1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- import numpy as np
- import pandas as pd
- from babs_visualizations import usage_stats
- def question_3(data):
- """
- This function will check that the sample data has been wrangled properly.
- """
- n_correct = 0
- # Check that there are a correct number of lines in the dataset.
- if data.shape[0] != 27345:
- print("Expected 27,345 data points, found only {:d}.".format(data.shape[0]))
- else:
- n_correct += 1
- # Check that the durations have been converted into terms of minutes.
- data_duration_stats = usage_stats(data, verbose = False)
- expected_duration_stats = np.array([6.816667, 10.716667, 17.28333])
- if not np.allclose(data_duration_stats, expected_duration_stats):
- print("Duration statistics do not match expected units (minutes).")
- if np.allclose(data_duration_stats, np.array([409, 643, 1037])):
- print(" It looks like the units are still in terms of seconds.")
- elif np.allclose(data_duration_stats, np.array([24520, 38580, 62220])):
- print(" It looks like you might have used the wrong operator in your conversion.")
- print(" Remember that there are 60 seconds in each minute.")
- else:
- n_correct += 1
- # Check that the timestamps have been wrangled properly.
- expected_time_vals = {'start_month': [25243, 2102],
- 'start_hour': [2851, 2291, 2219, 2171, 2131, 1976,
- 1833, 1799, 1791, 1644, 1359, 1269,
- 1071, 797, 644, 440, 394, 276,
- 153, 65, 55, 45, 42, 29],
- 'weekday': [4712, 4493, 4370, 3860, 3637, 3138, 3135]}
- for column in expected_time_vals.keys():
- col_data = data[column].value_counts().values
- n_values = len(col_data)
- n_values_expected = len(expected_time_vals[column])
- if not n_values == n_values_expected:
- print("Wrong number of unique values found for column: {}".format(column))
- print(" {:d} unique values expected; {:d} values found.".format(n_values_expected, n_values))
- elif not np.array_equal(col_data, expected_time_vals[column]):
- expected_max = expected_time_vals[column][0]
- expected_min = expected_time_vals[column][-1]
- print("Unexpected count of values for column: {}".format(column))
- print(" Most common value expected {:d} data points; {:d} trips found.".format(expected_max, col_data[0]))
- print(" Least common value expected {:d} data points; {:d} trips found.".format(expected_min, col_data[-1]))
- else:
- n_correct += 1
- if n_correct == len(expected_time_vals.keys()) + 2:
- print("All counts are as expected!")
|