HEURISTIC ANALYSIS

Implement a Planning Search: Air Cargo Planning

The following tables show the results gathered after solving the air cargo problems with both uninformed and heuristic based search. The goal of this analysis is to document the results obtained from each search type and find an optimal solution for each air cargo problem, that is; a search algorithm that finds the lowest path among all possible paths from start to goal.

Results

For each set of problems, the row corresponding to the optimal solution has been highlighted.

PROBLEM 1

Search Type	Expansions	Goal Tests	New Nodes	Length	Time (s)	Optimal
Breadth First Search	43	56	180	6	0.033	Yes
Breadth First Tree Search	1458	1459	5960	6	0.991	Yes
Depth First Graph Search	21	22	84	20	0.016	No
Depth Limited Search	101	271	414	50	0.089	No
Uniform Cost Search	55	57	224	6	0.036	Yes
Recursive Best First Search	4429	4230	17023	6	2.875	No
Greedy Best First Graph Search h_1	7	9	28	6	0.004	Yes
A* Search h_1	55	57	224	6	0.042	Yes
A* Search h_ignore_preconditions	41	43	170	6	0.048	Yes
A* Search h_pg_levelsum	11	13	50	6	10.370	Yes

Problem 2

Search Type	Expansions	Goal Tests	New Nodes	Length	Time (s)	Optimal
Breadth First Search	3343	4609	30509	9	17.079	Yes
Breadth First Tree Search						
Depth First Graph Search	624	625	5602	619	4.059	No
Depth Limited Search						
Uniform Cost Search	4853	4855	44041	9	18.235	Yes
Recursive Best First Search						
Greedy Best First Graph Search h_1	998	1000	8982	15	4.986	No
A* Search h_1	4853	4855	44041	9	26.667	Yes
A* Search h_ignore_preconditions	1450	1452	13303	9	11.172	Yes
A* Search h_pg_levelsum	86	88	841	9	597.83	Yes

Problem 3

Search Type	Expansions	Goal Tests	New Nodes	Length	Time (s)	Optimal
Breadth First Search	14663	18098	129631	12	135.890	Yes
Breadth First Tree Search	18223	18225	159618	12	616.23	Yes
Depth First Graph Search	408	409	3364	<i>392</i>	2.300	No
Depth Limited Search						
Uniform Cost Search	18223	18225	159618	12	64.950	Yes
Recursive Best First Search						
Greedy Best First Graph Search h_1	5578	5580	49150	22	18.543	No
A* Search h_1	18223	18225	159618	12	57.27	Yes
A* Search h_ignore_preconditions	5040	5042	44944	12	22.760	Yes
A* Search h_pg_levelsum	325	327	3002	12	3692.360	Yes

OPTIMAL SEQUENCE OF ACTIONS

PROBLEM 1 – BREADTH FIRST SEARCH Load(C1, P1, SFO) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C2, P2, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) **PROBLEM 2 – A* SEARCH H IGNORE PRECONDITIONS** Load(C3, P3, ATL) Fly(P3, ATL, SFO) Unload(C3, P3, SFO) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C2, P2, SFO) Load(C1, P1, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) PROBLEM 3 – A* SEARCH H_IGNORE PRECONDITIONS Load(C2, P2, JFK) Fly(P2, JFK, ORD) Load(C4, P2, ORD) Fly(P2, ORD, SFO) Unload(C4, P2, SFO) Load(C1, P1, SFO) Fly(P1, SFO, ATL) Load(C3, P1, ATL) Fly(P1, ATL, JFK) Unload(C3, P1, JFK) Unload(C2, P2, SFO) Unload(C1, P1, JFK)

DISCUSSION OF ANALYSIS

As depicted in the tables above, both breadth-first-search as well as uniform-cost-search yield an optimal plan for all three problem spaces with BFS needing less time, less node expansions and goal tests than UCS. BFS and UCS, both always find an optimal plan but the duration of the UCS indicates that the cost assessment of the planning problem is not suited to accelerate the search. Hence, **BFS is the optimal search algorithm**.

Also, a comparison between BFS and DFS shows the clear advantage of BFS in this search space with respect to optimality. While DFS is very fast at finding solutions, the resulting plan is much longer than optimal. Moreover, Depth Limited Search does not find a solution for problems two and three; hence, can be ruled out as a candidate of choice for most problems.

Of all planning approaches that did not guarantee an optimal solution, Greedy Best First Graph search shows the best results with respect to the length of plan. Moreover, number of goal tests as well as node expansions are rather small. The caveat is that in a real life scenario with a much bigger problem space, the plan lengths obtained are still quite distant from optimum.

The ignore_preconditions heuristic adds edges to the graph by ignoring all preconditions which increases the number of possibilities and hence, makes it easier to find a path. level_sum is a heuristic based on the information implemented in the plan graph. The heuristic estimates the expected cost to reach a goal, by counting the levels it takes to reach the goal. In order to not spoil the count, a serial graph is used which does not have more than one action per level. As depicted in the above tables, **A* searches provides an optimal solution.** It's also worth noting that the 'h_pg_levelsum' heuristic did in overall perform poorly, most likely due to the heuristic being too complex.

CHOOSING THE BEST PLANNING APPROACH

When the goal is just to find a path with optimality not being the priority, DFS is the best candidate as it's both complete and uses less resources. **When optimality is a must BFS or A* search with ignore_preconditions heuristic should be considered**, since they both direct the solver towards to optimal path. A* search with level_sum heuristic seems promising but is computationally expensive.

References

- 1. http://cs.lmu.edu/~ray/notes/usearch/
- 2. Quiz: Tree Search, Udacity Artificial Intelligence Nanodegree, Lesson 7 (Search), Video 8.
- 3. Quiz: Uniform Cost Search, Udacity Artificial Intelligence Nanodegree, Lesson 7(Search), Video 16-21.
- 4. Quiz: A * Search, Udacity Artificial Intelligence Nanodegree, Video 27-32 of Lesson 7 (Search).
- 5. Russell, S. and Norvig, P. Artificial Intelligence, A Modern Approach, Third Edition, Sec 10.3.1 Planning graphs for heuristic estimation, LEVEL SUM HEURISTIC
- 6. Russell, S. and Norvig, P. Artificial Intelligence, A Modern Approach, Third Edition, Sec 10.2.3 Heuristics for planning, IGNORE PRECONDITIONS HEURISTIC