.25,2,0.104,12,89,0.9963,3.04,0.9,10.1,5
+"1415",10,0.32,0.59,2.2,0.077,3,15,0.9994,3.2,0.78,9.6,5
+"1416",6.2,0.58,0,1.6,0.065,8,18,0.9966,3.56,0.84,9.4,5
+"1417",10,0.32,0.59,2.2,0.077,3,15,0.9994,3.2,0.78,9.6,5
+"1418",7.3,0.34,0.33,2.5,0.064,21,37,0.9952,3.35,0.77,12.1,7
+"1419",7.8,0.53,0.01,1.6,0.077,3,19,0.995,3.16,0.46,9.8,5
+"1420",7.7,0.64,0.21,2.2,0.077,32,133,0.9956,3.27,0.45,9.9,5
+"1421",7.8,0.53,0.01,1.6,0.077,3,19,0.995,3.16,0.46,9.8,5
+"1422",7.5,0.4,0.18,1.6,0.079,24,58,0.9965,3.34,0.58,9.4,5
+"1423",7,0.54,0,2.1,0.079,39,55,0.9956,3.39,0.84,11.4,6
+"1424",6.4,0.53,0.09,3.9,0.123,14,31,0.9968,3.5,0.67,11,4
+"1425",8.3,0.26,0.37,1.4,0.076,8,23,0.9974,3.26,0.7,9.6,6
+"1426",8.3,0.26,0.37,1.4,0.076,8,23,0.9974,3.26,0.7,9.6,6
+"1427",7.7,0.23,0.37,1.8,0.046,23,60,0.9971,3.41,0.71,12.1,6
+"1428",7.6,0.41,0.33,2.5,0.078,6,23,0.9957,3.3,0.58,11.2,5
+"1429",7.8,0.64,0,1.9,0.072,27,55,0.9962,3.31,0.63,11,5
+"1430",7.9,0.18,0.4,2.2,0.049,38,67,0.996,3.33,0.93,11.3,5
+"1431",7.4,0.41,0.24,1.8,0.066,18,47,0.9956,3.37,0.62,10.4,5
+"1432",7.6,0.43,0.31,2.1,0.069,13,74,0.9958,3.26,0.54,9.9,6
+"1433",5.9,0.44,0,1.6,0.042,3,11,0.9944,3.48,0.85,11.7,6
+"1434",6.1,0.4,0.16,1.8,0.069,11,25,0.9955,3.42,0.74,10.1,7
+"1435",10.2,0.54,0.37,15.4,0.214,55,95,1.00369,3.18,0.77,9,6
+"1436",10.2,0.54,0.37,15.4,0.214,55,95,1.00369,3.18,0.77,9,6
+"1437",10,0.38,0.38,1.6,0.169,27,90,0.99914,3.15,0.65,8.5,5
+"1438",6.8,0.915,0.29,4.8,0.07,15,39,0.99577,3.53,0.54,11.1,5
+"1439",7,0.59,0,1.7,0.052,3,8,0.996,3.41,0.47,10.3,5
+"1440",7.3,0.67,0.02,2.2,0.072,31,92,0.99566,3.32,0.68,11.0666666666667,6
+"1441",7.2,0.37,0.32,2,0.062,15,28,0.9947,3.23,0.73,11.3,7
+"1442",7.4,0.785,0.19,5.2,0.094,19,98,0.99713,3.16,0.52,9.56666666666667,6
+"1443",6.9,0.63,0.02,1.9,0.078,18,30,0.99712,3.4,0.75,9.8,5
+"1444",6.9,0.58,0.2,1.75,0.058,8,22,0.99322,3.38,0.49,11.7,5
+"1445",7.3,0.67,0.02,2.2,0.072,31,92,0.99566,3.32,0.68,11.1,6
+"1446",7.4,0.785,0.19,5.2,0.094,19,98,0.99713,3.16,0.52,9.6,6
+"1447",6.9,0.63,0.02,1.9,0.078,18,30,0.99712,3.4,0.75,9.8,5
+"1448",6.8,0.67,0,1.9,0.08,22,39,0.99701,3.4,0.74,9.7,5
+"1449",6.9,0.58,0.01,1.9,0.08,40,54,0.99683,3.4,0.73,9.7,5
+"1450",7.2,0.38,0.31,2,0.056,15,29,0.99472,3.23,0.76,11.3,8
+"1451",7.2,0.37,0.32,2,0.062,15,28,0.9947,3.23,0.73,11.3,7
+"1452",7.8,0.32,0.44,2.7,0.104,8,17,0.99732,3.33,0.78,11,7
+"1453",6.6,0.58,0.02,2,0.062,37,53,0.99374,3.35,0.76,11.6,7
+"1454",7.6,0.49,0.33,1.9,0.074,27,85,0.99706,3.41,0.58,9,5
+"1455",11.7,0.45,0.63,2.2,0.073,7,23,0.99974,3.21,0.69,10.9,6
+"1456",6.5,0.9,0,1.6,0.052,9,17,0.99467,3.5,0.63,10.9,6
+"1457",6,0.54,0.06,1.8,0.05,38,89,0.99236,3.3,0.5,10.55,6
+"1458",7.6,0.49,0.33,1.9,0.074,27,85,0.99706,3.41,0.58,9,5
+"1459",8.4,0.29,0.4,1.7,0.067,8,20,0.99603,3.39,0.6,10.5,5
+"1460",7.9,0.2,0.35,1.7,0.054,7,15,0.99458,3.32,0.8,11.9,7
+"1461",6.4,0.42,0.09,2.3,0.054,34,64,0.99724,3.41,0.68,10.4,6
+"1462",6.2,0.785,0,2.1,0.06,6,13,0.99664,3.59,0.61,10,4
+"1463",6.8,0.64,0.03,2.3,0.075,14,31,0.99545,3.36,0.58,10.4,6
+"1464",6.9,0.63,0.01,2.4,0.076,14,39,0.99522,3.34,0.53,10.8,6
+"1465",6.8,0.59,0.1,1.7,0.063,34,53,0.9958,3.41,0.67,9.7,5
+"1466",6.8,0.59,0.1,1.7,0.063,34,53,0.9958,3.41,0.67,9.7,5
+"1467",7.3,0.48,0.32,2.1,0.062,31,54,0.99728,3.3,0.65,10,7
+"1468",6.7,1.04,0.08,2.3,0.067,19,32,0.99648,3.52,0.57,11,4
+"1469",7.3,0.48,0.32,2.1,0.062,31,54,0.99728,3.3,0.65,10,7
+"1470",7.3,0.98,0.05,2.1,0.061,20,49,0.99705,3.31,0.55,9.7,3
+"1471",10,0.69,0.11,1.4,0.084,8,24,0.99578,2.88,0.47,9.7,5
+"1472",6.7,0.7,0.08,3.75,0.067,8,16,0.99334,3.43,0.52,12.6,5
+"1473",7.6,0.35,0.6,2.6,0.073,23,44,0.99656,3.38,0.79,11.1,6
+"1474",6.1,0.6,0.08,1.8,0.071,14,45,0.99336,3.38,0.54,11,5
+"1475",9.9,0.5,0.5,13.8,0.205,48,82,1.00242,3.16,0.75,8.8,5
+"1476",5.3,0.47,0.11,2.2,0.048,16,89,0.99182,3.54,0.88,13.5666666666667,7
+"1477",9.9,0.5,0.5,13.8,0.205,48,82,1.00242,3.16,0.75,8.8,5
+"1478",5.3,0.47,0.11,2.2,0.048,16,89,0.99182,3.54,0.88,13.6,7
+"1479",7.1,0.875,0.05,5.7,0.082,3,14,0.99808,3.4,0.52,10.2,3
+"1480",8.2,0.28,0.6,3,0.104,10,22,0.99828,3.39,0.68,10.6,5
+"1481",5.6,0.62,0.03,1.5,0.08,6,13,0.99498,3.66,0.62,10.1,4
+"1482",8.2,0.28,0.6,3,0.104,10,22,0.99828,3.39,0.68,10.6,5
+"1483",7.2,0.58,0.54,2.1,0.114,3,9,0.99719,3.33,0.57,10.3,4
+"1484",8.1,0.33,0.44,1.5,0.042,6,12,0.99542,3.35,0.61,10.7,5
+"1485",6.8,0.91,0.06,2,0.06,4,11,0.99592,3.53,0.64,10.9,4
+"1486",7,0.655,0.16,2.1,0.074,8,25,0.99606,3.37,0.55,9.7,5
+"1487",6.8,0.68,0.21,2.1,0.07,9,23,0.99546,3.38,0.6,10.3,5
+"1488",6,0.64,0.05,1.9,0.066,9,17,0.99496,3.52,0.78,10.6,5
+"1489",5.6,0.54,0.04,1.7,0.049,5,13,0.9942,3.72,0.58,11.4,5
+"1490",6.2,0.57,0.1,2.1,0.048,4,11,0.99448,3.44,0.76,10.8,6
+"1491",7.1,0.22,0.49,1.8,0.039,8,18,0.99344,3.39,0.56,12.4,6
+"1492",5.6,0.54,0.04,1.7,0.049,5,13,0.9942,3.72,0.58,11.4,5
+"1493",6.2,0.65,0.06,1.6,0.05,6,18,0.99348,3.57,0.54,11.95,5
+"1494",7.7,0.54,0.26,1.9,0.089,23,147,0.99636,3.26,0.59,9.7,5
+"1495",6.4,0.31,0.09,1.4,0.066,15,28,0.99459,3.42,0.7,10,7
+"1496",7,0.43,0.02,1.9,0.08,15,28,0.99492,3.35,0.81,10.6,6
+"1497",7.7,0.54,0.26,1.9,0.089,23,147,0.99636,3.26,0.59,9.7,5
+"1498",6.9,0.74,0.03,2.3,0.054,7,16,0.99508,3.45,0.63,11.5,6
+"1499",6.6,0.895,0.04,2.3,0.068,7,13,0.99582,3.53,0.58,10.8,6
+"1500",6.9,0.74,0.03,2.3,0.054,7,16,0.99508,3.45,0.63,11.5,6
+"1501",7.5,0.725,0.04,1.5,0.076,8,15,0.99508,3.26,0.53,9.6,5
+"1502",7.8,0.82,0.29,4.3,0.083,21,64,0.99642,3.16,0.53,9.4,5
+"1503",7.3,0.585,0.18,2.4,0.078,15,60,0.99638,3.31,0.54,9.8,5
+"1504",6.2,0.44,0.39,2.5,0.077,6,14,0.99555,3.51,0.69,11,6
+"1505",7.5,0.38,0.57,2.3,0.106,5,12,0.99605,3.36,0.55,11.4,6
+"1506",6.7,0.76,0.02,1.8,0.078,6,12,0.996,3.55,0.63,9.95,3
+"1507",6.8,0.81,0.05,2,0.07,6,14,0.99562,3.51,0.66,10.8,6
+"1508",7.5,0.38,0.57,2.3,0.106,5,12,0.99605,3.36,0.55,11.4,6
+"1509",7.1,0.27,0.6,2.1,0.074,17,25,0.99814,3.38,0.72,10.6,6
+"1510",7.9,0.18,0.4,1.8,0.062,7,20,0.9941,3.28,0.7,11.1,5
+"1511",6.4,0.36,0.21,2.2,0.047,26,48,0.99661,3.47,0.77,9.7,6
+"1512",7.1,0.69,0.04,2.1,0.068,19,27,0.99712,3.44,0.67,9.8,5
+"1513",6.4,0.79,0.04,2.2,0.061,11,17,0.99588,3.53,0.65,10.4,6
+"1514",6.4,0.56,0.15,1.8,0.078,17,65,0.99294,3.33,0.6,10.5,6
+"1515",6.9,0.84,0.21,4.1,0.074,16,65,0.99842,3.53,0.72,9.23333333333333,6
+"1516",6.9,0.84,0.21,4.1,0.074,16,65,0.99842,3.53,0.72,9.25,6
+"1517",6.1,0.32,0.25,2.3,0.071,23,58,0.99633,3.42,0.97,10.6,5
+"1518",6.5,0.53,0.06,2,0.063,29,44,0.99489,3.38,0.83,10.3,6
+"1519",7.4,0.47,0.46,2.2,0.114,7,20,0.99647,3.32,0.63,10.5,5
+"1520",6.6,0.7,0.08,2.6,0.106,14,27,0.99665,3.44,0.58,10.2,5
+"1521",6.5,0.53,0.06,2,0.063,29,44,0.99489,3.38,0.83,10.3,6
+"1522",6.9,0.48,0.2,1.9,0.082,9,23,0.99585,3.39,0.43,9.05,4
+"1523",6.1,0.32,0.25,2.3,0.071,23,58,0.99633,3.42,0.97,10.6,5
+"1524",6.8,0.48,0.25,2,0.076,29,61,0.9953,3.34,0.6,10.4,5
+"1525",6,0.42,0.19,2,0.075,22,47,0.99522,3.39,0.78,10,6
+"1526",6.7,0.48,0.08,2.1,0.064,18,34,0.99552,3.33,0.64,9.7,5
+"1527",6.8,0.47,0.08,2.2,0.064,18,38,0.99553,3.3,0.65,9.6,6
+"1528",7.1,0.53,0.07,1.7,0.071,15,24,0.9951,3.29,0.66,10.8,6
+"1529",7.9,0.29,0.49,2.2,0.096,21,59,0.99714,3.31,0.67,10.1,6
+"1530",7.1,0.69,0.08,2.1,0.063,42,52,0.99608,3.42,0.6,10.2,6
+"1531",6.6,0.44,0.09,2.2,0.063,9,18,0.99444,3.42,0.69,11.3,6
+"1532",6.1,0.705,0.1,2.8,0.081,13,28,0.99631,3.6,0.66,10.2,5
+"1533",7.2,0.53,0.13,2,0.058,18,22,0.99573,3.21,0.68,9.9,6
+"1534",8,0.39,0.3,1.9,0.074,32,84,0.99717,3.39,0.61,9,5
+"1535",6.6,0.56,0.14,2.4,0.064,13,29,0.99397,3.42,0.62,11.7,7
+"1536",7,0.55,0.13,2.2,0.075,15,35,0.9959,3.36,0.59,9.7,6
+"1537",6.1,0.53,0.08,1.9,0.077,24,45,0.99528,3.6,0.68,10.3,6
+"1538",5.4,0.58,0.08,1.9,0.059,20,31,0.99484,3.5,0.64,10.2,6
+"1539",6.2,0.64,0.09,2.5,0.081,15,26,0.99538,3.57,0.63,12,5
+"1540",7.2,0.39,0.32,1.8,0.065,34,60,0.99714,3.46,0.78,9.9,5
+"1541",6.2,0.52,0.08,4.4,0.071,11,32,0.99646,3.56,0.63,11.6,6
+"1542",7.4,0.25,0.29,2.2,0.054,19,49,0.99666,3.4,0.76,10.9,7
+"1543",6.7,0.855,0.02,1.9,0.064,29,38,0.99472,3.3,0.56,10.75,6
+"1544",11.1,0.44,0.42,2.2,0.064,14,19,0.99758,3.25,0.57,10.4,6
+"1545",8.4,0.37,0.43,2.3,0.063,12,19,0.9955,3.17,0.81,11.2,7
+"1546",6.5,0.63,0.33,1.8,0.059,16,28,0.99531,3.36,0.64,10.1,6
+"1547",7,0.57,0.02,2,0.072,17,26,0.99575,3.36,0.61,10.2,5
+"1548",6.3,0.6,0.1,1.6,0.048,12,26,0.99306,3.55,0.51,12.1,5
+"1549",11.2,0.4,0.5,2,0.099,19,50,0.99783,3.1,0.58,10.4,5
+"1550",7.4,0.36,0.3,1.8,0.074,17,24,0.99419,3.24,0.7,11.4,8
+"1551",7.1,0.68,0,2.3,0.087,17,26,0.99783,3.45,0.53,9.5,5
+"1552",7.1,0.67,0,2.3,0.083,18,27,0.99768,3.44,0.54,9.4,5
+"1553",6.3,0.68,0.01,3.7,0.103,32,54,0.99586,3.51,0.66,11.3,6
+"1554",7.3,0.735,0,2.2,0.08,18,28,0.99765,3.41,0.6,9.4,5
+"1555",6.6,0.855,0.02,2.4,0.062,15,23,0.99627,3.54,0.6,11,6
+"1556",7,0.56,0.17,1.7,0.065,15,24,0.99514,3.44,0.68,10.55,7
+"1557",6.6,0.88,0.04,2.2,0.066,12,20,0.99636,3.53,0.56,9.9,5
+"1558",6.6,0.855,0.02,2.4,0.062,15,23,0.99627,3.54,0.6,11,6
+"1559",6.9,0.63,0.33,6.7,0.235,66,115,0.99787,3.22,0.56,9.5,5
+"1560",7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,5
+"1561",7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,5
+"1562",7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,5
+"1563",7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,5
+"1564",7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,5
+"1565",7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,5
+"1566",6.7,0.67,0.02,1.9,0.061,26,42,0.99489,3.39,0.82,10.9,6
+"1567",6.7,0.16,0.64,2.1,0.059,24,52,0.99494,3.34,0.71,11.2,6
+"1568",7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,5
+"1569",7,0.56,0.13,1.6,0.077,25,42,0.99629,3.34,0.59,9.2,5
+"1570",6.2,0.51,0.14,1.9,0.056,15,34,0.99396,3.48,0.57,11.5,6
+"1571",6.4,0.36,0.53,2.2,0.23,19,35,0.9934,3.37,0.93,12.4,6
+"1572",6.4,0.38,0.14,2.2,0.038,15,25,0.99514,3.44,0.65,11.1,6
+"1573",7.3,0.69,0.32,2.2,0.069,35,104,0.99632,3.33,0.51,9.5,5
+"1574",6,0.58,0.2,2.4,0.075,15,50,0.99467,3.58,0.67,12.5,6
+"1575",5.6,0.31,0.78,13.9,0.074,23,92,0.99677,3.39,0.48,10.5,6
+"1576",7.5,0.52,0.4,2.2,0.06,12,20,0.99474,3.26,0.64,11.8,6
+"1577",8,0.3,0.63,1.6,0.081,16,29,0.99588,3.3,0.78,10.8,6
+"1578",6.2,0.7,0.15,5.1,0.076,13,27,0.99622,3.54,0.6,11.9,6
+"1579",6.8,0.67,0.15,1.8,0.118,13,20,0.9954,3.42,0.67,11.3,6
+"1580",6.2,0.56,0.09,1.7,0.053,24,32,0.99402,3.54,0.6,11.3,5
+"1581",7.4,0.35,0.33,2.4,0.068,9,26,0.9947,3.36,0.6,11.9,6
+"1582",6.2,0.56,0.09,1.7,0.053,24,32,0.99402,3.54,0.6,11.3,5
+"1583",6.1,0.715,0.1,2.6,0.053,13,27,0.99362,3.57,0.5,11.9,5
+"1584",6.2,0.46,0.29,2.1,0.074,32,98,0.99578,3.33,0.62,9.8,5
+"1585",6.7,0.32,0.44,2.4,0.061,24,34,0.99484,3.29,0.8,11.6,7
+"1586",7.2,0.39,0.44,2.6,0.066,22,48,0.99494,3.3,0.84,11.5,6
+"1587",7.5,0.31,0.41,2.4,0.065,34,60,0.99492,3.34,0.85,11.4,6
+"1588",5.8,0.61,0.11,1.8,0.066,18,28,0.99483,3.55,0.66,10.9,6
+"1589",7.2,0.66,0.33,2.5,0.068,34,102,0.99414,3.27,0.78,12.8,6
+"1590",6.6,0.725,0.2,7.8,0.073,29,79,0.9977,3.29,0.54,9.2,5
+"1591",6.3,0.55,0.15,1.8,0.077,26,35,0.99314,3.32,0.82,11.6,6
+"1592",5.4,0.74,0.09,1.7,0.089,16,26,0.99402,3.67,0.56,11.6,6
+"1593",6.3,0.51,0.13,2.3,0.076,29,40,0.99574,3.42,0.75,11,6
+"1594",6.8,0.62,0.08,1.9,0.068,28,38,0.99651,3.42,0.82,9.5,6
+"1595",6.2,0.6,0.08,2,0.09,32,44,0.9949,3.45,0.58,10.5,5
+"1596",5.9,0.55,0.1,2.2,0.062,39,51,0.99512,3.52,0.76,11.2,6
+"1597",6.3,0.51,0.13,2.3,0.076,29,40,0.99574,3.42,0.75,11,6
+"1598",5.9,0.645,0.12,2,0.075,32,44,0.99547,3.57,0.71,10.2,5
+"1599",6,0.31,0.47,3.6,0.067,18,42,0.99549,3.39,0.66,11,6

+ 19 - 0
License.txt

@@ -0,0 +1,19 @@
+Copyright (c) 2018 Pranav Suri
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.

BIN
Presenting.jpg


+ 23 - 0
README.md

@@ -0,0 +1,23 @@
+# Exploratory Data Analysis
+This repository contains the supplementary material to my talk delivered at [PyData Delhi MeetUp #23](https://www.meetup.com/PyDataDelhi/events/250848697/).
+
+![Image of Me Presenting](/Presenting.jpg)
+
+## Contents
+The idea behind the talk was to explain the ideology behind Exploratory Data Analysis and why it is essential for any Data Science project.
+
+- The *slides* can be viewed at http://bit.ly/SuriEDAPyData.
+
+- The *proposal* can be viewed at https://github.com/pydatadelhi/talks/issues/68.
+
+The talk included a lot of content from the following projects:
+
+1. [Investigating Factors Affecting Wine Quality](): This project investigates a dataset using EDA to find chemical properties that affect red wine quality.
+
+2. [Identifying Fraud from Enron Email Dataset](): This project includes a section which uses EDA to remove outliers.
+
+## Message
+The meet-up was a great experience as I got meet some amazing people. I certainly look forward to collaborating on a new project. One of the ideas I have is to explore datasets on different beverages (such as [white wine](https://archive.ics.uci.edu/ml/datasets/wine+quality)) or maybe some food items.
+
+## License
+[MIT License © Pranav Suri](/License.txt)

Some files were not shown because too many files changed in this diff