123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- from copy import deepcopy
- from unittest import mock
- import tensorflow as tf
- def test_safe(func):
- """
- Isolate tests
- """
- def func_wrapper(*args):
- with tf.Graph().as_default():
- result = func(*args)
- print('Tests Passed')
- return result
- return func_wrapper
- def _assert_tensor_shape(tensor, shape, display_name):
- assert tf.assert_rank(tensor, len(shape), message='{} has wrong rank'.format(display_name))
- tensor_shape = tensor.get_shape().as_list() if len(shape) else []
- wrong_dimension = [ten_dim for ten_dim, cor_dim in zip(tensor_shape, shape)
- if cor_dim is not None and ten_dim != cor_dim]
- assert not wrong_dimension, \
- '{} has wrong shape. Found {}'.format(display_name, tensor_shape)
- def _check_input(tensor, shape, display_name, tf_name=None):
- assert tensor.op.type == 'Placeholder', \
- '{} is not a Placeholder.'.format(display_name)
- _assert_tensor_shape(tensor, shape, 'Real Input')
- if tf_name:
- assert tensor.name == tf_name, \
- '{} has bad name. Found name {}'.format(display_name, tensor.name)
- class TmpMock():
- """
- Mock a attribute. Restore attribute when exiting scope.
- """
- def __init__(self, module, attrib_name):
- self.original_attrib = deepcopy(getattr(module, attrib_name))
- setattr(module, attrib_name, mock.MagicMock())
- self.module = module
- self.attrib_name = attrib_name
- def __enter__(self):
- return getattr(self.module, self.attrib_name)
- def __exit__(self, type, value, traceback):
- setattr(self.module, self.attrib_name, self.original_attrib)
- @test_safe
- def test_model_inputs(model_inputs):
- image_width = 28
- image_height = 28
- image_channels = 3
- z_dim = 100
- input_real, input_z, learn_rate = model_inputs(image_width, image_height, image_channels, z_dim)
- _check_input(input_real, [None, image_width, image_height, image_channels], 'Real Input')
- _check_input(input_z, [None, z_dim], 'Z Input')
- _check_input(learn_rate, [], 'Learning Rate')
- @test_safe
- def test_discriminator(discriminator, tf_module):
- with TmpMock(tf_module, 'variable_scope') as mock_variable_scope:
- image = tf.placeholder(tf.float32, [None, 28, 28, 3])
- output, logits = discriminator(image)
- _assert_tensor_shape(output, [None, 1], 'Discriminator Training(reuse=false) output')
- _assert_tensor_shape(logits, [None, 1], 'Discriminator Training(reuse=false) Logits')
- assert mock_variable_scope.called,\
- 'tf.variable_scope not called in Discriminator Training(reuse=false)'
- assert mock_variable_scope.call_args == mock.call('discriminator', reuse=False), \
- 'tf.variable_scope called with wrong arguments in Discriminator Training(reuse=false)'
- mock_variable_scope.reset_mock()
- output_reuse, logits_reuse = discriminator(image, True)
- _assert_tensor_shape(output_reuse, [None, 1], 'Discriminator Inference(reuse=True) output')
- _assert_tensor_shape(logits_reuse, [None, 1], 'Discriminator Inference(reuse=True) Logits')
- assert mock_variable_scope.called, \
- 'tf.variable_scope not called in Discriminator Inference(reuse=True)'
- assert mock_variable_scope.call_args == mock.call('discriminator', reuse=True), \
- 'tf.variable_scope called with wrong arguments in Discriminator Inference(reuse=True)'
- @test_safe
- def test_generator(generator, tf_module):
- with TmpMock(tf_module, 'variable_scope') as mock_variable_scope:
- z = tf.placeholder(tf.float32, [None, 100])
- out_channel_dim = 5
- output = generator(z, out_channel_dim)
- _assert_tensor_shape(output, [None, 28, 28, out_channel_dim], 'Generator output (is_train=True)')
- assert mock_variable_scope.called, \
- 'tf.variable_scope not called in Generator Training(reuse=false)'
- assert mock_variable_scope.call_args == mock.call('generator', reuse=False), \
- 'tf.variable_scope called with wrong arguments in Generator Training(reuse=false)'
- mock_variable_scope.reset_mock()
- output = generator(z, out_channel_dim, False)
- _assert_tensor_shape(output, [None, 28, 28, out_channel_dim], 'Generator output (is_train=False)')
- assert mock_variable_scope.called, \
- 'tf.variable_scope not called in Generator Inference(reuse=True)'
- assert mock_variable_scope.call_args == mock.call('generator', reuse=True), \
- 'tf.variable_scope called with wrong arguments in Generator Inference(reuse=True)'
- @test_safe
- def test_model_loss(model_loss):
- out_channel_dim = 4
- input_real = tf.placeholder(tf.float32, [None, 28, 28, out_channel_dim])
- input_z = tf.placeholder(tf.float32, [None, 100])
- d_loss, g_loss = model_loss(input_real, input_z, out_channel_dim)
- _assert_tensor_shape(d_loss, [], 'Discriminator Loss')
- _assert_tensor_shape(g_loss, [], 'Generator Loss')
- @test_safe
- def test_model_opt(model_opt, tf_module):
- with TmpMock(tf_module, 'trainable_variables') as mock_trainable_variables:
- with tf.variable_scope('discriminator'):
- discriminator_logits = tf.Variable(tf.zeros([3, 3]))
- with tf.variable_scope('generator'):
- generator_logits = tf.Variable(tf.zeros([3, 3]))
- mock_trainable_variables.return_value = [discriminator_logits, generator_logits]
- d_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
- logits=discriminator_logits,
- labels=[[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]))
- g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
- logits=generator_logits,
- labels=[[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]))
- learning_rate = 0.001
- beta1 = 0.9
- d_train_opt, g_train_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
- assert mock_trainable_variables.called,\
- 'tf.mock_trainable_variables not called'
|