
RESEARCH	REVIEW:	DEEP	BLUE	

RESEARCH	PAPER	BY	IBM	WATSON	TEAM	

This	research	paper	describes	the	techniques	and	rationale	that	went	behind	the	design	of	Deep	Blue	chess	
machine	that	defeated	the	then-reigning	World	Chess	Champion	Garry	Kasparov	 in	a	six-game	match	 in	
1997.	At	the	start	of	the	paper,	the	authors	discuss	the	series	of	machines	that	led	up	to	the	creation	of	
Deep	Blue	viz.	ChipTest,	Deep	Thought,	Deep	Thought	2,	Deep	Blue	I	and	Deep	Blue	II	(referring	to	the	
computer	 that	 won	 against	 Garry	 Kasparov	 in	 1997).	 Deep	 Blue	 inherited	 a	 lot	 of	 features	 from	 its	
previous	counterparts;	nonetheless,	several	improvements	were	made	to	make	it	competitive.	Factors	
that	contributed	to	its	success	are	described	in	the	subsequent	paragraphs.	

In	 comparison	 to	 Deep	 Blue	 I	 (the	 computer	 that	 lost	 to	 Garry	 Kasparov	 in	 1996),	 Deep	 Blue	 II	
incorporated	 a	 single-chip	 chess	 search	 engine	with	 a	more	 complex	 evaluation	 function	 (with	
increased	number	of	features)	that	was	nearly	1.5	times	faster	than	its	predecessor.	It	was	a	massively	
parallel	system	with	multiple	levels	of	parallelism,	with	around	500	processors	available	to	participate	
in	 the	 game	 tree	 searches.	 The	 system	 included	 significant	 search	 extensions	 with	 non-uniform	
searches	 so	 that	 it	 could	search	 to	a	 reasonable	minimum	depth	 in	 the	game	 tree.	The	gist	of	how	 it	
worked	is	as	follows:	a	master	chip	searched	the	top	levels	of	the	game	tree	and	then	distributed	“leaf”	
positions	 to	 the	workers	who	perform	a	 few	 levels	of	additional	search,	and	then	distribute	 their	 leaf	
positions	to	the	chess	chips	which	search	the	last	available	levels	of	the	tree.	

The	search	mechanism	of	Deep	Blue	was	a	hybrid	software/hardware	search.	The	software	search	was	
flexible	 and	 could	 change	 as	 needed	 whereas	 the	 hardware	 search	 while	 inflexible,	 was	 faster.	 To	
maintain	 a	 balance	 between	 the	 speed	 of	 the	 hardware	 search	 and	 the	 efficiency/complexity	 of	 the	
software	search,	the	chips	only	carried	out	shallow	searches.		

The	chess	chip	was	divided	into	three	parts:	the	move	generator,	the	evaluation	function	and	the	search	
control.	 The	 move	 generator,	 an	 8x8	 array	 of	 combinatorial	 logic	 (representing	 a	 chessboard)	 was	
controlled	via	a	hardwired	 finite	state	machine.	The	move	generator	computed	all	possible	moves.	 In	
order	to	generate	moves	with	minimum	latency	and	the	first	move	being	as	close	the	best	possible	(to	
make	search	process	efficient),	the	evaluation	function	of	Deep	Blue	composed	of	“slow-evaluation”	and	
“fast-evaluation”.	The	features	recognized	in	both	evaluation	functions	had	programmable	weights	for	
easy	adjustment	of	their	relative	importance.	The	overall	evaluation	function	was	the	sum	of	the	feature	
values.	 Search	 Control	 monitored	 the	 quality	 of	 search	 by	 ensuring	 ‘progress’	 with	 inclusion	 of	
components	like	a	repetition	detector.		

The	 paper	 further	 goes	 into	 more	 details	 of	 the	 features	 that	 constituted	 the	 evaluation	 function,	
describing	 the	 heuristics	 used	 to	 score	 a	 particular	 game	 state.	 The	 game	 agent	 used	 ideas	 such	 as	
quiescence	 search,	 iterative	 deepening,	 transposition	 tables,	 and	 NegaScout.	 Deep	 Blue	 also	 had	 two	
important	databases	–	opening	book	which	was	chosen	to	emphasize	on	the	positions	that	Deep	Blue	
played	well	and	a	large	extended	book	that	allows	a	large	grandmaster	game	database	to	influence	Deep	
Blue’s	play,	particularly	during	endgames.	To	manage	a	suitable	move	 in	a	required	time	 frame,	time	
control	was	also	implemented.		

The	authors	conclude	their	research	listing	out	areas	for	additional	improvement	that	could	have	otherwise	
resulted	 in	 better	 or	 worse	 results.	 This	 seminal	 paper	 is	 a	 great	 inspiration	 to	 understand	 the	 many	
possibilities	that	are	available	for	creating	a	compelling	game	agent.	


